
LECTURE 9 – COEFFICIENT EXTRACTION FOR ALGEBRAIC GENERATING
FUNCTIONS

JAY PANTONE

In the Lecture 7 we examined how to find a closed-form expression for the coefficients of
any rational generating function. Here, we ask the same question for the more general
class of algebraic generating functions. Recall that f (z) is algebraic of degree d if there
exists polynomial pi(z) ∈ Q[z] such that

0 = pd(z) f d + pd−1(z) f d−1 + · · ·+ p1(z) f + p0(z).

The question of coefficient extraction must be split into two cases.

(1) If we are given a closed-form expression for f (z), or if the minimal polynomial
for f (z) is easily solvable to yield a closed-form expression, then coefficient extrac-
tion may be carried out using Newton’s Generalized Binomial Theorem from the
previous lecture.

(2) Otherwise, we use deeper theory to produce a nested-sum expression directly from
the minimal polynomial.

COEFFICIENT EXTRACTION FROM A CLOSED FORM

Recall Newton’s Generalized Binomial Theorem: for any real number r,

(x + y)r =
∞

∑
k=0

(
r
k

)
xr−kyk = xr + rxr−1y +

r(r− 1)
2!

xr−2y2 +
r(r− 1)(r− 2)

3!
xr−3y3 + · · · .

Using this together with various other generating function methods, we can extract coef-
ficients from many explicitly-given algebraic generating functions. One trick that prove
handy is:

[zn] f (α · z) = αn[zn] f (z).

Example: Find the coefficient sequence {an}n≥1 for f (z) =
1√

1− 4z
. First, we use the

aforementioned trick to see that

[zn]
1√

1− 4z
= 4n[zn]

1√
1− z

.
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Now, since
1√

1− z
= (1− z)−1/2, we apply the Binomial Theorem and see

[zn](1− z)−1/2 = [zn]
∞

∑
k=0

(
−1/2

k

)
(−z)k

= (−1)n
(
−1/2

n

)
= (−1)n (−1/2)(−3/2) · · · ((1− 2n)/2)

n!

=
1
2n

1 · 3 · 5 · · · · · (2n− 1)
n!

.

Therefore,

[zn]
1√

1− 4z
= 4n[zn]

1√
1− z

=
4n

2n
1 · 3 · 5 · · · · · (2n− 1)

n!

= 2n 1 · 3 · 5 · · · · · (2n− 1)
n!

=
n!2n

n!
1 · 3 · 5 · · · · · (2n− 1)

n!

=
2 · 4 · 6 · · · · · 2n

n!
1 · 3 · 5 · · · · · (2n− 1)

n!

=

(
2n
n

)
.

Exercise: Use the method described above to prove that

[zn]
1−
√

1− 4z
2z

=
1

n + 1

(
2n
n

)
.

COEFFICIENT EXTRACTION FROM A MINIMAL POLYNOMIAL

Suppose that f (z) is algebraic with minimal polynomial

0 = pd(z) f d + pd−1(z) f d−1 + · · ·+ p1(z) f + p0(z).

For d > 2 it is often ill-advised or impossible to solve for f explicitly. In order to extract a
formula for the coefficients of f , we have to work directly with the minimal polynomial.

Definition: Let DyP denote the formal derivative of P with respect to the variable y.

Suggested Reading: BANDERIER, C., AND DRMOTA, M. Coefficients of algebraic func-
tions: formulae and asymptotics. DMTCS Proceedings 0, 01 (2013)

Theorem 9.1. Suppose f (z) is implicitly defined by the equation f = P(z, f ), for some polynomial
P(z, y) such that P(0, 0) = 0, (DyP)(0, 0) = 0, and P(z, 0) 6= 0.1 Then, the coefficients { fn}n≥1

1The condition P(0, 0) = 0 requires f (0) = 0. The condition (DyP)(0, 0) = 0 prevents a term cy in P(z, y)
for a constant c and this can be forced without loss of generality. The condition P(z, 0) 6= 0 ensures that
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of f (z) are given by

fn =
∞

∑
m=1

1
m
[znym−1]P(z, y)m.

Though it does not look it, this sum is actually finite (i.e., it is zero for sufficiently large m).

Proof. Let g ∈ Q[[z, u]] be the power series defined implicitly by the equation

g = uP(z, g).

