
LECTURE 5 – COMPOSITIONS, WORDS, TREES, AND MORE

JAY PANTONE

COMPOSITIONS

A composition of size n is an ordered sequence of positive integers that sums to n. The
length of a composition is the number of summands.

Example: 4 + 1 + 1 and 1 + 1 + 4 are distinct compositions of 6.

Let C be the combinatorial class of all compositions. By our definition, we see that

C = SEQ([positive integers]),

because the size of a sequence is by definition the sum of the sizes of its components.
Therefore, to describe the class of all compositions using the symbolic method, we need to
first describe the class of positive integers (where the size of an integer is its value).

Think of an integer as a sequence of identical dots of that length:

1 = •
2 = • •
3 = • • •

. . .

Therefore, the class of positive integers can be described by

I≥1 = SEQ≥1(Z•).

From this we find

I≥1(z) =
z

1− z
= z + z2 + z3 + · · · .

Now, a composition is a (possibly empty) sequence of positive integers, so

C = SEQ(I≥1),

and thus

C(z) =
1

1− z
1− z

=
1− z
1− 2z

= 1 + z + 2z2 + 4z3 + · · · .

1

2 JAY PANTONE

This is easy enough that we can find a closed-form formula with what we already know.

[zn]
1− z
1− 2z

= [zn]

(
1

1− 2z
− z

1− 2z

)
= [zn]

1
1− 2z

− [zn]
z

1− 2z

= 2n − [zn−1]
1

1− 2z
= 2n − 2n−1

= 2n−1.

This is typically proved directly in an undergraduate class using stars-and-bars or balls-and-
walls.

The symbolic method allows for many variations without an increase in difficulty. We
specialize C using a superscript in (·) to denote a restriction on the number of parts and in
{·} to denote a restriction on the size of the parts

Example: Find the generating function for compositions of n into at least 3 parts. Well,

C(≥3) = SEQ≥3(I≥1),

and thus

C(≥3)(z) =
I≥1(z)3

1− I≥1(z)
=

(
z

1− z

)3

1− z
1− z

=
z3

(1− z)2(1− 2z)
= z3 + 4z4 + 11z5 + · · · .

Coefficient extraction will eventually give us an = 2n−1 − n.

Example: Find the generating function for compositions of n into parts of size at most r.
The symbolic method gives

C{≤r} = SEQ(I[1..r])

and thus

C{≤r}(z) =
1

1− (z + z2 + · · ·+ zr)
=

1

1− z(1− zr)

1− z

=
1− z

1− 2z + zr+1 .

Coefficient extraction will give

c{≤r}
n = ∑

j,k
(−1)k

(
j
k

)(
n− rk− 1

j− 1

)
,

but this doesn’t give us any sense of asymptotic behavior (does it still grow like 2n? Or
slower? Is it exponential or polynomial?) Asymptotic analysis will tell us

c{≤r}
n ∼ Krµn

r ,

for Kr ≥ 0 and 1 ≤ µr < 2.

LECTURE 5 – COMPOSITIONS, WORDS, TREES, AND MORE 3

r = 1 2 3 4 5 10
µr ≈ 1 1.618 1.839 1.928 1.966 1.999

Example: Find the generating function for the class of compositions in which the parts
alternate even/odd (can start with either). See if you can figure out why

C{e/o} = E + I≥1 + SEQ≥1(Ieven×Iodd)× (E + Ieven)+ SEQ≥1(Iodd×Ieven)× (E + Iodd).

We therefore derive

C{e/o}(z) = 1 +
z

1− z
+

z2

1− z2
z

1− z2

1− z2

1− z2
z

1− z2

(
1 +

z2

1− z2

)
+

z
1− z2

z2

1− z2

1− z
1− z2

z2

1− z2

(
1 +

z
1− z2

)

=
1 + z− z2

1− 2z2 − z3 + z4

= 1 + z + z2 + 3z3 + 2z4 + 6z5 + · · · .

A closed form can be found by coefficient extraction but it’s probably messy. The asymp-
totic form is:

c{e/o}
n ∼ K · (1.490 . . .)n

After all of this, you might ask what we can do with partitions? At this point, we run
into the problem that compositions are ordered sums (i.e., sequences of integers) and par-
titions are unordered sums (i.e., multisets of integers), and we don’t (yet!) have a multiset
construction.

WORDS

An alphabet A is a finite set of symbols (called letters), such as A = {0, 1} or A = {a, b, c}.
A word over an alphabet A is an ordered sequence of letters from A. For example 100110
is a word of length 6 over the alphabet {0, 1}.

