
LECTURE 13 – THE BOXED PRODUCT

JAY PANTONE

In this lecture we’ll explore a variant of the labeled product called the boxed product. It is a
very useful construction that can in fact be used to define sets and cycles in a more natural
way than we have done previous.

Definition: Given combinatorial classes B (with b0 = 0) and C, define

A = B� ? C
to be the subset of objects in the labeled product B ? C with the property that the smallest
label is given to the B object.

Theorem 13.1. The boxed product construction is admissible.

Proof. Let A = B� ? C. We have to show that A(z) can be computed from B(z) and C(z).

For the regular labeled product D = B ? C, we noted that

dn =
n

∑
k=0

(
n
k

)
bkcn−k.

The boxed product is similar, with only the restriction that the smallest labeled must occur
on the object from B. (Note that once you agree to apply the smallest label to the object
fromB, its location on that object is determined. It must go where the smallest label already
was on the B object as it existed in B.) Therefore, our binomial coefficient is altered:

an =
∞

∑
k=1

(
n− 1
k− 1

)
bkcn−k.

To convert this to the level of generating functions we have to be a bit tricky. Rewrite as

an =
∞

∑
k=1

(
n− 1
k− 1

)
bkcn−k

=
∞

∑
k=1

(n− 1)!
(k− 1)!(n− k)!

bkcn−k

=
∞

∑
k=1

k
n

n!
k!(n− k)!

bkcn−k

=
1
n

∞

∑
k=1

(
n
k

)
(kbk)cn−k

=
1
n

∞

∑
k=0

(
n
k

)
(kbk)cn−k.

1



2 JAY PANTONE

Clearly an is n−1 times the coefficient of zn in product of C(z) with the generating function
for the terms kbk, which is zB′(z). Therefore

zA′(z) = zB′(z)C(z).

This provides the desired formula:

A(z) =
∫ z

0
B′(t)C(t) dt.

�

Exercise: How does the box product prove the familiar integration by parts formula∫ z

0
A(t)B′(t)dt = A(z)B(z)−

∫ z

0
A′(t)B(t)dt?

A variant of the boxed product is the max-boxed product B� ? C in which we require that
the largest label is applied to the object from B. The generating function transformation is
the same.

Records in Permutations. Let π be a permutation. A record or a left-to-right maximum in
π is an entry π(j) such that π(i) < π(j) for all i < j. In other words, when reading the
permutation left-to-right the records are those entries that are larger than any entry seen
before.

Let Q be the class of permutations that start their largest elements. Then,

Q = Z� ? P ,

where P is the class of all permutations. From this we recover

Q(z) =
∫ z

0

(
d
dt

t
)

1
1− t

dt = log
(

1
1− z

)
.

Let P (k) be the class of permutations with k records. We may be tempted to say

P (k) ?
= SEQk(Q),

but that is not quite right. While (512, 7346) is a sequence of length 2 of things fromQ and
5127346 has two records, another sequence of length 2 of things from Q is (7346, 512) yet
7346512 has only one record. Really, we want a sequence in which the maximum labels
increase as you get further down the sequence. In this sense, a sequence of length 2 of
elements from Q is

(Z� ? P) ? (Z� ? P)�

and a sequence of length 3 is

((Z� ? P) ? (Z� ? P)�) ? (Z� ? P)�.

In fact there is a slightly easier way. Every permutation with k records can be thought of
not as a sequence of k permutations that start with their largest elements, but as a set. From



LECTURE 13 – THE BOXED PRODUCT 3

this set, the permutation is recovered by ordering the permutations in the set in increasing
order of their largest element. For example

{7346, 512} −→ 5127346

and
{52, 31, 746} −→ 3152746.

Therefore,
P (k) = SETk(Q),

and so

P(k)(z) =
1
k!

(
log
(

1
1− z

))k

.

The coefficients of this are the Stirling cycle numbers that we’ve seen before:

p(k)n =

[
n
k

]
.

Redefinitions with the boxed product. Earlier, we didn’t have a nice symbolic construc-
tion for SET and CYC. With the boxed product, we can fix this. If F = SET(G), then

F = {ε}+ (G� ?F ),
because in every set of things from G you can identify the one with the largest label, and
the rest form another set. From this we see

F(z) = 1 +
∫ z

0
G′(t)F(t)dt,

which has solution
F(z) = exp(G(z)).

Similarly, every cycle of things from G can be decomposed as a thing from G with the
largest label followed by a sequence of more things from G, giving for F = CYC(G)

F = (G� ? SEQ(G))
and thus

F(z) =
∫ z

0
G′(t) · 1

1− G(t)
dt = log

(
1

1− G(z)

)
.

Parking functions. A street has n empty parking spots. One-by-one, n cars drive down
the street. Each has a first choice of place to park. If that spot is full, then they proceed
to the next open spot if there is one. This is effectively a map ρ : [1 .. n] → [1 .. n], where
ρ(i) = j if the ith car that enters prefers spot j.

Let F be the class of parking functions, those maps ρ with the property that everyone gets
to park. In order to build a specification for F , we need to introduce a construction that
we have heretofore omitted.

Let A be a class. The pointing construction ΘA consists of objects from A, each with a par-
ticular component marked, or “pointed at”. For example, if P is the class of permutations,
then ΘP is the class of permutations with a single entry highlighted. Letting C = ΘA, it’s
clear that

cn = nan,



4 JAY PANTONE

and so the generating functions translation is

C(z) = zA′(z).

Returning to parking functions, let’s pretend that there is an imaginary (n + 1)th parking
spot in the row. If n cars enter, all with a preference between 1 and n, then sometimes they
may end up in the (n + 1)th parking spot. So, with this perspective a parking function is
one in which all n cars park and the (n + 1)th spot remains empty. (This parking function
has size n, not n+ 1.) A parking function is labeled object; the labels on each parking space
denote which car parked there.

Let ρ be a parking function, and consider the state of the parking spots directly prior to the
nth car entering. The (n + 1)th spot must be empty, as well as some spot in the middle,
say j. Then, the line of parking spots from 1 to j and the line of parking spots from j + 1
to n + 1 each form smaller parking functions (i.e., the cars are parked, leaving the last spot
open). If ρ is to be a parking function, then the preference of the last car must be between
1 and j.

This decomposition justifies the recursive construction

F = (ΘF +F ) ?Z� ?F .

The term ΘF + F accounts for the fact that the incoming nth car must have a preference
between 1 and j, but the size of the parking function induced on the spots 1 through j is
only j − 1. So, ΘF counts when his preference is between 1 and j − 1, while F counts
when his preference is j. Then, Z� represents that the jth spot will now be filled with the
largest label, and the remaining F term accounts for the spots between j + 1 and n + 1.

The construction gives the functional equation

F(z) =
∫ z

0
(tF′(t) + F(t))F(t) dt.

Hence,
F′(z) = (tF′(z) + F(z))F(z)

and so
F′(z)
F(z)

= zF′(z) + F(z) = (zF(z))′.

Integrating both sides gives
log(F(z)) = zF(z),

or
F(z) = ezF(z).

This is not the same functional equation as Cayley trees, but it’s close. Similar coefficient
extraction gives

fn = (n + 1)n−1.


	Records in Permutations
	Redefinitions with the boxed product
	Parking functions

