
LECTURE 11 – TWO-LEVEL CONSTRUCTIONS

JAY PANTONE

In this lecture we will examine which combinatorial objects we can describe by using iter-
ative (non-recursive) symbolic constructions that are two levels deep. Using SEQ, SET, and
CYC there are nine possible constructions, some more natural than others.

Among the labeled classes we’ll discus are surjections, set partitions, and permutations.

SURJECTIONS

Definition: A surjection of size n is a map ϕ : [1 .. n]→ [1 .. r] such that the image of ϕ is all
of [1 .. r]. In other words, for all j ∈ [1 .. r] there exists some i ∈ [1 .. n] such that φ(i) = j.
LetR be the class of all surjections (i.e., any r-value is allowed) and letR(r) be the class of
surjections for fixes r. We call these r-surjections.

Let ϕ be a surjection from [1 .. n] to [1 .. r]. One way to describe ϕ is as a word w over
the alphabet {1 .. r} such that if the ith letter of w equals j, then ϕ(i) = j. For the sake of
example, let ϕ : [1 .. 7]→ [1 .. 4] be the surjection depicted below.

1 2 3 4 5 6 7

1 2 3 4

The word corresponding to this surjection is 2312143. Note that this is an unlabeled object.
r-surjections of size n are then words of length n over {1, . . . , r} such that every letter occurs
at least once. This turns out to be a tricky condition to impose via an unlabeled construction.

For example, the case r = 2 corresponds to the construction

R(2) = 1 SEQ(1) 2 SEQ(1 + 2) ∪ 2 SEQ(2) 1 SEQ(1 + 2)

while the case r = 3 can be constructed as

R(3) = 1 SEQ(1) 2 SEQ(1 + 2) 3 SEQ(1 + 2 + 3)

∪ 1 SEQ(1) 3 SEQ(1 + 3) 2 SEQ(1 + 2 + 3)

∪ 2 SEQ(2) 1 SEQ(1 + 2) 3 SEQ(1 + 2 + 3)

∪ 2 SEQ(2) 3 SEQ(2 + 3) 1 SEQ(1 + 2 + 3)

∪ 3 SEQ(2) 1 SEQ(1 + 3) 2 SEQ(1 + 2 + 3)

∪ 3 SEQ(2) 3 SEQ(2 + 3) 1 SEQ(1 + 2 + 3).
1

2 JAY PANTONE

More generally, let S be the set of permutations of length r. Then,

R(r) =
⋃

π∈S

π(1) SEQ(π(1))π(2) SEQ(π(1) + π(2)) · · ·π(r) SEQ(π(1) + · · ·+ π(r)),

leading to the (ordinary!) generating function

R(r)(z) =
6zr

(1− z)(1− 2z) · · · (1− rz)
.

Exercise: How does this relate to the class of set partitions considered in an earlier lecture?

This specification presents two problems. First, it’s not elegant, but more importantly it
does not give a clear way to compute the OGF for all surjections. Of course, one can
simply sum over r to say that

R(z) =
∞

∑
r=1

(r!)zr

r

∏
k=1

(1− kz)
,

but this is not of a form that lends itself to asymptotic analysis.

We now change gears and attempt to find a labeled specification for r-surjections. An
r-surjection can be viewed as a sequence of non-empty pre-images. The surjection ϕ in
the example above corresponds to the sequence ({3, 5}, {1, 4}, {2, 7}, {6}). That the pre-
images are non-empty forces ϕ to be a surjection. Each pre-image is itself a set. Therefore,
r-surjections are represented by the labeled construction

R(r) = SEQ=r(SET≥1(Z)).

The EGF for SET(Z) is ez. Therefore, the EGF for SET≥1(Z) is ez − 1. Thus, the EGF for
r-surjections is

R(r)(z) = (ez − 1)r.

This form does allow for coefficient extraction and asymptotic analysis, as well as an easy
transition to the class of all surjections. Indeed,

R = SEQ(SET≥1(Z))

and so

R(z) =
1

1− (ez − 1)
=

1
2− ez .