Note that now g(z, 1) satisfies

g(z, 1) = uP(z, g(z, 1))

and therefore g(z, 1) = f (z). We now apply Lagrange inversion to g(z, u) treating u as the
main variable and z as a fixed parameter. Then, letting φ(u) = P(z, g(z, u)), we have

[um]g(z, u) =
∞

∑
m=1

1
m
[um−1]P(z, u)m

so that

g(z, u) =
∞

∑
m=1

(
1
m
[um−1]P(z, u)m

)
um.

Setting u = 1, we recover

f (z) =
∞

∑
m=1

1
m
[ym−1]P(z, y)m

and thus

fn =
∞

∑
m=1

1
m
[znym−1]P(z, y)m.

�

As this is a finite sum, it does constitute a closed-form formula. However, it can be simpli-
fied by using a generalization of the binomial coefficients.

Definition: Let m = m1 + m2 + · · · + mk. The multinomial coefficient
(

m
m1, m2, . . . , mk

)
is

the number of ways to select from m distinguishable objects k subsets of sizes m1, m2, . . .,
mk.

Lemma 9.2. Similarly to the binomial coefficients, we have(
m

m1, m2, . . . , mk

)
=

m!
m1!m2! · · ·mk!

.

Now we can state a generalization of the binomial theorem.

[y0]P(z, y) is non-zero; if this does not hold then either a y term can be factored from both sides, or else the
expression does not implicitly define a formal power series.
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Theorem 9.3 (Multinomial Theorem). The following equality holds:

(u1 + u2 + · · ·+ uk)
m = ∑

m1+···+mk=m
mi≥0

(
m

m1, m2, . . . , mk

)
um1

1 um2
2 · · · u

mk
k ,

where the sum is over all weak compositions of m into k parts.

The Multinomial Theorem allows us to give a more concrete expression (albeit, less ele-
gant) for the closed form of the coefficients of an algebraic generating function.

Theorem 9.4. Suppose f (z) is implicitly defined by the equation f = P(z, f ), for some polynomial
P(z, y) such that P(0, 0) = 0, (DyP)(0, 0) = 0, and P(z, 0) 6= 0. Break up P(z, y) into terms
and write it as

P(z, y) =
k

∑
i=1

aizbi yci .

Then

fn =
∞

∑
m=1

1
m ∑

m1+···+mk=m
b1m1+···+bkmk=n

c1m1+···+ckmk=m−1

(
m

m1, m2, . . . , mk

)
am1

1 am2
2 · · · a

mk
k

Proof. The theorem follows from application of the multinomial theorem. First, note that

P(z, y)m =

(
k

∑
i=1

aizbi yci

)m

= ∑
m1+···+mk=m

(
m

m1, m2, . . . , mk

)
(a1zb1 yc1)m1 · · · (akzbk yck)mk .

Hence,

[zn]P(z, y)m = ∑
m1+···+mk=m

b1m1+···+bkmk=n

(
m

m1, m2, . . . , mk

)
(a1yc1)m1 · · · (akyck)mk ,

and so

[znym−1]P(z, y)m = ∑
m1+···+mk=m

b1m1+···+bkmk=n
c1m1+···+ckmk=m−1

(
m

m1, m2, . . . , mk

)
am1

1 · · · a
mk
k .

The statement of the theorem then follows. �

We will compute two examples by hand. In general, the iterated summations provided by
this theorem are not expressed as simply as they may be and it’s often hard to perform the
simplification. Nevertheless, sometimes this is the best one can do (in terms of a closed
form).

Example: The Motzkin numbers count many combinatorial objects, including planar rooted
unary-binary trees. They are given by a generating function M(z) = 1+ z+ 2z2 + 4z3 + · · ·
that satisfies

0 = 1 + (z− 1)M(z) + z2M(z)2.
To apply algebraic coefficient extraction, we rearrange

M(z) = 1 + zM(z) + z2M(z)2,
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and set
P(z, y) = 1 + zy + z2y2.

However, this P(z, y) does not satisfy the conditions of the theorem, as P(0, 0) 6= 0.2 To
remedy this, we shift the sequence of Motzkin numbers over by 1, setting M̂(z) = z + z2 +

2z3 + 4z4 + · · · . It can be shown that this new M̂(z) satisfies

M̂(z) = z + zM̂(z) + zM̂(z)2.

Now using
P(z, y) = z + zy + zy2,

we do indeed meet the conditions P(0, 0) = 0, (DyP)(0, 0) = 0, and P(z, 0) 6= 0. Set

a1 = 1 b1 = 1 c1 = 0
a2 = 1 b2 = 1 c2 = 1
a3 = 1 b3 = 1 c3 = 2

.

