
LECTURE 20 – BASIC COMPLEX ANALYSIS, SINGULARITIES, AND
EXPONENTIAL GROWTH

JAY PANTONE

OVERVIEW

The generating function for the catalan numbers is f (z) =
1−
√

1− 4z
2z

. So far, we’ve
been thinking of this as a purely formal algebraic object that encodes the coefficients of the
Taylor series at z = 0. In what follows, we treat generating functions as analytic objects. In
fact, if we think of f (z) as a complex function, we can recover a tremendous amount of
information about the coefficients.

At first this seems counter-intuitive. Sure, it makes sense that f (0) (or, in this case, lim
z→0

f (z))

is the constant term of the series, but what good comes from the knowledge of f (1/10)?
Or from f (1)? Or from f (1− i)?

As it turns out, for our purposes the most important feature of a complex function is its set
of singularities, those points where the function ceases to exist or to be well-defined. We
will provide formal definitions later, but for now imagine the functions

f (z) =
1

1− 2z
and g(z) =

√
1 + z.

The first function will be seen to have a singularity (a simple pole) at z = 1
2 . The second is

slightly more complicated. In the complex realm, we can take square roots of any number.
Recall that in the real domain, we define the square root of a positive number y to be the
positive number x such that y = x2. For example, we define

√
9 = 3, rather than

√
9 = −3.

This is done to make the square-root function single-valued.

The same care must be taken in the complex domain. Let z = ρeiθ , and define
√

z =
√

ρeiθ/2.

Informally, the square root of a complex number z is found by halving the angle between
the vector pointing from the origin to z (as plotted in the plane) with the vector 〈1, 0〉, and
then taking the square root of the distance from the origin to z.

This informal definition is not well-defined when z lies on the real axis between −1 and
−∞, as “halving the angle” could either mean π → π/2 or −π → −π/2. These two
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possible definitions for
√

1 + z are called the two branches of the function. It follows that
there is no way to define

√
1 + z continuous in a domain containing z = −1 in its interior.

Accordingly, we omit the real ray (−∞,−1) from the domain of definition of g(z). This is
called a branch cut, while the point z = −1 is called a branch point. Similar issues arise, for
example, with the logarithmic function.

ANALYTIC FUNCTIONS

Definition: A function f (z) defined over a region Ω is said to be analytic at z0 ∈ Ω if there
exists an open disc D ⊂ Ω centered at z0 such that f (z) can be represented as a convergent
power series expansion centered at z0 for all z ∈ D, i.e.,

f (z) = ∑
n≥0

cn(z− z0)
n.

The function f (z) is analytic over Ω if it is analytic at every point in Ω.

This is a familiar notion from calculus: the disc of convergence is exactly the disc such that
the series expansion for f (z) is convergent inside the disc and divergent outside the disc.
The radius of the disc of convergence is the radius of convergence.

Definition: A function f over a region Ω is complex-differentiable or holomorphic at z0 ∈ Ω if

lim
δ−>0

f (z0 + δ)− f (z0)

δ

exists, where the limit is taken over complex δ. The value of the limit is denoted f ′(z0). The
function f (z) is said to be differentiable in Ω if it is differentiable at every point in Ω. The
usual properties of derivatives of sums, products, quotients, and compositions of functions
carry through to the complex domain.

Theorem 20.1 (Equivalence Theorem). A functions is analytic in a region Ω if and only if it is
complex-differentiable in Ω.

MEROMORPHIC FUNCTIONS

Definition: A function h(z) is meromorphic at z0 if for z in a punctured neighborhood of z0,
h(z) can be represented as f (z)/g(z) for functions f (z) and g(z) that are analytic at z0.