We will soon see how to infer from this that the number of surjections of size n has the
asymptotic form

rn ∼
n!

2 log(2)

(
1

log(2)

)n

.

Exercise: A double surjection is one in which every element in the image [1 .. r] is mapped
two by at least two elements in the domain. Find the EGF for double surjections.

LECTURE 11 – TWO-LEVEL CONSTRUCTIONS 3

SET PARTITIONS

Let S be the class of all set partitions, where the size of a partition is the number of ele-
ments. Let S (r) be the class of set partitions into r non-empty blocks. Set partitions are, in
many ways, similar to surjections – the major difference is that the order of the pre-images
matters in a surjection, while the order of the blocks does not matter in a set partition. This
immediately suggests that

S (r) = SET=r(SET≥1(Z))

yielding

S(r)(z) =
1
r!
(ez − 1)r,

as well as

S = SET(SET≥1(Z))

yielding

S(z) = eez−1.

Although the first generating function makes it clear immediately that

s(r)n =
1
r!

r(r)n ,

the asymptotic form of Sn differs from that of Rn. Saddle-point methods can be used to
show that

sn ∼ n!
eer−1

rn
√

2πr(r + 1)er
,

where r is implicitly defined by rer = n1. This can also be expressed as

1
n

log(sn) = log(n)− log(log(n))− 1 +
log(log(n))

log(n)
+

1
log(n)

+ O

((
log(log(n))

log(n)

)2
)

.

Example: Let eb(z) be the truncated exponential function defined by

eb(z) = 1 + z +
z2

2!
+ · · ·+ zb

b!
.

Then, set partitions with all block sizes of size at most b are constructed via

S{≤b} = SET(SET[1 .. b](Z))

with EGF

S{≤b}(z) = eeb(z)−1.

Exercise: What about set partitions with all block sizes at least b?

4 JAY PANTONE

PERMUTATIONS

We have already seen a labeled symbolic construction for permutations, though we did
not call them permutations at the time. A permutation of length n is an ordered sequence
of the numbers from 1 to n. This is equivalent to the construction

P = SEQ(Z)
giving the exponential generating function

P(z) =
1

1− z
.

However, permutations are often written in cycle notation rather than in the one-line notation
describe above. The permutation in one-line notation π = 3164527 has cycle notation π =
(1362)(4)(5)(7) (it is common to omit the cycles of length 1, writing π = (1362)). From
this perspective, a permutation is a labeled set of cycles (note that the order in which the
cycles are written doesn’t matter). Therefore,

P = SET(CYC(Z))
implying

P(z) = exp
(

log
(

1
1− z

))
=

1
1− z

.

This more “verbose” construction is more useful for describe restricted versions of permu-
tations.

Given the symbolic equivalence SET(CYC(Z)) ∼= SEQ(Z), there should be a nice bijection
between permutations in cycle notation and permutations in one-line notation (other than
the identity). We now sketch the bijection: let π be a permutation in cycle notation. Write
π so that each cycle starts with its largest element, and the cycles are written in increasing
order by their first entry. Then, drop the parentheses to obtain a permutation in one-line
notation. It’s not hard to show that the reverse direction can be defined by detecting where
parentheses should go and inserting them.

Exercise: Use a generalization of this idea to show that SET ◦ CYC ∼= SEQ. That is,
SET(CYC(A)) ∼= SEQ(A) for all combinatorial classes A with a0 = 0. On the level of
generating functions, this is the obvious identity

exp(log(f (z)) = f (z).

We now explore a number of variations on restricted permutations.

Example: Let P (r) be the class of permutations with exactly r cycles. By the symbolic
method,

P (r) = SET=r(CYC(Z)),
giving the EGF

P(r)(z) =
1
r!

(
log
(

1
1− z

))r

.

Coefficient extraction gives

p(r)n =
n!
r!
[zn]

(
log
(

1
1− z

))r

.

LECTURE 11 – TWO-LEVEL CONSTRUCTIONS 5

These numbers are called the Stirling numbers of the first kind or the Stirling cycle numbers,

and are denoted
[

n
r

]
. These numbers are fundamental to many applications in combina-

torics and computer science. Define pn,k to be the probably that a permutation of length n
has exactly k cycles, so that

pn,k =
1
n!

