
LECTURE 8 – COEFFICIENT EXTRACTION VIA LAGRANGE INVERSION

JAY PANTONE

Lagrange Inversion is a technique that can be used to extract coefficients from a functional
equation for a generating function that takes a particular form.

Suggested Reading: MERLINI, D., SPRUGNOLI, R., AND VERRI, M. C. Lagrange
inversion: When and how. Acta Applicandae Mathematica 94, 3 (2006), 233–249

Definition: Given a formal power series f ∈ Q[[z]], we say that f 〈−1〉 is the compositional
inverse of f if f

(
f 〈−1〉(z)

)
= f 〈−1〉( f (z)) = z.

Lemma 8.1. A formal power series f ∈ Q[[z]] has a compositional inverse if and only if f (0) = 0
and (D f )(0) 6= 0.

Suppose that f (z) is defined implicitly by an equation of the form f = zφ( f ) for some

power series φ ∈ Q[[z]] with φ(0) 6= 0. Then, defining g(z) =
z

φ(z)
, we have

g( f (z)) =
f (z)

φ( f (z))
= z

showing that z 7→ z
φ(z)

is the compositional inverse of f .

The technique of Lagrange Inversion allows us to extract coefficients from f by considering
coefficients of the compositional inverse of f .

Theorem 8.2 (Lagrange Inversion). Let f ∈ Q[[z]] with f (0) = 0 and (D f )(0) 6= 0. Suppose
that f is defined implicitly by a functional equation f = zφ( f ) for a formal power series φ ∈ Q[[z]]
with φ(0) 6= 0. Then,

[zn] f (z) =
1
n
[zn−1]φ(z)n.

There are many proofs of the theorem, some analytic and some algebraic. See [STANLEY,
R. P. Enumerative combinatorics. Vol. 2, vol. 62 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 1999], Chapter 5, which gives three proofs.

A slight generalization of Lagrange Inversion will prove useful.

Theorem 8.3 (Lagrange Inversion). Let f ∈ Q[[z]] with f (0) = 0 and (D f )(0) 6= 0. Suppose
that f is defined implicitly by a functional equation f = zφ( f ) for a formal power series φ ∈ Q[[z]]
with φ(0) 6= 0. Then,

[zn] f (z)k =
k
n
[zn−1]φ(z)n.
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Let us now revisit some of our earlier results to see what information can be derived with
this new tool at our disposal.

Example: Let T {0,1,2} be the class of rooted planar unary-binary trees, i.e., every node has
either 0, 1, or 2 children. Let the size of a tree be the total number of nodes. Then,

T {0,1,2} = Z × SEQ{0,1,2}(T {0,1,2}).

From this we find the functional equation

T(z) = z(1 + T(z) + T(z)2).

Rearranging,

z =
T

φ(T)
,

for φ(z) = 1 + z + z2. Thus we can apply Lagrange inversion to conclude that

[zn]T(z) =
1
n
[zn−1](1 + z + z2)n

=
1
n

b(n−1)/2c

∑
k=1

(
n
k

)(
n− k
k + 1

)
.

This last step involves a simple combinatorial argument about how different combinations
of powers of z can be found in terms of (1 + z + z2)n.

We will see more examples once we begin to cover labelled structures.