Let B be the class of binary words (those over {0, 1}). Then, we can express B as

B = SEQ(Za +Zb),

which allows us to recover the known generating function

B(z) =
1

1− (z + z)
=

1
1− 2z

.

Furthermore, for an alphabet A = {a1, a2, . . . , am}, the class of words over A is

W = SEQ(Za1 +Za2 + · · ·+Zam),

and has generating function

W(z) =
1

1−mz
,

yielding the already-known closed form

wn = mn.

4 JAY PANTONE

As with compositions, we can use the symbolic method to describe classes of words with
several types of restrictions. In each case, we have to be careful that we’re only counting
each word once. For example, the construction

SEQ(1100 + 11 + 0)

generates the string 1100 two different ways, which causes a problem with the enumera-
tion.

Every binary word can be uniquely decomposed as an initial sequences of 0’s, followed by
a sequence of blocks of the form 10 · · · 0. Thus,

B = SEQ(0) SEQ(1 SEQ(0)),

(we use this shorter notation from now on) and so we recover

B(z) =
1

1− z
· 1

1− z
1− z

=
1

1− 2z
.

This decomposition can be modified to count all binary words that avoid the pattern 11:

W{no 11} = SEQ(0) SEQ(1 SEQ≥1(0))(ε + 1),

therefore

W{no 11}(z) =
1

1− z
· 1

1− z2

1− z

· (1 + z) =
1 + z

1− z− z2 ,

giving the Fibonacci numbers. Actually, we can find an easier description:

W{no 11} = (ε + 1) SEQ(0 (ε + 1)),

which gives the same W(z). This extends naturally to class of words avoiding k consecu-
tive 1s:

W{<k 1’s} = SEQ<k(1) SEQ(0 SEQ<k(1)),
giving

W{<k 1’s}(z) =
1− zk

1− z
· 1

1− z(1− zk)

1− z

=
1− zk

1− 2z + zk+1 .

SET PARTITIONS

Give a finite set S, a set partition of S is a splitting of the set S into subsets called blocks of
the partition. Every element of S must be in exactly one block, and neither the order of
the blocks nor the order of the elements within each block matters. For example, one set
partition of the set S = {♣,♦,♥,♠} is

{{♣,♥}, {♦}, {♠}},

LECTURE 5 – COMPOSITIONS, WORDS, TREES, AND MORE 5

and this is the same set partition as

{{♠}, {♥,♣}, {♦}}.

Set partitions are often studied in introductory combinatorics courses, in which the Stir-
ling numbers of the second kind are defined to be the number of set partitions of n distinct

elements into r non-empty blocks, and are denoted
{

n
r

}
.

We will now fix r and find a generating function for the sequence s(r)n =

{
n
r

}
.

The first issue we address is that each set partition should be described in a unique way.
To accomplish this, put an arbitrary total order on the set S. Define the canonical repre-
sentation of a particular set partition to be that in which each block is listed in increasing
order, and the blocks are then listed in increasing order by the minimum element.

For example, the canonical representation of the set partition {{3, 7}, {1, 5, 2}, {4, 8, 6}} is

{{1, 2, 5}, {3, 7}, {4, 6, 8}}.
Now, each set partition of n into r parts can be bijectively associated to a word of length n
over the letters {`1, `2, . . . , `r} such that

(1) each letter is used at least once,

(2) for all i, the first occurrence of `i is before the first occurrence of `i+1.

If the ith letter of a word w is `j, this corresponds to putting the ith element in the set
(now ordered by a total order) into the jth block. Rule (1) above ensures that every block
is nonempty, and rule (2) requires that the blocks are indeed sorted in increasing order by
their minimum entry.

The example {{1, 2, 5}, {3, 7}, {4, 6, 8}} is generated by the word 11231323.

The specification for the words over an r-letter alphabet with the 2 restrictions above is

S (r) = `1 SEQ(`1) `2 SEQ(`1 + `2) `3 SEQ(`1 + `2 + `3) · · · `r SEQ(`1 + · · ·+ `r),

from which we find the generating function

S(r)(z) =
zr

(1− z)(1− 2z)(1− 3z) · · · (1− rz)
.

A simple coefficient extraction gives the closed form

s(r)n =
1
r!

r

∑
j=1

(−1)r−j
(

r
j

)
jn.

DYCK PATHS

So far, all of our constructions have been iterative in nature; that is, the class on the left-
hand side of the construction did not appear on the right-hand side as well. In fact, there
is no reason we can’t the class being defined as a building block itself on the right-hand

6 JAY PANTONE

side, so long as we are careful that our specification is well-defined. This type of definition
is called recursive.

