
LECTURE 23 – THE STANDARD FUNCTION SCALE, PART 2

JAY PANTONE

The main result from the previous topic describe the asymptotic behavior of functions of
the form f (z) = (1− z)−α. We repeat it (in brief form) here.

Theorem 23.1. Let α be an arbitrary complex number. The coefficient of zn in f (z) = (1− z)−α

admits, for large n, a complex asymptotic expansion in descending powers of n,

[zn] f (z) ∼ nα−1

Γ(α)

(
1 +

∞

∑
k=1

ek(α)

nk

)
.

The first few terms of the expansion are

[zn] f (z) ∼ nα−1

Γ(α)

(
1 +

α(α− 1)
2n

+
α(α− 1)(α− 2)(3α− 1)

24n2 + O
(

1
n3

))
.

A few broad remarks.

(1) This does not yet handle the form f (z) = (1− z)−α

(
log
(

1
1− z

))β

.

(2) This says nothing (yet!) about functions with f (z) ∼ (1− z)−α. For that we need a
transfer theorem.

First we address remark (1).

LOGARITHMIC TERMS

Theorem 23.2. Let α ∈ C r Z≤0. The coefficient of zn in

f (z) = (1− z)−α

(
1
z

log
(

1
1− z

))β

admits for large n a full asymptotic expansion in descending powers of log(n):

[zn] f (z) ∼ nα−1

Γ(α)
(log(n))β

[
1 +

C1

log(n)
+

C2

log2(n)
+ · · ·

]
,

where

Ck =

(
β

k

)
Γ(α)

[
dk

dsk
1

Γ(s)

]
s=α

.

The proof is similar to the one in the last lecture that did not involve logarithmic terms.
One important point is that we’ve ignored all of the terms smaller than nα−1/Γ(α) from
the expansion of (1− z)−α because it’s conceivable that all the Ci are non-zero. Since the
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order of nk/ log`(n) is greater than the order of nk−1 for all `, we never get to the point
where the subdominant terms in the expansion of (1− z)−α (e.g., α(α− 1)/(2n)) actually
matter.

That being said, we will look at some special cases where the Ci are eventually zero, in
which case the subdominant terms can play a role. First though, we state an example, and
then a slightly more general theorem.

Example:

[zn]
1√

1− z
1

1
z log

( 1
1−z

) =
1√

πn log(n)

(
1− γ + 2 log(2)

log(n)
+ O

(
1

log2(n)

))
.

This uses the fact that [
d
ds

1
Γ(s)

]
s=1/2

=
γ + 2 log(2)√

π
.

Theorem 23.3. A function Λ(u) is said to be slowly varying towards infinity if there exists
φ ∈ (0, π/2) such that for any fixed c > 0 and all θ with |θ| ≤ π − φ, we have

lim
u→+∞

Λ(ceiθu)
Λ(u)

= 1.

For slowly varying functions Λ(u),

[zn](1− z)−αΛ
(

1
1− z

)
∑ nα−1Γ(α)Λ(n).

Example:

[zn]
exp

(√
1
z log

( 1
1−z

))
√

1− z
∼ exp(

√
log(n)√

πn
.

Example: For α 6∈ Z≤0,

[zn](1− z)−α

(
1
z

log
(

1
1− z

))β (1
z

log
(

1
z

log
(

1
1− z

)))δ

∼ nα−1

Γ(α)
(log(n))β(log(log(n)))δ.

Special Cases of the Logarithmic Theorem.

α 6∈ {0,−1,−2, . . .} α ∈ {0,−1,−2, . . .}

β 6∈ Z≥0
1

Γ(α)nα−1(log(n))β
∞

∑
j=0

Cj

(log(n))j nα−1(log(n))β
∞

∑
j=1

Dj

(log(n))j

β ∈ Z≥0
1

Γ(α)nα−1
∞

∑
j=0

Ej(log(n))
nj nα−1

∞

∑
j=0

Fj(log(n))
nj

The left column was addressed in the theorem, and when β 6∈ Z≥0 (the upper-left box),
the theorem is best possible. Recall that this corresponds to functions like(

1
1− z

)3 (1
z

log
(

1
1− z

))−1

and
(

1
1− z

)3 (1
z

log
(

1
1− z

))1/2

.
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We’ll now address the lower-left box. When α 6∈ Z≤0 but β ∈ Z≥0, the Ci (as in the
theorem) will eventually be zero. In fact there will be no negative powers of log(n) in the
expansion. Therefore, one can expand

1
Γ(α)

nα−1
∞

∑
j=0

Ej(log(n))
nj ,

where each polynomial Ej has degree k. The polynomials Ej can be determined with a little
more work.

The two boxes in the rightmost column deal with α ∈ {0,−1,−2, . . .}. Here we treat
1/Γ(α) as zero. When β 6∈ Z≥0, this causes only the first term in the expansion to vanish,
leaving

[zn] f (z) ∼ nα−1(log(n))β

[
D1

log(n)
+

D2

log2(n)
+ · · ·

]
where

Dk =

(
β

k

) [
dk

dsk
1

Γ(s)

]
s=α

.

