LECTURE 12 - LABELED TREES, MAPPINGS, AND GRAPHS

JAY PANTONE

LABELED TREES

Like unlabeled trees, labeled trees can be either planar or non-planar. Also like unlabeled
trees, the planar case proves easier than the non-planar case. All trees are rooted and the
size of a tree is the total number of nodes unless otherwise stated.

Labeled planar trees. Let A be the class of labeled planar trees. Every tree in A can be
decomposed as a root with a possibly-empty sequence of subtrees, giving

A = ZxSEQ(A).
This implies
z
AR = T Awy

This implies that
1/2n-2 (2n —2)!
a, =n!- — =
n\n-—1 (n—1)!
In fact, in the more general case in which the out-degree of any node is constrained to lie
in () C Z>, the symbolic construction

A = ZxSEQq(A)

yields the functional equation
A(z) = z¢(A(z))

where ¢(u) = ) u“. By Lagrange inversion.
weN

a, = n![z"|A(z) = n!- %[u”’lw(u)”.
This proves that number of labeled planar trees of size n under a very wide set of possible
restrictions is exactly n! times the number of unlabeled planar trees of the same type. This
is, of course, combinatorially evident: every two ways of labeling a given unlabeled planar
tree results in distinct labeled planar trees. For this reason, we skip right to the analysis of
labeled non-planar trees, for which this property no longer holds.
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Labeled non-planar trees. The symbolic construction of labeled non-planar trees is as easy
as that for labeled planar trees: all SEQ operators become SET operators. Yet, this leads to
great differences in the EGFs produced and the subsequence asymptotic analysis.
The class T of all labeled non-planar trees is

T = ZxSET(T),
producing the functional equation

T(z) = zeT®.

Using Lagrange inversion with ¢(u) = e*, we can extract

t, = n![z"|T(z)
e T AT AT
nte [ ()
=n!- 1[u”_l]e”‘”
n
1 wn?®  uln®
— . Z[y"1 2 L2
n! n[u ]<1+un+ TR TR )
1 nn—l
]
" n(n—1)!

=n"""

This was first proved by Cayley, and as a result such trees are often known as Cayley trees.
A similar question asks for the number of non-rooted labeled non-planar trees. One need
only observe that from each non-rooted labeled non-planar tree on n vertices, one can
form n distinct rooted labeled non-planar trees (each choice of root gives a different tree).
Therefore, the number of non-rooted Cayley trees on 1 vertices is n" 2.

Versions of labeled non-planar trees in which the out-degree of nodes are restricted are
easily constructed by using the restricted SET construction.

Forests. A forest is an (unordered) set of rooted trees, and a k-forest is a forest with precisely
k trees. The symbolic construction for k-forests is

F® = SET(T),

giving
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Coefficient extraction proceeds as follows

> k
A9 = mpan 12
= T
= B ()
(1’1—1)! n—ky un
= (k— )![Z ]
_(n—1)
T k=1 (n—k)!
_ n—1 ek
k—1 '

It follows that the number of all forests is

fn= i <Z:i)n”k =n+1)"L

k=1

Exercise: Prove directly that f, = (n + 1)"~! using the formula n"~2 for unrooted labeled
non-planar trees. It should basically be a one-sentence proof.

FUNCTIONAL GRAPHS

Let F be the class of mappings from [1..n] to [1..n]. The size of such a mapping is n. A
mapping can be represented as a directed graph on n vertices with edges x — vy if and only
if y = f(x). Such a graph is called a functional graph; an example is shown below.

27

25
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Perhaps somewhat surprisingly, we can express the class F with a symbolic construction.
Upon inspection of the picture above, we see that:
(1) A functional graph is a set of connected functional graphs.
(2) A connected functional graph is a cycle of rooted non-planar labeled trees.
Therefore, letting K be the class of connected functional graphs:
F = SET(K)
K = Cyc(T)
T = ZxSer(T)

Translating to generating functions:

F(z) = €K@

1
K(z) = log <1—T(z)>
T(z) = zeT®

Hence,

fn = n![z”]il —1T(z)

= n![z"] i T(z)*
k=0

=n! i[z”]T(z)k
k=0

® ko opnk

—_y -

n'lgn(n—k)!
:nn

as expected from the definition of the class. The last equality above results from general
results on binomial summation. Moreover, one can show in a similar way that

nn—k

k, = (n_l)!k;(n—k)!'

Next we consider various restricted versions of mappings.