Then,

[zn]M̂(z) = ∑
m≥1

1
m ∑

m1+m2+m3=m
m1+m2+m3=n
m2+2m3=m−1

(
m

m1, m2, m3

)
.

Now we must consider what we can conclude about weak compositions of m with these
properties. Firstly, we can conclude that m = n, which eliminates all terms in the outer
summation except for the term with m = n. Secondly, by subtracting the third equation
from the first, we see that m3 = m1 − 1. Finally, since m1 + m2 + m3 = n, we conclude that
m2 = n−m1 −m3 = n− 2m1 + 1. Therefore, once we pick a value for m1, both m2 and m3
are determined. Therefore,

[zn]M̂(z) =
1
n ∑

m1≥0

(
n

m1, n− 2m1 + 1, m1 − 1

)
.

To simplify, we make use of a multinomial identity:(
k1 + k2 + · · ·+ km

k1, k2, . . . , km

)
=

(
k1 + k2

k2

)(
k1 + k2 + k3

k3

)
· · ·
(

k1 + k2 + · · ·+ km

km

)
=

(
k1 + k2

k1

)(
k1 + k2 + k3

k1 + k2

)
· · ·
(

k1 + k2 + · · ·+ km

k1 + k2 + · · ·+ km−1

)
This allows us to write our summation as

[zn]M̂(z) =
1
n ∑

m1≥0

(
2m1 − 1

m

)(
n

2m1 − 1

)
.

This is a perfectly good answer to the question of coefficient extraction, but in order to
match the form most commonly stated for the Motzkin numbers, we apply the binomial
identity (

n
k

)(
n− k

h

)
=

(
n
h

)(
n− h

k

)
,

to get

[zn]M̂(z) =
1
n ∑

m1≥0

(
n

m1

)(
n−m1

m1 − 1

)
.

2We knew this would happen because M(0) 6= 0.
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To recover the unshifted Motzkin numbers that we originally sought, observe

[zn]M(z) = [zn+1]M̂(z) =
1

n + 1 ∑
k≥0

(
n + 1

k

)(
n + 1− k

k− 1

)
.

Example: Our second example involves a sequence of numbers that counts a combinatorial
object known as a pattern-avoiding permutation class.3 The class of permutations that avoid
the patterns 4123, 4132, and 4213 has generating function s(z) = z + 2z2 + 6z3 + 21z4 + · · ·
satisfying

0 = z + (2z− 1)s(z) + 2zs(z)2 + zs(z)3,
and so

s(z) = z + 2zs(z) + 2zs(z)2 + zs(z)3.
Setting

P(z, y) = z + 2zy + 2zy2 + zy3,
we find that the conditions P(0, 0) = 0, (DyP)(0, 0) = 0, and P(z, 0) 6= 0 are all satisfied.

We now set
a1 = 1 b1 = 1 c1 = 0
a2 = 2 b2 = 1 c2 = 1
a3 = 2 b3 = 1 c3 = 2
a4 = 1 b4 = 1 c4 = 3

.

Therefore,

[zn]s(z) = ∑
m≥1

1
m ∑

m1+m2+m3+m4=m
m1+m2+m3+m4=n
m2+2m3+3m4=m−1

(
m

m1, m2, m3, m4

)
2m22m3 .

As in the previous example, the constraints of the sum imply m = n and so the outer
sum vanishes4. Moreover, by subtracting the third equation from the first we see that
m1 = m3 + 2m4 + 1. Lastly, as m1 + m2 + m3 + m4 = m, we have m2 = n− 1− 2m3 − 3m4.
Therefore, m1 and m2 are determined by m3 and m4, and hence

[zn]s(z) =
1
n ∑

m3≥0
∑

m4≥0

(
m

m3 + 2m4 + 1, n− 1− 2m3 − 3m4, m3, m4

)
2n−1−m3−3m4

=
1
n ∑

m3≥0
∑

m4≥0

(
m3 + m4

m4

)(
2m3 + 3m4 + 1
m3 + 2m4 + 1

)(
n

n− 1− 2m3 − 3m4

)
2n−1−m3−3m4

=
1
n ∑

m3≥0
∑

m4≥0

(
m3 + m4

m4

)(
2m3 + 3m4 + 1

m3 + m4

)(
n

2m3 + 3m4 + 1

)
2n−1−m3−3m4 .

3We omit the definition of a permutation class, but the interested read should consult the comprehensive
survey: [VATTER, V. Permutation classes. In Handbook of Combinatorics, M. Bóna, Ed. CRC Press, 2015].

4This does not always happen!
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