For example

[zn]
z

log
( 1

1−z

) = − 1
n log2(n)

+
2γ

n log3(n)
+ O

(
1

n log4(n)

)
,

Lastly, when α ∈ {0,−1,−2, . . .} and β ∈ {0, 1, 2, . . .}, the coefficients are really just finite
differences of coefficients of powers of logarithms. For example, if

f (z) = (1− z)3
(

log
(

1
1− z

))2

,

then we can expand and write

f (z) =
(

log
(

1
1− z

))2

− 3z
(

log
(

1
1− z

))2

+ 3z2
(

log
(

1
1− z

))2

− z3
(

log
(

1
1− z

))2

.

Coefficients can be extracted exactly in this case, leading to a form

[zn] f (z) ∼ nα−1
∞

∑
j=0

Fj(log(n))
nj ,

where each Fj is a polynomial of degree k− 1.

Example: The generating function for permutations avoiding the pattern 4321 is asymp-
totically equivalent to

(1− z/9)3 log
(

1
1− z/9

)
near its dominant singularity. This function has dominant asymptotic behavior

an ∼ 9nn−4.

Once we prove a transfer theorem (coming up soon), the fact that the GF as asymptotically
equivalent to a function whose coefficients are asymptotically equivalent to 9nn−4 will pass
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directly through, allowing us to conclude that the coefficients of the original GF have this
form.

TRANSFER THEOREMS

So far we’ve given asymptotic expansion for the coefficients very particular functions. Our
goal is to extend this to any function that near its own dominant singularities looks like
one of these very particular functions. For example, our methods do not yet apply to

f (z) =
e−z/2−z2/4
√

1− z
,

because this is not exactly of the form we’ve proved theorems about. It is however, asymp-
totic to the form near z = 1:

f (z) ∼
z→1 e−3/4(1− z)−1/2.

We’ll see that we can make this leap by integrating along particular contours.

Definition: Given two numbers φ and R with R > 1 and 0 < φ < π/2, the open domain
∆(φ, R) is

∆(φ, R) = {z : |z| < R, z 6= 1, | arg(z− 1)| > φ}.
Recall that arg(z) is the angle made by the positive real axis with the ray from 0 to z. A
domain is said to be a ∆-domain at 1 if it is equal to ∆(φ, R) for some R and φ. For a
complex number ζ 6= 0, a ∆-domain at ζ is the image by the mapping z 7→ ζz of a ∆-
domain at 1. A function is ∆-analytic if it is analytic in some ∆-domain.

Theorem 23.4. Let α and β be real numbers and let f (z) be ∆-analytic.

(1) Assume that f (z) satisfies in the intersection of a neighborhood of 1 with its ∆-domain the
condition

f (z) = O

(
(1− z)−α

(
log(

1
1− z

)β
)

.

Then,

[zn] f (z) = O
(

nα−1(log(n))β
)

.

(2) Assume that f (z) satisfies in the intersection of a neighborhood of 1 with its ∆-domain the
condition

f (z) = o

(
(1− z)−α

(
log(

1
1− z

)β
)

.

Then,

[zn] f (z) = o
(

nα−1(log(n))β
)

.

The proof involves integrating around a four-part contour, in which f (z) must be analytic
by the assumption that it is ∆-analytic.
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Corollary 23.5. Assume that f (z) is ∆-analytic and

f (z) ∼ (1− z)−α

(
1
z

log
(

1
1− z

))β

,

for α 6∈ Z≤0. Then,

[zn] f (z) ∼ nα−1

Γ(α)
(log(n))β

[
1 +

C1

log(n)
+

C2

log2(n)
+ · · ·

]
.

Special cases are as above.

Proof. Everything follows from the fact that f (z) ∼ g(z) if and only if f (z) = g(z) +
o(g(z)). Apply the main theorem to g(z) and the transfer theorem to o(g(z)). �

Theorem 23.6 (The Master Theorem, Single Dominant Singularity). Let f (z) be analytic at
0 with a singularity at ζ such that f (z) can be continued to a domain of the form ζ · ∆0 for a ∆-
domain ∆0 where ζ · ∆0 is the image of ∆0 by the mapping z 7→ ζz. Assume that there exist two
functions σ, τ, where σ is a (finite) linear combination of functions in

S = {(1− z)−α

(
1
z

log
(

1
1− z

))β

: α, β ∈ C}

and τ inS such that
f (z) = σ(z/ζ) + O(τ(z/ζ))

as z→ ζ in ζ · ∆0. Then, the coefficients of f (z) satisfy the asymptotic estimate

fn = ζ−nσn + O(ζ−nτ?
n ),

where σn = [zn]σ(z) has its coefficients determined by earlier theorems and τ?
n = na−1(log(n))b

if τ(z) = (1− z)−a (log
( 1

1−z

))b.
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