A function h(z) that is meromorphic at z0 can be represented as

h(z) = ∑
n≥−M

hn(z− z0)
n,

where h−M 6= 0. If M ≥ −1, then h(z) is said ti have a pole of order M at z0. The residue of
h(z) at z = z0 is

Res[h(z); z = z0] = h−1.
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INTEGRALS AND RESIDUES

Definitions: Two paths in a region are said to be homotopic if one can be continuously
deformed into the other, while staying in Ω. A path can be thought of as a continuous map
γ : [0, 1] → Ω. A closed path is one for which γ(0) = γ(1). A simple path is one for which γ
is injective. A closed path is a loop if it is homotopic to a single point.

Integrals of complex functions over paths can be taken in the usual way:∫
γ

f (z)dz =
∫ 1

0
f (γ(t))γ′(t)dt.

Theorem 20.2 (Null Integral Property). Let f be analytic in Ω and let λ be a simple loop in Ω.

Then,
∫

γ
f (z)dz = 0. Equivalently, the integral over γ is equal to the integral over γ′ if they are

homotopic.

The calculus of complex functions is much deeper than that of real functions in part be-
cause of the following reason. Global properties of functions are often mere consequences
of local properties of functions at certain points. The simplest example of this behavior is
the Cauchy Residue Theorem.

Theorem 20.3 (Cauchy Residue Theorem). Let h(z) be meromorphic in Ω and let λ be a posi-
tively oriented (counterclockwise) simple loop in Ω along which h(z) is analytic. Then,

1
2πi

∫
λ

h(z)dz = ∑
s

Res[h(z); z = s],

where the sum is over all poles s of h(z) enclosed by λ.

Cauchy’s Residue Theorem leads almost immediately to the following theorem, whose
combinatorial use is self-evident.

Theorem 20.4 (Cauchy’s Coefficient Formula). Let f (z) be analytic in a region Ω containing
0 and let λ be a simple loop around 0 in Ω that is positively oriented. Then, the coefficient [zn] f (z)
can be written as

[zn] f (z) =
1

2πi

∫
λ

f (z)
zn+1 dz.

Proof. Using Cauchy’s Residue Theorem:

1
2πi

∫
λ

f (z)
zn+1 dx = Res

[
f (z)
zn+1 ; z = 0

]
= [zn] f (z).

�

This remarkable formula allows us to calculate coefficients of the expansion of f (z) around
z = 0 using values of f very far from 0!
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SINGULARITIES

As hinted to earlier, a singularity of a function f (z) is a value z = z0 at which f (z) becomes
non-analytic. The function f (z) = (1− z)−1 which represents the power series 1 + z +
z2 + · · · is non-analytic at z = 1. This can be seen by observing that | f (z)| → ∞ as z → 1.
Despite the fact that the radius of convergence of the series in question is 1, nothing prevent
us from evaluating f (z) at any points z 6= 1 of distance further than 1 from the origin.

This is the idea behind analytic continuation. Suppose f (z) is analytic over the interior of a
region inside a simple closed curve γ and let z0 be a point on the boundary of γ. If there
exists an analytic function f̂ (z) defined over a region Ω̂ containing z0 in the interior and
such that f̂ (z) = f (z) in Ω̂ ∩ Ω, then f is analytically continuable at z0 with the analytic
continuation f̂ .

We will now show that f (z) = (1− z)−1 is analytically continuable to the region C r {1}.
Let z0 6= 1. Then,

1
1− z

=
1

1− z0 − (z− z0)

=
1

1− z0

1
1− z−z0

1−z0

=
1

1− z0
∑
n≥0

(
z− z0

1− z0

)n

This proves that f (z) is analytic in the disc centered at z0 with radius |1− z0|.

Unlike continuations of real functions, analytic continuation of complex functions is es-
sentially unique. Analytic continuation can be carried out along any path that does not
intersect a singularity. In fact this is often taken as the definition of a singularity.

Definition: Given a function f defined on the interior of a simple closed curve, a point z0
on the boundary is a singularity of f if f is not analytically continuable at z0.

So far, we have seen poles as the simplest type of singularity. In fact f (z) = (1− z)−1 has
as its only singularity a simple pole (that is, a pole of multiplicity 1) at z = 1.

