
LECTURE 12 – LABELED TREES, MAPPINGS, AND GRAPHS

JAY PANTONE

LABELED TREES

Like unlabeled trees, labeled trees can be either planar or non-planar. Also like unlabeled
trees, the planar case proves easier than the non-planar case. All trees are rooted and the
size of a tree is the total number of nodes unless otherwise stated.

Labeled planar trees. Let A be the class of labeled planar trees. Every tree in A can be
decomposed as a root with a possibly-empty sequence of subtrees, giving

A = Z ? SEQ(A).

This implies

A(z) =
z

1− A(z)
,

giving the familiar generating function

A(z) =
1−
√

1− 4z
2

.

This implies that

an = n! · 1
n

(
2n− 2
n− 1

)
=

(2n− 2)!
(n− 1)!

.

In fact, in the more general case in which the out-degree of any node is constrained to lie
in Ω ⊆ Z≥0, the symbolic construction

A = Z ? SEQΩ(A)

yields the functional equation
A(z) = zφ(A(z))

where φ(u) = ∑
ω∈Ω

uω. By Lagrange inversion.

an = n![zn]A(z) = n! · 1
n
[un−1]φ(u)n.

This proves that number of labeled planar trees of size n under a very wide set of possible
restrictions is exactly n! times the number of unlabeled planar trees of the same type. This
is, of course, combinatorially evident: every two ways of labeling a given unlabeled planar
tree results in distinct labeled planar trees. For this reason, we skip right to the analysis of
labeled non-planar trees, for which this property no longer holds.
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Labeled non-planar trees. The symbolic construction of labeled non-planar trees is as easy
as that for labeled planar trees: all SEQ operators become SET operators. Yet, this leads to
great differences in the EGFs produced and the subsequence asymptotic analysis.

The class T of all labeled non-planar trees is

T = Z ? SET(T ),

producing the functional equation

T(z) = zeT(z).

Using Lagrange inversion with φ(u) = eu, we can extract

tn = n![zn]T(z)

= n! · 1
n
[un−1](eu)n

= n! · 1
n
[un−1]eun

= n! · 1
n
[un−1]

(
1 + un +

u2n2

2!
+

u3n3

3!
+ · · ·

)
= n! · 1

n
nn−1

(n− 1)!

= nn−1.

This was first proved by Cayley, and as a result such trees are often known as Cayley trees.
A similar question asks for the number of non-rooted labeled non-planar trees. One need
only observe that from each non-rooted labeled non-planar tree on n vertices, one can
form n distinct rooted labeled non-planar trees (each choice of root gives a different tree).
Therefore, the number of non-rooted Cayley trees on n vertices is nn−2.

Versions of labeled non-planar trees in which the out-degree of nodes are restricted are
easily constructed by using the restricted SET construction.

Forests. A forest is an (unordered) set of rooted trees, and a k-forest is a forest with precisely
k trees. The symbolic construction for k-forests is

F (k) = SETk(T ),

giving

F(k)(z) =
T(z)k

k!
.
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Coefficient extraction proceeds as follows

f (k)n = n![zn]
T(z)k

k!

=
n!
k!
[zn]T(z)k

=
n!
k!
· k

n
[zn−k]φ(u)n

=
(n− 1)!
(k− 1)!

[zn−k]eun

=
(n− 1)!
(k− 1)!

nn−k

(n− k)!

=

(
n− 1
k− 1

)
nn−k.

It follows that the number of all forests is

fn =
n

∑
k=1

(
n− 1
k− 1

)
nn−k = (n + 1)n−1.

Exercise: Prove directly that fn = (n + 1)n−1 using the formula nn−2 for unrooted labeled
non-planar trees. It should basically be a one-sentence proof.

FUNCTIONAL GRAPHS

Let F be the class of mappings from [1 .. n] to [1 .. n]. The size of such a mapping is n. A
mapping can be represented as a directed graph on n vertices with edges x → y if and only
if y = f (x). Such a graph is called a functional graph; an example is shown below.
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Perhaps somewhat surprisingly, we can express the class F with a symbolic construction.
Upon inspection of the picture above, we see that:

(1) A functional graph is a set of connected functional graphs.

(2) A connected functional graph is a cycle of rooted non-planar labeled trees.

Therefore, letting K be the class of connected functional graphs:
F = SET(K)
K = CYC(T )
T = Z ? SET(T )

.

Translating to generating functions:
F(z) = eK(z)

K(z) = log
(

1
1− T(z)

)
T(z) = zeT(z)

.

Hence,

fn = n![zn]
1

1− T(z)

= n![zn]
∞

∑
k=0

T(z)k

= n!
∞

∑
k=0

[zn]T(z)k

= n!
∞

∑
k=0

k
n

nn−k

(n− k)!

= nn,

as expected from the definition of the class. The last equality above results from general
results on binomial summation. Moreover, one can show in a similar way that

kn = (n− 1)!
n

∑
k=1

nn−k

(n− k)!
.

Next we consider various restricted versions of mappings.

