
LECTURE 7 – COEFFICIENT EXTRACTION FOR RATIONAL GENERATING
FUNCTIONS

JAY PANTONE

In general, it is not possible to take a generating function f (z) and extract a closed-form
expression for its sequence of coefficients. Notably, rational–and to some degree algebraic–
generating functions stand in contrast to this. In the following three lectures, we will learn
how to perform the following tasks.

(1) Extract from a rational generating function a closed-form expression for the coeffi-
cients. This will yield the asymptotic form for the coefficients for free.

(2) Extract from an algebraic generating function a closed-form expression for the co-
efficients. This will not yield an asymptotic form for the coefficients.

(3) Use Lagrange inversion to extract coefficients from a certain functional equations
that can’t be solved on their own.

RATIONAL GENERATING FUNCTIONS

By virtue of their simplicity, rational generating functions offer complete information about
the sequences of coefficients that they encode. As the first theorem shows, the coefficients
of every rational generating function satisfy a linear recurrence with constant coefficients.

Theorem 7.1. Let f (z) = P(z)/Q(z) be a rational generating function with coefficient sequence
{an}n≥0. Then, {an}n≥0 satisfies a linear recurrence with constant coefficients of the form

an = c1an−1 + c2an−2 + · · · cdan−d),

where d = deg(Q(z)) and ci ∈ Q, for all n > deg(P(z)).

Proof. As f (x) is a generating function, we may assume that Q(0) 6= 0; otherwise f (z) is
not a formal power series.

Write Q(z) = q0 + q1z + · · ·+ qdzd and observe that

P(z) = f (z)Q(z)

Therefore, for n > deg(P(z))

0 = [zn] ( f (z)Q(z))

0 =
n

∑
k=0

(
[zn−k] f (z)

) (
[zk]Q(z)

)
0 =

d

∑
k=0

(
[zn−k] f (z)

) (
[zk]Q(z)

)
0 = q0an + q1an−1 + · · ·+ qdan−d,

1
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where we make the convention that ai = 0 for i < 0.

Rearranging, we recover

an = − 1
q0
(q1an−1 + q2an−2 + · · ·+ qdan−d).

�

Given that the proof is constructive (i.e., not only does it tell us that such a linear recurrence
exists but also how to find it), let us calculate an example.

Example: We found in an earlier lecture that the generating function for binary words
avoiding k consecutive 1’s is

W(z) =
1− zk

1− 2z + zk+1 .

By Theorem 7.1, we obtain the recurrence

an = 2an−1 − an−k−1,

for n ≥ k + 1. Initial values are obtained by expanding the generating function up to the
coefficient of zk. In this case, we see combinatorially that ai = 2i for 0 ≤ i ≤ k − 1 and
ak = 2k − 1.

Exercise: What is the combinatorial explanation for the recurrence found above?

While a linear recurrence does allow for fast computation of terms, it has one significant
drawback. Often one is interested in the asymptotic growth of a combinatorial sequence,
and the associated linear recurrence typically offers no hint of this property. Consider for
example the Fibonacci numbers, which satisfy the recurrence

an = an−1 + an−2.

Surprisingly, the exponential growth rate of the sequence {an}n≥0 is 1+
√

5
2 ≈ 1.618. The

next topic details how to extract a closed-form formula for the coefficients of a rational
generating function, allowing us to find such properties.1

Theorem 7.2. For any rational generating function f (z) = P(z)/Q(z), the coefficient sequence
{an}n≥0 can be written in the form

an =
N

∑
i=1

Pi(n)µn
i ,

where each Pk(n) is a polynomial, and each µ is an algebraic number.

Before proving this theorem, we have to review some results about binomial coefficients.

1This is not typical. As we’ll see later, the closed-form formula that can be found for algebraic generating
functions is usually unhelpful in determining asymptotic behavior.
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Definition: The binomial coefficient
(

n
k

)
is the number of ways to select k objects from a

group of n objects, and (
n
k

)
=

n!
k!(n− k)!

.

Theorem 7.3 (Binomial Theorem). For any non-negative integer n,

(x + y)n =
n

∑
k=0

(
n
k

)
xn−kyk.

For our purposes, we need a more general version of binomial coefficients.