As mentioned earlier, a power series is (by definition) analytic in its disc of convergent.
By the definition above, this means that there can be no singularity within the disc of
convergence. We’ll now prove something stronger: there must be a singularity on the
boundary of the disc of convergence.
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Theorem 20.5. Let f (z) be a function that is analytic at the origin with a Taylor series expansion
(at the origin) with radius of convergence R. Then, f (z) must have a singularity on the boundary
|z| = R of its disc of convergence.

Proof. Let
f (z) = ∑

n≥0
fnzn

have radius of convergence R. Suppose toward a contradiction that f (z) is analytic inside
the disc |z| < S for some S > R. Apply Cauchy’s Coefficient Formula while integrating
around the circle of radius r = (R + S)/2:

fn =
1

2iπ

∫
|z|=r

f (w)

wn+1 dw

=
1

2iπ

∫ 2π

0

f (reiθ)

(reiθ)n + 1
ireiθdθ

=
r−n

2π

∫ 2π

0

f (reiθ)

(eiθ)n .

Along the integral, the numerator is bounded (otherwise f would not be analytic for |z| <
S) and the numerator as modulus 1. Therefore, fn ≤ Cr−n for some constant C, implying
that the radius of convergence of f (z) is at least r, which is greater than R. This is a
contradiciton and so the theorem is proved. �

When the power series of f (z) at the origin has non-negative coefficients (which is com-
binatorially quite common), we can prove an important refinement that says that not only
does f (z) have a singularity at radius R, but it has one on the positive real line at distance
R from the origin.

Theorem 20.6 (Pringsheim’s Theorem). If f (z) is representable at the origin by a series expan-
sion that has non-negative coefficients and radius of convergence R, then the point z = R is a
singularity of f (z).

Proof. Here’s the general outline of what we’ll prove: We’ll show that if f (z) has non-
negative coefficients then the expansion of f just to the left of R also has positive coeffi-
cients, which will lead to a larger radius of convergence than we started with. The picture
is below.
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Suppose toward a contradiction that f (z) is analytic at z = R. Then, it is representable by
a convergent power series expansion at z = R with non-zero radius r:

f (z) = ∑
n≥0

an(z− R)n,

for |z− R| < r. Choose h such that 0 < h < r/3 and consider the expansion of f (z) around
z0 = R− h:

f (z) = ∑
n≥0

bn(z− z0)
n.

Letting the series expansion at the origin be written

f (z) = ∑
n≥0

fnzn,

we have

∑
n≥0

fnzn = ∑
n≥0

bn(z− z0)
n.

Use a change of variable z→ t + z0 to get

∑
n≥0

fn(t + z0)
n = ∑

n≥0
bntn.

and apply the binomial theorem to see that

bn = ∑
m≥n

(
m
n

)
fmzm−n

0 ,

guaranteeing that bn ≥ 0 for all n. Additionally, by design the series

f (z) = ∑
n≥0

bn(z− z0)
n.

converges at z = R + h, and thus

f (R + h) = ∑
n≥0

bn(2h)n

= ∑
n≥0

(
∑

m≥n

(
m
n

)
fmzm−n

0

)
(2h)n

= ∑
m≥0

fm

(
∑
n≥0

(
m
n

)
(R− h)m−n

)
(2h)n

= ∑
m≥0

fm(R + h)m

Since this convergence, fm must have order smaller than (R + h)−m, contradicting the as-
sumption that the radius of convergence was exactly R. �

Definition: Singularities that lie on the boundary of the disc of convergence are called
dominant singularities. The rest are sub-dominant.
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Remark: There may be multiple dominant singularities1. Pringsheim’s Theorem only tells
us that if the coefficients of the power series at zero are non-negative than one dominant
singularity can be found along the positive real line. The others may be found anywhere.

Examples:

(1)
1

1− z3 has three dominant singularities, at z = 1, and at the two cubic roots of

unity.

(2)
1

1 + z2 has two dominant singularities, at z = ±i. This does not violate Pring-

sheim’s Theorem because the coefficients of the power series at zero are not non-
negative.