Maps with no fixed points. A fixed point is an element x ∈ [1 .. n] such that f (x) = x. The
class N of maps with no fixed points is given by

N = SET(K)
K = CYC>1(T )
T = Z ? SET(T )

.

which gives the identity

N(z) =
e−T(z)

1− T(z)
.
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Lagrange inversion confirms that Nn = (n− 1)n, as expected. For comparison, the asymp-
totic behavior is

Nn ∼ e−1nn.

Similarly, letM be mappings with no fixed points and no 2-cycles, so that f (x) 6= x and
f ( f (x)) 6= x for all x. One similarly finds

M(z) =
e−T−T2/2

1− T
with

mn ∼ e−3/2nn.

Idempotent maps. A map is idempotent if f ( f (x)) = f (x) for all x. In other words, for
every x, either x or f (x) is a fixed point. Such mappings are described by functional graphs
in which each connected component consists of a cycle of length 1 with a set of single
vertices directed at the cycle of length one. Hence the class I of idempotent mappings is

I = SET(Z ? SET(Z))
giving

I(z) = ezez
.

Saddle-point asymptotics give

In ∼
n!√

2πnζ
ζ−ne(n+1)/(ζ+1),

where ζ is the positive solution of ζ(ζ + 1)eζ = n + 1.

One can prove in fact that in a random mapping of size n, one expects to reach a cycle in
O(
√

n) steps from a randomly chosen point. As random number generators are typically
large mappings, this gives rise to the catchy warning: A random random number generator is
almost surely bad.

LABELED GRAPHS

Acyclic graphs. An acyclic graph is one with no cycles. Since a connected graph is acyclic
if and only if it is a tree, it follows that a labeled acyclic graph is a set of labeled unrooted
non-planar trees.

Let T(z) be the EGF of labeled rooted non-planar trees, and recall that

T(z) = zeT(z).

Let U(z) be the EGF of labeled unrooted non-planar trees, and let A(z) be the EGF of
acyclic graphs. The argument above shows that

A(z) = eU(z),

but we haven’t yet found U(z). Given that T(z) is best expressed implicitly, and that
tn = nun, it’s unlikely that U(z) has a nice closed-form expression. Instead, we will express
U(z) in terms of T(z). First, note that

U(z) =
∫ z

0

T(w)

w
dw.
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(Hint: just look at the formal power series.) Now, using the identity T(w) = weT(w) and
integration by parts,

U(z) =
∫ z

0

T(w)

w
dw

=
∫ z

0
eT(w)dw

= weT(w) −
∫ z

0
wT′(w)eT(w)dw

= T(w)−
∫ z

0
T′(w)T(w)dw

= T(w)− 1
2

T(w)2.

We now conclude

A(z) = eT(z)−T(z)2/2.

Asymptotic analysis shows

An ∼
√

e · nn−2.

Unicyclic graphs. A graph is unicyclic if it contains exactly one cycle. A unicyclic graph is
very much like a function graph, except

(1) it must be connected,

(2) the cycles must have length at least 3,

(3) the cycles are undirected.

We thus invent a new construction for undirected cycles: UCYC. Now, we claim that the
classW of unicyclic graphs is

W = UCYC≥3(T ),

where T is the class of labeled rooted non-planar trees. We now claim that

W(z) =
1
2

log
(

1
1− T(z)

)
− 1

2
T(z)− 1

4
T(z)2.

We leave this to the reader to prove1. Combining this with the previous result on acyclic
graphs, the class of graphs made up of acyclic and unicyclic component has EGF

eA(z)+W(z) =
eT(z)/2−3T(z)2/4√

1− T(z)
,

yielding the asymptotic form

n![zn]eA(z)+W(z) ∼ Γ(3/4)(2eπ)−1/4nn−1/4.

1Essentially, just divide by two to go from directed cycles to undirected cycles.
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All labeled graphs. The class of all labeled graphs cannot be specified with the construc-
tions at hand, starting from atomic classes.2 Despite this, the simple fact that a labeled
graph is a set of connected graphs can shed light on asymptotic quality of the number of
connected graphs.

Let G be the class of all labeled graphs and let K be the class of connected labeled graphs.
Then,

G = SET(K),
so

G(z) = eK(z).

It is combinatorially evident that gn = 2(
n
2). Therefore,

K(z) = log

(
1 + ∑

n≥1
2(

n
2)

zn

n!

)
.

This series also has a radius of convergence of 0, but expanding gives

kn = 2(
n
2) − 1

2 ∑
n1+n2=n

ni>0

(
n

n1, n2

)
2(

n1
2 )+(n2

2 ) +
1
3 ∑

n1+n2+n3=n
ni>0

(
n

n1, n2, n3

)
2(

n1
2 )+(n2

2 )+(n3
2 ) − · · ·

From this we can show that

kn = 2(
n
2)
(

1− n
2n−1 + o(2−n)

)
.3

This means that almost all labeled graphs are connected (perhaps, surprising). For exam-
ple, among all labeled graphs on 18 vertices, only about 0.014% are not connected.

2This can be proved: the EGF for all labeled graphs has a radius of convergence of 0, but all classes that
can be built using labeled constructions from atomic classes have a non-zero radius of convergence. This is
straight-forward to prove for iterative structures, but proving it for recursive structures is quite involved.

3The term “+o(2−n)” loosely means “plus some more things strictly smaller than 2−n”.
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