
LECTURE 25 – PUISEUX SERIES, NEWTON’S POLYGON, AND ALGEBRAIC
GENERATING FUNCTIONS

JAY PANTONE

Let f (z) be an algebraic generating function, so that there exists a polynomial P(z, y) ∈
C[z, y]

P(z, y) = p0(z)yd + p1(z)yd−1 + · · ·+ pd(z),
such that P(z, f (z)).

The solution to the equation is P(z, y) is a set of points in C×C called a complex algebraic
curve. For all but a finite number of z-values, there are exactly d possible values of y,
corresponding to different branches. At z-values z0 where p0(z0) = 0, there is a reduction
in the number of y-values. Alternatively, at z-values z0 such that P(z0, y) has a multiple
root, some of the y-values will coincide.

Recall that the discriminant of a polynomial equals zero if and only if the polynomial has
distinct roots. To that end, define

E[P] = {z : (discrim(P, y))(z) = 0}.
The set E[P] is called the exceptional set, and it represents the location of the possible sin-
gularities of f (z) if P(z, f (z)) = 0, because these are exactly the places where it is possible
that p0(z) = 0 or P(z, y) has a multiple root. For any z 6∈ E[P], the Implicit Function The-
orem tells us that each solution curve yj lifts to a locally analytic function yj(z). The yj(z)
are the branches.

To derive asymptotic behavior of f (z), we must understand the behavior of the d branches
at points z ∈ E[P]. When p0(z) = 0, some of the branches become infinite and thus are
not analytic. At other z-values in E[P], two or more branches collide, either in a multiple
point where the branches are still analytic, or in a branch point where they are no longer
analytic.

Consider for example the generating function f (z) for the catalan numbers, which satisfies
P(z, f (z)) = 0 for

P(z, y) = y− 1− zy2.
The discriminant of P with respect to y is

z(1− 4z),

which gives candidates for z = 0 and z = 1/4 to be the dominant singularity.1 At z = 0
we have p0(z) = 0, and as the accompanying graphs show [see Maple worksheet] one of
the branches explodes at z = 0. We also can clearly see the branch cut occurring at z = 1/4
where the branches collide and are no longer analytic.

1It is known the algebraic formal power series are analytic at the origin, precluding a true singularity, but
let’s ignore that for the moment.
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The Lemma below follows from our discussion.

Lemma 25.1. Let f (z) be analytic at the origin and satisfy P(z, f (z)) = 0 for some polynomial
P(z, y). Then, f (z) can be analytically continued along any simple path emanating from the origin
that does not cross any point of the exceptional set E[P].

In fact, this process of analytic continuation is how we evaluate the behavior of the branches
near a singularity. Suppose for the moment that z = 0 is an exceptional point. (This is with-
out loss of generality because you can translate to make it so.) Suppose that the equation
P(0, y) has k equal roots y1, . . . , yk. We can again assume yi = 0 by translation. Let R be a
punctured disc that does not include any other exceptional points of P. Let y1(z), . . . , yk(z)
be the k branches colliding at (0, 0).

Start on the branch y1(z) at some point z of R. By the Implicit Function Theorem, y1(z)
can be analytically continued around the origin on a circuit that returns to z. When this
happens, the analytic continuation will have brought you to another branch, say y(1)1 (z).
Repeating this, you will eventually get back to the initial branch in, say, κ iterations. Thus
we have explored κ branches

y1(z) = y(0)1 (z), y(1)1 (z), . . . , y(κ)1 (z) = y1(z).

These distinct values are called a cycle, and it follows that y1(tκ) is an analytic function of
t except possibly at 0, where it is still continuous and has value 0. Some complex analysis
implies that y1(tκ) has a convergence power series expansion near 0 of the form

y1(tκ) = ∑
n≥1

cntn.

