
LECTURE 15 – PROBABILITY, MOMENTS, AND CONCENTRATION

JAY PANTONE

LetA be a combinatorial class with counting sequence An. Let χ be a function χ : A → Z≥0
that measures some parameter of A (e.g., number of cycles in a permutation, number of
parts in a set partition). Let an,k be the number of objects α inA of size n such that χ(α) = k.

The probability that a randomly selected object α of size n has χ(α) = k is

PAn{χ = k} = An,k

An
.

Functions like χ are examples of discrete random variables. We omit a formal definition, but
one can just imagine that any discrete random variable X is, for our purposes, a function
like χ.

Definition: Given a discrete random variable X, define the probability generating function
p(u) of X to be

p(u) = ∑
k≥0

P{X = k}uk.

Theorem 15.1. Let χ be a parameter function, and let A(z, u) be a bivariate generating function
such that tracks χ over a class A (i.e., the coefficient of znuk is the number of objects of size n in A
with χ-value k). Then, the probability generating function of χ over An is

pAn(u) = ∑
k≥0

PAn{χ = k}uk =
[zn]A(z, u)
[zn]A(z, 1)

.

The probability generating function encodes a tremendous about information regarding
the distribution of χ. First we introduce some notation and probabilistic terms.

Definitions: Let X be a discrete random variable. The expectation of f (X) is

E[ f (X)] = ∑
k≥0

P{X = k} · f (k).

In particular, the rth power moment is

E[Xr] = ∑
k≥0

P{X = k} · kr.

The expected value (or, mean) of a discrete random variable X is

E[X] = ∑
k≥0

P{X = k} · k.

The variance is
V[X] = E[X2]−E[X]2
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and the standard deviation is

σ(X) =
√

V[X].

It turns out that, given a probability generating function, it is more convenient to work
with factorial moments than with power moments. The rth factorial moment of X is

E[X(X− 1) · · · (X− (r− 1))].

Theorem 15.2. The rth factorial moment can be calculated by r-fold differentiation of the probabil-
ity generating function:

E[X(X− 1) · · · (X− (r− 1))] =
[zn] [(Dr

u)A(z, u)]u=1
[zn]A(z, 1)

= [(Dr
u)pAn(u)]u=1 .

This permits direct calculation of the expected value and variance of X from p(u).

Notation: Henceforth, we use notation fz to mean the derivative of f with respect to z and
fu to mean the derivative of f with respect to u.

Example: Let A(z, u) be the BGF for binary words of length n with k 0’s. (As usual, z tracks
length and u tracks number of 0’s.) We determined in the previous section that

A(z, u) =
1

1− z(1 + u)
.

Let X be the discrete random variable tracking the number of 0’s. From the BGF we deter-
mine the first factorial moment to be

E[X] =
[zn]Wu(z, 1)
[zn]W(z, 1)

=

[zn]

[
∂

∂u

(
1

1− z(1 + u)

)]
u=1

2n

= 2−n[zn]

[
z

(1− z(1 + u))2

]
u=1

= 2−n[zn]
z

(1− 2z)2

= 2−n(n2n−1

=
n
2

.

Therefore, the expected number of 0’s in a binary word of length n is n/2 (as we... well...
expected). Let’s calculate the standard deviation now. To do so, we first need to calculate
the variance, and to do that we will first calculate the 2nd factorial moment.
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E[X(X− 1)] =
[zn]Wuu(z, 1)
[zn]W(z, 1)

= 2−n[zn]

[
2z2

(1− z(1 + u))3

]
u=1

= 2−n[zn]
2z2

(1− 2z)3

= 2−n(n(n− 1)2n−2)

=
n(n− 1)

4
.

It follows now that

V[X] = E[X2]−E[X]2

= (E[X2]−E[X]) + E[x]−E[X2]

= E[X2 − X] + E[X]−E[X2]

=
n(n− 1)

4
+

n
2
− n2

4

=
n
4

.

Therefore, the standard deviation is

σ(X) =
√

V[X] =

√
n

2
.

Further moments are easily calculated as well, but the expected value and standard devia-
tion tell us a lot of information about this so-called binomial distribution1. In particular, the
property that the standard deviation is asymptotically negligible when compared to the
expected value as n tends to infinity implies that the distribution is concentrated around the
mean.

To formally state what concentration means, we first need two famous probability results:
Markov’s inequality and Chebyshev’s inequality.

Theorem 15.3. Let X be a non-negative discrete random variable and Y an arbitrary discrete
random variable. Then,

(1) (Markov’s inequality) P{X ≥ tE[X]} ≤ 1
t

,

(2) (Chebyshev’s inequality) P{|Y−E[Y]|} ≥ tσ(Y)} ≤ 1
t2 .