[
n
k

]
.

For n = 100 and 1 ≤ k ≤ 10, we have

k 1 2 3 4 5 6 7 8 9 10
n100,k 0.01 0.05 0.12 0.19 0.21 0.17 0.11 0.06 0.03 0.01

From this we that most (about 99.5%) permutations of length 100 have 10 or fewer cycles,
and the mean number of cycles is around 5.18.

In our coming discussion on bivariate generating functions, we will show that the mean
number of cycles of all permutations of length n is asymptotically equal to log(n).

Example: This example considers restrictions on the sizes of cycles rather than the number
of cycles. A derangement is a permutation with no fixed points, i.e, no cycles of length 1.
Clearly, the class D of derangements is

D = SET(CYC≥2(Z))
producing the EGF

D(z) = exp
(

log
(

1
1− z

)
− z
)
=

exp(−z)
1− z

.

A simple asymptotic analysis verifies that n![zn]D(z) ∼ n!e−1.

More generally, an r-derangement is a permutation with no cycles of length r or less. The
corresponding class D(r) satisfies

D(r) = SET(CYC>r(Z)),
giving the EGF

D(r)(z) = exp
(

log
(

1
1− z

)
− z− z2

2
− · · · − zr

r

)
=

exp
(
−z− z2

2
− · · · − zr

r

)
1− z

.

The same asymptotic analysis gives

n![zn]D(r) ∼ n!e−1− 1
2−···−

1
r .

Example: Derangements are permutations with no short cycles. This example considers
the opposite: permutations with no long cycles. An involution is a permutation in which
all cycles have length 1 or 2. Accordingly the class I of involutions is

I = SET(CYC1,2(Z))
giving EGF

I(z) = exp
(

z +
z2

2

)
.

6 JAY PANTONE

Coefficient extraction gives

In =
bn/2c

∑
k=0

n!
(n− 2k)!k!2k .

Similarly, involutions with no fixed points satisfy

J = SET(CYC2(Z)),
giving

J(z) = exp
(

z2

2

)
,

with an even simpler coefficient extraction

J2n = (2n− 1)(2n− 3) · · · 5 · 3 · 1.

More generally, the class of permutations in which all cycles of have length at most r has
EGF

B(r)(z) = exp
(

z +
z2

2
+ · · ·+ zr

r

)
.

Riddle: The (sadistic) warden of a prison gathers up 100 prisoners and offers them a
chance to get out of prison early. He sets up the following game. He puts 100 drawers
in a line in a room, writes each prisoners name on an index card, and randomly puts one
index card in each drawer.

The prisoners are allowed to enter the room one at a time and check 50 drawers, looking
for the card with their own name. If all 100 prisoners find the card with their name, then
they can all go free. The prisoners are allowed to plan a strategy before-hand, but cannot
communicate once the game starts.

The naı̈ve method in which each prisoner randomly picks 50 drawers has a 2−100 ≈ 0.79 ·
10−30 chance of success. Is there a better way?

Solution: The prisoners assign themselves numbers 1 through 100. The drawers, when
read from one side of the room to the other, then represent an unknown permutation of
length 100. Each prisoner enters the room and picks a random drawers to open. If that
drawer does not contain their name, then they next open the drawer at the index in the
permutation corresponding to the name that was in the first draw. For example, say Steve
was assigned 18 and Bob was assigned 66. Steve goes into the room, picks a random
drawer and opens it, finding that it contains the index card with Bob’s name on it. Since
Bob was assigned number 66, he then goes to the 66th box in the room and opens that one.
The only way that this method can fail is if the permutation induced by the drawers has a
cycle of length greater than 50.

The probability that a permutation of length 100 has no cycles of length greater than 50 is

[z100] exp
(

z +
z2

2
+ · · ·+ z50

50

)
≈ 0.31.

This gives the prisoners a 31% chance of success!