(3)
e−z

1− z
has only one singularity: z = 1, and it is (of course) dominant.

(4)
1

2− e−z has simple poles wherever 2− ez = 0, i.e., where ez = 2. This gives singu-

larities at z = log(2) + 2ikπ. Only the singularity at z = log(2) is dominant.

(5) In order to define the Catalan GF f (z) =
1−
√

1− 4z
2z

in a single-valued way we

have to make a branch cut along the ray (1/4, ∞). Now, we have potential singular-
ities at z = 0 and z = 1/4. It turns out that the singularity at zero is removable: it is
possible to define a new function analytic at zero that agrees with f (z) everywhere
else. Therefore the real dominant singularity is at z = 1/4.

(6) eez−1 has no singularities. Functions with this property are called entire.

1. THE EXPONENTIAL GROWTH FORMULA

The application of complex analysis to the study of sequences is largely an attempt to
clarify and systemize the following two principles.

The First Principle of Analytic Combinatorics: The exponential growth rate of a
sequence is determined by the location of its dominant singularities.

The Second Principle of Analytic Combinatorics: The sub-exponential behavior of
a sequence is determined by the nature of its dominant singularities.

Definition: We say that the exponential growth rate of a sequence {a0, a1, . . .} is K if

lim sup |an|1/n = K.

This is both an upper and lower bound because for all ε > 0 a sequence with growth rate
K satisfies

(1) |an| > (K− ε)n infinitely often,

1In fact, there can be uncountably many!
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(2) |an| < (K + ε)n almost everywhere.

Common Error: If a sequence {ai} has exponential growth rate K, it is not necessarily true
that an = O(Kn). The correct statement is that an = Knθ(n) where θ(n) is some sub-
exponential factor that satisfies

lim sup |θ(n)|1/n = 1.
There are many types of sub-exponential factors. Some are nice:

1, n2, n−4, (log(n))2 log(log(n)),

while some usually present difficulties:

e
√

n, e(log(n))2
.

Theorem 20.7 (Exponential Growth Formula). Let f (z) be a generating function whose series
expansion at z = 0 has radius of convergence R. Then, the exponential growth rate of { f0, f1, . . .}
is 1/R.

Proof. For any sufficiently small ε > 0, we must have fn(R− ε)n → 0 (by the definition of
radius of convergence). Therefore, | fn|(R− ε)n < 1 for sufficiently large n, in which case

fn <
1

(R− ε)n .

Thus,

| fn|1/n <
1

R− ε

almost everywhere. On the other hand, fn(R + ε)n must be unbounded, or else the radius
of convergence is at least R + ε/2. Therefore, | fn|(R + ε)n > 1 infinitely often, implying
that

| fn|1/n >
1

R + ε
infinitely often. The two conditions proved are equivalent to those stated above for a
sequence to have exponential growth rate 1/R. �

Common Error: For some reason, every calls this Pringsheim’s Theorem when they cite it
in a paper. It’s not.

Example: The Catalan numbers have exponential growth rate 4 because of the
√

1− 4z
term.

Example: The EGF for surjections is (2− ez)−1. If rn is the number of surjections, then the
sequence rn/n! has exponential growth rate (log(2))−1 ≈ 1.443. Put another way

rn ∼
n!

(log(2))n θ(n),

where θ(n) is sub-exponential. Recall that the ∼ notation formally means

lim
n→∞

rn
n!

(log(2))n θ(n)
= 1,

so that if, for example, θ(n) 6= 1 in the example above, it’s wrong to write rn ∼ n!(log(n))−n.
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Example: We found the generating function for planar rooted unlabeled unary-binary
trees to be

f (z) =
1− z−

√
(1− 3z)(1 + z)

2z
.

It follows immediately that the counting sequence has exponential growth rate 3.

Major Caution: When the dominant singularity comes from a pole, you must be absolutely
certain that it’s not removable. You cannot trust Sage or Maple to simplify correctly.
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