Translating back to z gives
y1(z) = ∑

n≥1
cnzn/κ,

which has κ different determinations, one for each branch in the cycle. It is again clear that
κ = 1 corresponds to an analytic branch. If κ = k then a single cycle accounts for all of the
roots that tend to 0. Otherwise, we repeat until we’ve captured all branches that tend to 0
into their various cycles. Branches that tend to infinity are similarly treated with a change
of variable y 7→ 1/u.

Theorem 25.2 (Newton-Puiseux Theorem). Let f (z) be a branch of an algebraic function P(z, f (z)) =
0. In a circular neighborhood of a singularity ζ slit along a ray emanating from ζ, f (z) admits a
fractional series expansion (Puiseux expansion) that is locally convergent and of the form

f (z) = ∑
k≥k0

ck(z− ζ)k/κ,

for a fixed determination of (z− ζ)1/κ, where k0 ∈ Z and κ ∈N≥1, called the “branching type”.

NEWTON’S POLYGON METHOD

The argument described above is called a “monodromy argument” because it involves
running around singularities. Knowing the theorem, we can approach the calculation in a
different manner. Consider again the equation

P(z, y) = y− 1− zy2 = 0,
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which defines the Catalan generating function. We know algebraically that the two branches
of the solution y are

1−
√

1− 4z
2z

and
1 +
√

1− 4z
2z

.

The first should have a branch cut at z = 1/4 with no problems at z = 0, while the second
should have an infinite singularity (a pole) at z = 0 and a branch cut at z = 1/4. We now
examine the behavior of the two branches at z = 1/4.

Translate this singularity to the origin via z 7→ 1/4− Z. This givaes

P̂(Z, y) = −1
4

y2 + y2Z + y− 1.

At Z = 0, P̂(0, y) has a double root at y = 2. Thus perform the change of variables
y 7→ Y + 2 so that this double root occurs at Y = 0. We obtain

Q(Z, Y) = −1
4

Y2 + ZY2 + 4ZY + 4Z,

which has two branches colliding at (Z, Y) = (0, 0). Our goal is to determine the cycle
type of the branches. By the Newton-Puiseux theorem, we can look for solutions of the
form

Y(Z) = cZα(1 + o(1)),
with c 6= 0. Supposing this form, each of the monomials of Q(Z, Y) gives an asymptotic
order: respectively,

Z2α, Z2α+1, Zα+1, Z1.
Since Q(Z, Y) = 0, we must find an α value that yields to monomials of the same asymp-
totic order. We can then calculate the value of c that makes them cancel. Moreover, the
remaining monomials must have a smaller asymptotic order (i.e., larger exponents).

With some inspection, we see that there is only one possibility: when α = 1/2, the first
and last monomials have the same asymptotic order Z1, while the other two have smaller
asymptotic orders Z2 and Z3/2. Therefore, we are assuming the form Y(Z) = cZ1/2(1 +
o(1)). To determine c, observe that for the monomials −Y2/4 and Z to actually cancel:

−1
4
(cZ1/2)2 + 4Z = 0,

implying

−1
4

c2 + 4 = 0,

so c = ±4. This gives the dominant terms for two branches colliding at (0, 0):

Y(Z) ∼ 4Z1/2 and Y(Z) ∼ −4Z1/2.

Upon converting back to z and y, this gives

f (z) ∼ 2 + 4
(

1
4
− z
)1/2

and f (z) ∼ 2− 4
(

1
4
− z
)1/2

The process can be repeated to arbitrary precision by taking the asymptotic forms for Y(Z)
above, subtracting them from Y(Z) and repeating. In other words, perform the analysis
on Y(Z)− 4Z1/2 and Y(Z) + 4Z1/2.
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This process is captured with a graphical method called Newton’s Polygon Method. Suppose

Q(Z, Y) = ∑
j∈J

CjZajYbj .

Associate to Q(Z, Y) the set of points (aj, bj) in N×N. You can verify that finding an α
with the restrictions above corresponds to picking the negative reciprocal of a slope be-
tween two of the plotted points that are on the left-most convex envelope of the diagram
or are to its right. Try these slopes in decreasing asymptotic order looking for one that
gives non-zero c. Rinse and repeat!

