
LECTURE 21 – RATIONAL AND MEROMORPHIC FUNCTIONS

JAY PANTONE

The Second Principle of Analytic Combinatorics says that the sub-exponential component
of the asymptotic behavior of a sequence is determined by the nature of the generating
functions dominant singularity. Unlike the First Principle, which relies on the very con-
crete notion of the location of the dominant singularities, the nature of a singularity is much
more nuanced.

We start by examining the case of meromorphic functions, paying particular attention to
rational functions. In this situation, all singularities are poles and their nature is fully
describable by the multiplicity of the pole.

RATIONAL FUNCTIONS

Recall our theorem from earlier in the course about coefficient extraction from rational
generating functions.

Theorem 21.1. For any rational generating function f (z) = P(z)/Q(z), (without loss of gener-
ality, assume deg(P) < deg(Q)) the coefficient sequence {an}n≥0 can be written in the form

an =
N

∑
i=1

Pi(n)µn
i .

More particularly, if f (z) can be expanded as

f (z) =
N

∑
i=1

ci

(z− αi)ri
=

N

∑
i=1

ci

(−αi)ri

1
(1− z

αi
)ri

,

then,

Pi(n) =
ci

(−αi)ri

(
ri + n− 1

ri − 1

)
and

µi = α−1
i .

This can be easily converted to an asymptotic expansion. Note that(
ri + n− 1

ri − 1

)
=

(n + ri − 1)(n + ri − 2) · · · (n + 1)
(ri − 1)!

∼ nri−1

(ri − 1)!
.

Therefore, in the case where f (z) has a unique dominant singularity at α of the form

f (z) ∼
z→α

c
(z− α)r ,

1
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the asymptotic behavior of the sequence is

an ∼
c

(−α)r(r− 1)!
nr−1

(
1
α

)n

.

For convenience, we note that the alternate form

f (z) ∼
z→α

c
(1− z/α)r ,

leads to

an ∼
c

(r− 1)!
nr−1

(
1
α

)n

.

Thankfully, the constant c can be computed without the need for a partial fraction decom-
position. If

f (z) ∼
z→α

c
(z− α)r ,

then
c = lim

z→α
(z− α)r f (z).

Example: Suppose we are given the generating function

f (z) =
1

(1− z3)2(1− z2)3(1− z2/2)
.

How can we extract the dominant asymptotic behavior with minimal effort?

First we examine the singularities. The (1− z3)2 creates singularities at 1, ω, and ω2 (where
ω is a cube root of unity), each of multiplicity 2. The (1− z2)3 creates singularities at 1 and
−1, each of multiplicity 3. The (1− z2/2) creates singularities at ±

√
2, each of multiplicity

1.

Overall we have singularities at 1 (multiplicity 5),−1 (multiplicity 3), ω and ω2 (multiplic-
ity 2), and ±

√
2 (multiplicity 1).

The dominant singularities are 1 and−1, but since the multiplicity of the pole at 1 is higher
than the multiplicity of the pole at −1, only the singularity at 1 needs to be considered.

Since
(1− z)5

(1− z3)2(1− z2)3(1− z2/2)
=

1
(1 + z + z2)2(1 + z)3(1− z2/2)

,

we have

lim
z→1

(1− z)5

(1− z3)2(1− z2)3(1− z2/2)
=

1
9 · 8 · (1/2)

=
1
36

.

Therefore,

an ∼
1

36 · 4!
n4 =

n4

864
.
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Example: Let PT be the class of integer partitions where the parts are restricted to lie in
the finite set T. We’ve seen that the generating function for the class is

PT(z) = ∏
ω∈T

1
1− zω

.

We assume going forward that gcd(T) = 1 (otherwise, replace zgcd(T) by z everywhere).
We are going to see how to extract the asymptotic behavior of PT(z) in a uniform way.

First we’ll look at the case T = {1, 2, . . . , r}. For example, the r = 4 case is

P{1,2,3,4} =
1

(1− z)(1− z2)(1− z3)(1− z4)
.

The roots of the denominator are all roots of unity. In the example above, the root 1 occurs
with multiplicity 4, the root −1 occurs with multiplicity 2, and the roots ω, ω2, and ±i
occur with multiplicity 1. For T = {1, 2, . . . , r} it holds in general that the root 1 occurs
with multiplicity r and all other roots occur with multiplicity less than r. Actually, this
holds for general T by the assumption that gcd(T) = 1.

Therefore, to find the asymptotic behavior of the sequence, we only need to consider the
expansion at z = 1. Note that

P{1,2,...,r}(z) ∼
z→1

1
r!

1
(1− z)r .

Hence,

p{1,2,...,r}
n ∼ 1

r!(r− 1)!
nr−1.

For more general T with |T| = r (still assuming gcd(T) = 1),

P{1,2,...,r}(z) ∼
z→1

1
τ

1
(1− z)r ,

where

τ = ∏
ω∈T

ω.

Suppose for example we want to calculate the asymptotic estimate of the number of ways
to make n cents using pennies, nickels, dimes, and quarters. The generating function is

1
(1− z)(1− z5)(1− z10)(1− z25)

,

so r = 4 and τ = 1 · 5 · 10 · 25 = 1250. Therefore,

p{1,5,10,25}
n ∼ 1

1250 · 3!
n3 =

n3

7500
.
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MEROMORPHIC FUNCTIONS

While all of the examples above involved rational functions, the results carry over to the
broader class of functions that are meromorphic at all of their dominant singularities. Al-
though the exact coefficient extraction formula no longer holds, the asymptotic formula
does.

Theorem 21.2. Let f (z) be a function that is meromorphic at all points of the closed disk |z| ≤ R,
with poles at points α1, α2, . . . , αm. Assume that f (z) is analytic on |z| = R and z = 0. Then,
there exist polynomials such that

fn = [zn] f (z) =
m

∑
j=1

Πj(n)α−n
j + O(R−n),

and deg(Πj) is equal to one less than the order of the pole at αj.

Proof. At any pole α we can expand

f (z) = ∑
k≥−M

aα,k(z− α)k.

Let Sα(z) be the non-analytic terms

Sα(z) =
aα,−M

(z− α)M + · · ·+ aα,−1

z− α
,

and let Hα(z) be the rest

Hα(z) = aα,0 + aα,1(z− α) + · · · ,

so that
f (z) = Sα(z) + Hα(z).

Let S(z) be the sum of all Sα(z), so that f (z) − S(z) is analytic in |z| ≤ R. Now, S(z) is
rational and so coefficient extraction proceeds as before. Additionally, the nth coefficient
of f (z) − S(z) (expanded at the origin) is bounded above by (R + ε)−n (as can be seen
by integrating around |z| = R using Cauchy’s coefficient formula), i.e., f (z) − S(z) is
O(R−n). �

The exponential generating function for surjections is R(z) = (2− ez)−1. This has a sin-
gularities at z = log(2) + 2πik. Of these, only z = log(2) is dominant. The function is
meromorphic at z = log(2) because

lim
z→log(2)

z− log(2)
2− ez = −1

2
.

Therefore,

R(z) ∼
z→log(2) −

1
2
· 1

z− log(2)
.

This gives an asymptotic estimate of

Rn ∼
n!

2 log(2)
·
(

1
log(2)

)n
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Example:

The exponential generating function for alignments (sequences of cycles) is

O(z) =
1

1− log(1/(1− z))
.

Using the methods above we find

On ∼
n!

e
(
1− 1

e

) ·( 1
1− 1

e

)n

.

(Note that because the pole occurs at a smaller modulus than the logarithmic singularity,
we can treat this with the same methods!)
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