1This is commonly introduced in a beginner statistics course as the distribution of the number of heads
when flipping a fair coin n times.
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Proof. To prove Markov’s inequality, we simply see that

E[X] = ∑
k≥0

P{X = k} · k

≥ ∑
k≥tE[X]

P{X = k} · k

≥ ∑
k≥tE[X]

P{X = k} · tE[X]

= tE[X] ∑
k≥tE[X]

P{X = k}

= tE[X]P{X ≥ tE[X]},
and we divide both sides by E[X] to get the result. To derive Chebyshev’s inequality, apply
Markov’s inequality to the random variable T = (Y−E[Y])2. �

We can now give a more concrete statement about concentration.

Theorem 15.4. Consider a family {Xn} of discrete random variables. Let µn = E[X] and σn =
σ(Xn). Suppose the condition

lim
n→∞

σn

µn
= 0.

Then we say that the distribution of the family {Xn} is concentrated in the sense that for all ε > 0,

lim
n→∞

P

{
1− ε ≤ Xn

µn
≤ 1 + ε

}
= 1.

Proof. Hint: Use Chebyshev’s inequality. �

Let us illustrate what concentration of distribution around the mean tells us in a practical
sense. Below is a plot of the distribution of the number of 0’s in binary words of length 50.
Note how a large proportion of words are “close” to the mean of 25.

Furthermore, here are the number of 0’s found in 10 randomly selected binary words of
length 100, 000:

49798, 79873, 49968, 49980, 49999, 50017, 50029, 50080, 50101, 50284.

As n increase, we see tighter and tighter clusters around the mean. This is concentration.



LECTURE 15 – PROBABILITY, MOMENTS, AND CONCENTRATION 5

Example: For the next example, let us consider permutations counted according the num-
ber of cycles. We previously showed that the BGF is

P(z, u) = (1− z)−u.

The expected number of cycles in a permutation of length n is

EPn [χ] =
[zn]Pu(z, 1)
[zn]P(z, 1)

= [zn]
[
−(1− z)−u log(1− z)

]
u=1

= [zn]
1

1− z
log
(

1
1− z

)
= 1 +

1
2
+ · · ·+ 1

n
.

Asymptotically, EPn [χ]∑ log(n). One can also show that the second factorial moment is

EPn [X(X− 1)] =
1

1− z

(
log
(

1
1− z

))2

,

which yields

VPn [X] = log(n) + γ− π2

6
+ O

(
1
n

)
,

and so
σn ∼

√
log(n).

Therefore, this distribution is also concentrated around the mean.

Example: For an example of a distribution that is not concentrated about the mean, let’s
exaqmine the class of permutations counted according to the number of cycles of size r. We
showed earlier that the expected number of cycles of length r in a permutation of length
n ≥ r is 1/r. The numerical calculations are a bit more complicated, but it can be shown
that the full distribution is a Poisson distribution with mean 1/r and therefore standard
deviation 1/

√
r. Since there are both constant, their quotient does not go to zero as n→ ∞,

and therefore the distribution is not concentrated around the mean.

Example: For our last example, we revisit the class of rooted unlabeled planar trees counted
by total path length. Previously, we showed that the BGF G(z, u) satisfies the functional
equation

G(z, u) =
z

1− G(uz, z)
.

To calculate the mean and variance, we must take the derivative with respect to u of each
side of the functional equation, then substitute u = 1 into the resulting functional equation.
Using the multivariate chain rule on the right-hand side, we see

Gu(z, u) =
z

(1− G(uz, u))2 (zGz(uz, u) + Gu(uz, u)).

Substituting u = 1:

Gu(z, 1) =
z

(1− G(z, 1))2 (zGz(z, 1)− Gu(z, 1))
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and therefore

Gu(z, 1) =
z2Gz(z, 1)

(1− G(z, 1))2 − z
.

Noting that G(z, 1) = G(z) (the original univariate GF for these trees, i.e., the Catalan GF),
we have

Gu(z, 1) =
z2G′(z)

(1− G(z))2 − z
=

z
2(1− 4z)

− z
2
√

1− 4z
.

Coefficient extraction yields

[zn]Gu(z, 1) = 22n−3 − 1
2

(
2n− 2
n− 1

)
.

Some quick asymptotic analysis (which we have not yet learned) shows that

[zn]Gu(z, 1)
[zn]G(z, 1)

∼
√

π

2
n3/2.

An interesting corollary is that in a randomly selected tree on n nodes, the expected dis-
tance from the root to a randomly selected node is on the order of

√
n. In a completely

balanced binary tree, this quantity if on the order of log(n), so this shows that the “aver-
age” planar tree is quite unbalanced.