Definition: Let k be a positive integer and let r be a real number. Then, the generalized
binomial coefficient is (

r
k

)
=

r(r− 1)(r− 2) · · · (r− (k− 1))
k!

.

We use the convention that
(

r
0

)
= 1 and

(
r
k

)
= 0 when k is a negative integer. The

following identity will prove useful.

Lemma 7.4. For generalized binomial coefficients,(
−r
k

)
= (−1)k

(
r + k− 1

k

)
.

Proof. By definition,(
−r
k

)
=

(−r)(−r− 1)(−r− 2) · · · (−r− (k− 1))
k!

= (−1)k r(r + 1)(r + 2) · · · (r + (k− 1))
k!

= (−1)k
(

r + k− 1
k

)
.

Further, if r is a positive integer, then,(
−r
k

)
= (−1)k

(
r + k− 1

k

)
= (−1)k

(
r + k− 1

r− 1

)
.

�

With this extended notation, a more general version of the Binomial Theorem can be stated.

Theorem 7.5 (Newton’s Generalized Binomial Theorem). For any real number r,

(x + y)r =
∞

∑
k=0

(
r
k

)
xr−kyk = xr + rxr−1y +

r(r− 1)
2!

xr−2y2 +
r(r− 1)(r− 2)

3!
xr−3y3 + · · · .
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When r is a positive integer, the theorem specializes to the original binomial theorem. In
all other cases, the expansion yields an infinite number of terms. In this sense, Newton’s
Generalized Binomial Theorem can be used to give series expansions of generating func-
tions.

Example: The series expansion of
√

1 + z = (1 + z)1/2 is

(1 + z)1/2 =
∞

∑
k=0

(
1/2

k

)
zk (1)1/2−k

=

(
1/2

0

)
+

(
1/2

1

)
z +

(
1/2

2

)
z2 +

(
1/2

3

)
z3 + · · ·

= 1 +
1
2

z +
( 1

2

) (
− 1

2

)
2!

z2 +

( 1
2

) (
− 1

2

) (
− 3

2

)
3!

z3 + · · ·

= 1 +
1
2

z− 1
8

z2 +
1
16

z3 + · · · .

The next example is fundamental to the process of coefficient extraction from rational gen-
erating functions.

Example: Let r be a positive integer. Then, the series expansion of
1

(1− z)r = (1− z)−r is

(1− z)−r =
∞

∑
k=0

(
−r
k

)
(−z)k(1)−r−k

=
∞

∑
k=0

(−1)k
(

r + k− 1
k

)
(−z)k

=
∞

∑
k=0

(
r + k− 1

k

)
zk

=
∞

∑
k=0

(
r + k− 1

r− 1

)
zk.

It is important to note that given the restriction on r, the coefficients of the sum are regular
binomial coefficients. In fact, for fixed r the coefficients are polynomials.

Example: The series expansion of
1

(1− z)4 is

(1− z)−4 =
∞

∑
k=0

(
k + 3

3

)
zk =

∞

∑
k=0

(k + 3)(k + 2)(k + 1)
6

zk =
∞

∑
k=0

1
6
(k3 + 6k2 + 11k + 6)zk.

Generally, the generating function (1− z)−r has coefficients an = P(n), for a polynomial P
of degree r− 1.

We are now ready to prove Theorem 7.2.

Proof of Theorem 7.2. Let f (z) = P(z)/Q(z) be a rational generating function with coef-
ficient sequence {an}n≥0. As before, we assume Q(0) 6= 0. Further, we may assume
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deg(P) < deg(Q): if not, then use long division of polynomials to write

f (z) = r(z) +
P̂(z)
Q(z)

for a polynomial r(z) and a new polynomial P̂(z) with deg(P̂) < deg(Q), and proceed
as follows with P̂ in place of P. As r(z) is a polynomial, this will only affect the first
deg(r(z)) + 1 coefficients.

Our goal is now to write P(z)/Q(z) as a sum of terms to which we can apply the expansion
of (1− z)−r discussed above. This is accomplished with the technique of partial fraction
decomposition.2

We will not go into to detail on how to perform partial fraction decomposition (because it
can be tedious), but the end result is that P(z)/Q(z) can be written as a finite sum

f (z) =
N

∑
i=1

ci

(z− αi)ri

for complex numbers ci and αi and positive integers ri. After some algebraic manipulation,

f (z) =
N

∑
i=1

ci

(−αi)ri

1
(1− z

αi
)ri

.