Example: Let P (e) be the class of permutations with an even number of cycles. Then,

P (e) = SETeven(CYC(Z)).

LECTURE 11 – TWO-LEVEL CONSTRUCTIONS 7

What is the generating function for sets of even length? Clearly, if Ceven = SETeven(A) then

C(z) =
∞

∑
n=0

A(z)2n

2n
= 1 +

A(z)2

2
+

A(z)4

4
+ · · · .

Let’s answer a more general intermediate question. Let

f (z) =
∞

∑
n=0

fnzn.

What is the generating function for

feven(z) =
∞

∑
n=0

{
fn, n is even
0, n is odd

}
zn?

This is a neat generating trick: in order to eliminate the odd terms and leave the even terms,
substitute −z into f and add it back to itself. Then, the even terms have been doubled and
the odd terms have finished, so divide by two. Algebraically,

feven(z) =
f (z) + f (−z)

2
.

Similarly,

fodd(z) =
f (z)− f (−z)

2
.

Returning to the previous question, if Ceven = SETeven(A) then

Ceven(z) =
eA(z) + e−A(z)

2
.

Returning all the way back to the original problem, we now derive

P(e) =
1

1−z + (1− z)
2

= 1 +
z2

2(1− z)
.

Therefore, p(e)n = n!/2 for n ≥ 2.

Exercise: This can be proved combinatorially, using the concept of even and odd permu-
tations (in the group-theoretic sense. How?

Example: Next we consider a different question with a more interesting answer. Let P{e}
be the class of permutations in which the cycles have even length. The symbolic construc-
tion is

P{e} = SET(CYCeven(Z)).
The generating function is thus

P{e}(z) = exp

(
log
(1

1−z

)
+ log

(1
1+z

)
2

)
=

1√
1− z2

.

OTHER TWO-LEVEL CONSTRUCTIONS

We’ve already looked at the two-level constructions SEQ ◦ SET, SET ◦ SET, and SET ◦ CYC.
Clearly we can build six more. What do they represent?

8 JAY PANTONE

SET ◦ SEQ. The class F = SET(SEQ≥1(Z)) consists of sets of permutations that have been
consistently relabeled. One example of an object in F of size 9 is

8 − 4 6 − 7 − 1 − 2 3 − 9 − 5 .

=

6 − 7 − 1 − 2 3 − 9 − 5 8 − 4
Such objects are called fragmented permutations. Their generating function is

F(z) = ez/(1−z).

Despite the simple generating function, the asymptotic form of the counting sequence is
more complex:

fn

n!
∼ 1

2
√

eπ

(e2)
√

n

n3/4 .

The the term (e2)
√

n grows larger than any polynomial sequence but slower than any true
exponential growth. There is no standardized term for this; some call it stretched exponential
behavior.

SEQ ◦ SEQ. The class S = SEQ(SEQ≥1(Z)) can be interpreted as permutations with op-
tional dividing lines between each pair of consecutive entries. Two distinct objects in this
class are:

8 − 4 | 6 − 7 − 1 − 2 | 3 − 9 − 5 .
6=

6 − 7 − 1 − 2 | 3 − 9 − 5 | 8 − 4
The EGF is

S(z) =
1− z
1− 2z

(where have we seen this before?) and the coefficients have the simple closed form
sn = n!2n−1.

Compare these last two classes to the duality between compositions and partitions.

SEQ ◦ CYC. The class A = SEQ(CYC≥1(Z)) consists of sequences of directed cycles that
are known as alignments. Their generating function is

A(z) =
1

1− log
(

1
1− z

)
and they have coefficients

an

n!
∼ 1

e− 1

(
e

e− 1

)n

.

Supernecklaces. The remaining two-level constructions are CYC(SEQ≥1(Z)), CYC(SET≥1(Z))
and CYC(CYC≥1(Z)). These are all given the generic name supernecklaces. Their generat-
ing functions are, of course, all easily found. We leave the details to the reader.

	Surjections
	Set Partitions
	Permutations
	Other Two-Level Constructions
	SetSeq
	SeqSeq
	SeqCyc
	Supernecklaces