Example: The polynomial Q(Z, Y) for the Catalan generating functions gives the Newton
polynomial below.

As the following theorem shows, the standard function scale can be applied to Puiseux
expansions. (In particular, they are analytic in an indented ∆-domain.

Theorem 25.3. Let f (z) = ∑ fnzn be the branch of an algebraic function analytic at 0. Assume
that f (z) has a unique dominant singularity at z = α. Then, in the non-polar case, the coefficient
fn satisfies

fn ∼ α−n
1

(
∑

k≥k0

dkn−1−k/κ

)
,

where k0 ∈ Z and κ is an integer at least 2. In the polar case, κ = 1 and k0 < 0, the estimate
eventually terminates.

With slight modifications, the theorem holds in the case of multiple dominant singularities.

Example: The generating function for unary-binary trees is

f (z) =
1− z−

√
(1 + z)(1− 3z)

2z
,

which satisfies the minimal polynomial

P(z, y) = y− z− zy− zy2.

The discriminant of P with respect to y is

(1 + z)(1− 3z),

which indicates potential singularities at z = 1/3 and z = −1. Making the substitutions
Z = 1/3− z and Y = y− 1 gives

Q(Z, Y) = −1
3

Y2 + ZY2 + 3ZY + 3Z.

The Newton diagram is
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which indicates a dominant asymptotic form Y ∼ cZ1/2. Solving for c, we find

−1
3
(cZ1/2)2 + 3Z = 0

and so
c = ±3.

Therefore the two branches of f (z) have dominant behavior

f (z) ∼ 1 + 3
(

1
3
− z
)1/2

and f (z) ∼ 1− 3
(

1
3
− z
)1/2

near z = 1/3. The expansion on the right gives a positive value for the coefficients of the
combinatorial series, and so it is the correct one. This computation can be easily carried
out by a CAS to arbitrary precision. For example,

f (z) ∼ 1− 3d +
9
2

d2 − 63
8

d3 +
27
2

d4 − 2997
128

d5 +
81
2

d6 + · · · ,

where d =

√
1
3
− z. The expansion of f (z) near z = 1/3 gives immediately the expansion

of [zn] f (z).

Example: The generating function f (z) for bicolored supertrees satisfies P(z, f (z)) = 0 for

P(z, y) = y4 − 2y3 + (1 + 2z)y2 − 2yz + 4z3.

There are four branches of this function. At z = 0, two of them collide at y = 0, while
two collide at y = 1. Of the two that collide at 0, one of them is the branch that gives our
combinatorial sequence:

2z2 + 2z3 + 8z4 + · · · .
Observing that

discrim(P, y) = 16z4(16z2 + 4z− 1)(4z− 1)3,
candidates for the singularities on this branch are

z = 0,
1
4

,
1
8
(−1±

√
5).

The critical thing to understand is that each of these may be singularities on some branches
but not on others, and we need to figure out which are singularities on the branch corre-
sponding to our combinatorial sequence.

In a bit, we’ll discuss how to determine which singularities are present on each branch.
For now, we’ll just assume that z = 1/4 is the dominant singularity for our generating
function.

To expand f (z) around the singularity at z = 1/4, we shift the singularity to the origin,
check the y-value, then shift that to the origin. Upon substituting z = 1/4− Z, and then
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substituting Z = 0 and solving for y, we find that all four branches collide at y = 1/2.
Thus we replace y = Y + 1/2 giving

Q(Z, Y) = Y4 − 2ZY2 − 1
4

Z + 3Z2 − 4Z3,

such that the algebraic curve Q(Z, Y) = 0 has a singularity at (Z, Y) = (0, 0). The Newton
polygon is

This indicates a four-cycle on the branches (which we can see from the graphs by very
careful inspection). We’ve already seen how to calculate the Puiseux series by hand (sub-
stitute Y(Z) = cZ1/4, solve for c, subtract from the original, and repeat). To calculate it
with a CAS, simply perform the substitution Z = d4 and find the series expansion with
respect to d. We recover four possible expansions:

Y1(d) =
1√
2

d +
1√
2

d3 − 5
2
√

2
d5 +

5
2
√

2
d7 − 45

8
√

2
d9 + O(d11),

Y2(d) =
i√
2

d− i√
2

d3 − 5i
2
√

2
d5 − 5i

2
√

2
d7 − 45i

8
√

2
d9 + O(d11),

Y3(d) = −
1√
2

d− 1√
2

d3 +
5

2
√

2
d5 − 5

2
√

2
d7 +

45
8
√

2
d9 + O(d11),

Y4(d) = −
i√
2

d +
i√
2

d3 +
5i

2
√

2
d5 +

5i
2
√

2
d7 +

45i
8
√

2
d9 + O(d11).

Then, transform Z and Y back to z and y. Only one of these Y3(d) leads to an expansion
that gives positive real coefficients. The corresponding y3(z) is

y3(z) =
1
2
− 1√

2

(
1
4
− z
)1/4

− 1√
2

(
1
4
− z
)3/4

+
5

2
√

2

(
1
4
− z
)5/4

− 5
2
√

2

(
1
4
− z
)7/4

+
45

8
√

2

(
1
4
− z
)9/4

+ O

((
1
4
− z
)11/4

)
.

THE ALGEBRAIC COEFFICIENT ASYMPTOTICS (ACA) ALGORITHM

The techniques discussed above, together with rigorous numerical estimates, provide an
algorithm to start with the minimal polynomial of a generating function and produce full
asymptotic expansion to arbitrary precision.

The two theoretical complications that must be overcome are:

(1) we have to identify the dominant singularities of the generating function, and
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(2) we have to determine which asymptotic expansion at each dominant singularity
corresponds to the generating function we seek.

This is what is known as a connection problem. We are able to solve it in the algebraic case
in contrast to the setting of linear differential equations where numerical approximation is
the only known recourse.

The algorithm is taken from the textbook (Analytic Combinatorics), page 504, which pro-
vides a skeleton outline of the procedure.

Step 1: Preparation. Let f (z) be a generating function with minimal polynomial P(z, y).
Let d = degy(P). Calculate the exceptional set (adding in 0 if it’s not already there)

E[P] = {0} ∪ {z : (discrim(P, y))(z) = 0}.

Then calculate the Puiseux expansion of each of the d branches at each α ∈ E[P]. We now
have a collection of expansions

{yα,j(z) : α ∈ E[P], j ∈ {1, . . . , d}}.
Figure out which of the y0,k corresponds to f (z) by matching initial terms of the expansion
at 0 to the known initial terms of the counting sequence.

Step 2: Locating the Dominant Singularity. Partition E[P] into sets E0, E1, . . . by modulus,
so that the sets Ei are ordered such that if i < j with α ∈ Ei and β ∈ Ej then |α| < |β|. Note
that E0 = {0}. To find the dominant singularity, we examine each Ei in increasing order
until a singularity is located.

To do this, we need to determine a non-zero lower bound δ on the radius of convergence
of any local Puiseux expansion at any branch at any point of E[P]. (Hint: find the minimal
distance between elements of E[P].)

Starting with E1, examine each Ej in increasing order. For each exceptional point σk in
Ej, set ζk = (1 − δ/2)σk. Use resultants to compute a non-zero lower bound ηk on the
distance between the branches at z = ζk. Then, calculate f (ζk) and yσk ,i(ζk) to check which
branch matches the branch f (z) at z = ζk. (Calculate each to an accuracy of ηk/4 to match.)
Determine if σk is actually a singularity on the appropriate branch (i.e., a pole or a branch
point).

Repeat until all dominant singularities are found.

Step 3: Coefficient Expansion. Expand f (z) at each of the dominant singularities and use
the standard function scale to translate to an asymptotic expansion of the coefficients.
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