By Theorem 7.5,(
1− z

αi

)−ri

=
∞

∑
k=0

(
ri + k− 1

ri − 1

)(
z
αi

)k

=
∞

∑
k=0

1
αk

i

(
ri + k− 1

ri − 1

)
zk

Therefore,

[zn]

(
ci

(−αi)ri

1
(1− z

αi
)ri

)
=

ci

(−αi)ri

1
αn

i

(
ri + n− 1

ri − 1

)
.

From this we recover a closed form formula for the coefficients of f (z):

[zn] f (z) = [zn]
N

∑
i=1

ci

(−αi)ri

1
(1− z

αi
)ri

=
N

∑
i=1

[zn]
ci

(−αi)ri

1
(1− z

αi
)ri

=
N

∑
i=1

ci

(−αi)ri

1
αn

i

(
ri + n− 1

ri − 1

)
.

This proves the theorem, with Pi(n) =
ci

(−αi)ri

(
ri + n− 1

ri − 1

)
and µi = α−1

i . �

Maple can be used to calculate partial fraction decompositions.

2This should be familiar to anyone who has taken a calculus course on integration.
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Maple
> f := 1/(1-z-zˆ2):
> convert(convert(f,fullparfrac),radical);

1/2 1/2
5 5

- ------------------ + ------------------
/ 1/2 \ / 1/2\
| 5 | | 5 |

5 |z - ---- + 1/2| 5 |z + 1/2 + ----|
\ 2 / \ 2 /

Example: The generating function for the Fibonacci numbers is f (z) =
1

1− z− z2 . Setting

ρ1 = −(
√

5 + 1)/2 and ρ2 = (
√

5− 1)/2, the partial fraction decomposition of f (z) is

f (z) =
1√
5
· 1

z− ρ1
− 1√

5
· 1

z− ρ2
.

By the constructive proof of Theorem 7.2 with c1 =
1√
5

, α1 = ρ1, r1 = 1, and c2 = − 1√
5

,

α2 = ρ2, r2 = 1, we recover

[zn] f (z) = P1(n)µn
1 + P2(n)µn

2

=
1√

5(−ρ1)

(
n
0

)
ρ−n

1 −
1√

5(−ρ2)

(
n
0

)
ρ−n

2

=
5−
√

5
10

(
1−
√

5
2

)n

+
5 +
√

5
10

(
1 +
√

5
2

)n

,

as we stated in the first lecture.

Example: Sometimes you will see oscillatory behavior. Consider for example the generat-
ing function

f (z) =
1

1− z3 = 1 + z3 + z6 + · · · .

How are these coefficients expressed in this form? First, we apply partial fraction decom-
position to write

f (z) = −1
3
· 1

z− 1
− ω

3
· 1

z−ω
− ω2

3
· 1

z−ω2 ,

where ω =
i
√

3− 1
2

and ω2 =
−i
√

3− 1
2

are cube roots of unity. We now apply the
theorem with

c1 = −1
3

α1 = 1 r1 = 1

c2 = −ω

3
α2 = ω r2 = 1

c3 = −ω2

3
α3 = ω2 r3 = 1,
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to obtain

[zn] f (z) = − 1
3(−1)

1n − ω

3(−ω)

(
1
ω

)n

− ω2

3(−ω2)

(
1

ω2

)n

=
1
3
+

1
3

(
1
ω

)n

+
1
3

(
1

ω2

)n

=
1
3
+

1
3
(ω2)n +

1
3

ωn

=
1
3
(1 + ωn + ω2n).

When n = 3`, this gives

[zn] f (z) =
1
3
(1 + ω3` + ω6`) =

1
3
(1 + 1 + 1) = 1,

and when n is not a multiple of 3,
[zn] f (z) = 0,

because for n not a multiple of 3, ωn + ω2n = −1.

When there are multiple roots in the denominator with minimal modulus, this kind of
oscillatory behavior emerges.
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