Maps with no fixed points. A fixed point is an element x € [1..n] such that f(x) = x. The
class NV of maps with no fixed points is given by

N = SEer(K)

K = Cyc.1(T)

T = Z*SET(T)
which gives the identity
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Lagrange inversion confirms that N, = (n — 1)", as expected. For comparison, the asymp-

totic behavior is

N, ~ e ",

Similarly, let M be mappings with no fixed points and no 2-cycles, so that f(x) # x and

f(f(x)) # x for all x. One similarly finds
e~ T-T2/2
M(Z) == ﬁ

with
My, ~ e 3 2p",

Idempotent maps. A map is idempotent if f(f(x)) = f(x) for all x. In other words, for
every x, either x or f(x) is a fixed point. Such mappings are described by functional graphs
in which each connected component consists of a cycle of length 1 with a set of single
vertices directed at the cycle of length one. Hence the class 7 of idempotent mappings is

Z = SET(Z % SET(Z2))
giving
I(z) = e*.
Saddle-point asymptotics give
I, ~ n! g et/ (E+1)

V2rng

where ( is the positive solution of (7 + 1)e¢ = n + 1.

4

One can prove in fact that in a random mapping of size n, one expects to reach a cycle in
O(y/n) steps from a randomly chosen point. As random number generators are typically
large mappings, this gives rise to the catchy warning: A random random number generator is
almost surely bad.

LABELED GRAPHS

Acyclic graphs. An acyclic graph is one with no cycles. Since a connected graph is acyclic
if and only if it is a tree, it follows that a labeled acyclic graph is a set of labeled unrooted
non-planar trees.

Let T(z) be the EGF of labeled rooted non-planar trees, and recall that

T(z) =z,
Let U(z) be the EGF of labeled unrooted non-planar trees, and let A(z) be the EGF of
acyclic graphs. The argument above shows that

A(z) = U@,
but we haven't yet found U(z). Given that T(z) is best expressed implicitly, and that
ty = nuy, it’s unlikely that U(z) has a nice closed-form expression. Instead, we will express
U(z) in terms of T(z). First, note that

U(z) = /OZ de.

w
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T(w)

(Hint: just look at the formal power series.) Now, using the identity T(w) = we and

integration by parts,
z
U(z) :/ L(w)dw
0o w
z
= / eT® dw
0

z
= we! @) —/ wT' (w)e @ dw
0

We now conclude

Asymptotic analysis shows
An ~ \/E . nn_Z.

Unicyclic graphs. A graph is unicyclic if it contains exactly one cycle. A unicyclic graph is
very much like a function graph, except

(1) it must be connected,
(2) the cycles must have length at least 3,
(3) the cycles are undirected.

We thus invent a new construction for undirected cycles: UCYC. Now, we claim that the
class W of unicyclic graphs is

W =UCycC>3(T),

where 7 is the class of labeled rooted non-planar trees. We now claim that
1 1 1 1
= -1 | = =T(2) — - T(2)%
W) = 3108 (=7 ) ~ 376 - 4T
We leave this to the reader to prove!. Combining this with the previous result on acyclic

graphs, the class of graphs made up of acyclic and unicyclic component has EGF

V4 — z 2
PARDTWE) T2 ST /4
1-T(z) '

yielding the asymptotic form

n![z"eA@WE) L T(3/4)(2emr) V414,

1Essen’cially, just divide by two to go from directed cycles to undirected cycles.
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All labeled graphs. The class of all labeled graphs cannot be specified with the construc-
tions at hand, starting from atomic classes.”> Despite this, the simple fact that a labeled
graph is a set of connected graphs can shed light on asymptotic quality of the number of
connected graphs.

Let G be the class of all labeled graphs and let K be the class of connected labeled graphs.
Then,

G = SET(K),
SO

G(z) = KO,

It is combinatorially evident that g, = 2(), Therefore,

n
K(z) = log (1 +). 2(2)i!> :

n>1
This series also has a radius of convergence of 0, but expanding gives

n 1 n n n 1 n n n n
—20G) _ = (H+(3) 4 = (D+CH+F) ..
ky 2\ > Z ( >2 2 ) 4 3 Z (nl,nz,n3)2 2 2 2

ny+ny=n nl’nz ny+ny+nz=n
n;>0 n;>0

From this we can show that
n

Zn—l

ky =20 (1 SR 0(2‘”)) 3
This means that almost all labeled graphs are connected (perhaps, surprising). For exam-
ple, among all labeled graphs on 18 vertices, only about 0.014% are not connected.

2This can be proved: the EGF for all labeled graphs has a radius of convergence of 0, but all classes that
can be built using labeled constructions from atomic classes have a non-zero radius of convergence. This is
straight-forward to prove for iterative structures, but proving it for recursive structures is quite involved.

3The term “+0(27™)"” loosely means “plus some more things strictly smaller than 27"".
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