Remember that the positive integers I≥1 were defined by the iterative specification

I≥1 = SEQ(Z•).
However, recognizing that every positive integer is either equal to 1 or is exactly one bigger
than another positive integer, we could have used the recursive specification

I≥1 = Z• +Z• × I≥1.

On the level of generating functions, this translate to the functional equation

I≥1(z) = z + zI≥1(z),

which gives the solution

I≥1(z) =
z

1− z
.

This is a well-defined recursive specification because the I≥1 on the right-hand side is in
a cartesian product with something else, namely Z•. Thus, we’re defining the elements
of I≥1 of size n in terms of the elements of size n− 1. In this sense, the definition is not
really circular. Specifications that are not well-defined will typically lead to non-sensical
generating functions, such as

C = E + C × C
leading to the functional equation

C(z) = 1 + C(z)2

which has no formal power series solution.

Exercise: Explain why C = Z + C × C is a well-defined recursive construction.

Definition: A Dyck path of length n is a walk in the plane from (0, 0) to (2n, 0) that takes
only steps of size (1, 1) and (1,−1) and does not pass below the x-axis.

Example: Below is a Dyck path of length 20.

Exercise: Before we proceed further, consider the following issue. It is clear that every
non-empty Dyck path can be described as a non-empty sequence of Dyck paths. So why
does the construction

D = E + SEQ≥1(D)
fail?

There are two natural ways to decompose Dyck paths: first return, and arch decomposition.

LECTURE 5 – COMPOSITIONS, WORDS, TREES, AND MORE 7

(1) The first return decomposition splits every non-empty Dyck path around the first
point where it returns to the x-axis. To the left of that point is a non-empty Dyck
path that does not return to the origin and to the right lies a (possibly empty) arbi-
trary Dyck path.

Z↗ Z↘

D
D

As this uniquely describes every Dyck path, we find the recursive construction

D = E + (Z↗ ×D ×Z↘)×D.

Therefore
D(z) = 1 + z2(D(z))2.

This implicitly defines D(z) with minimal polynomial

0 = 1− D(z) + z2(D(z))2.

We can solve explicitly using the quadratic formula

D(z) =
1±
√

1− 4z2

2z2 .

As the expression taken with the + is not a formal power series1, we determine that

D(z) =
1−
√

1− 4z2

2z2 = 1 + z2 + 2z4 + 5z6 + · · · .

Note that d2n+1 = 0 for all n and d2n is the nth Catalan number.

(2) The arch decomposition splits every non-empty Dyck path into a non-empty se-
quence of non-empty Dyck paths that do not return to the x-axis until their final
step. (This restriction corrects the ambiguity in the exercise above.)

Z↗ Z↘ Z↗ Z↘
Z↗Z↘

D
D

D

1In fact it is a Laurent series given by z−1 − 1− z− 2z2 − · · · . For now, one just needs to recognize that
substituting z = 0 into the expression with the + sign yields 2/0, ruling out the required property that
lim
z→0

D(z) = 1.

8 JAY PANTONE

From this decomposition we find the alternative construction

D = SEQ(Z↗ ×D ×Z↘),

which of course yields the same generating function D(z).

Dyck paths are generalizable in a number of ways that will be considered in the homework
assignment (e.g., different step sets, less restrictive ending location, etc).

TREES

A tree is a connected graph without cycles. A rooted tree is one in which a particular vertex
is chosen to be the root. The children of a node are those nodes that are adjacent to the node
and further from the root than the node. A leaf is a node without children.2

A tree is called planar if the order of its children matters. For example, the two trees shown
below are considered distinct as planar trees but equal as non-planar trees.

•

••

••

•

•

••

•

The size of a tree is considered to be either the total number of nodes, the number of
internal nodes (non-leaves), or the number of external nodes (leaves).

First we set up a specification for the class G of all non-empty planar trees, where the size
of a tree is the total number of nodes. Each non-empty tree can be decomposed as the root
vertex and a possibly-empty ordered sequence of planar trees making up the children of
the root. Therefore,

G = Z × SEQ(G),
which leads to

G(z) =
z

1− G(z)
,

and so again we find the generating function of the Catalan numbers

G(z) =
1−
√

1− 4z
2

= z + z2 + 2z3 + · · · .

Consider next the class B of planar trees such that each node has either 0 or 2 children.
These are called binary trees. First, let the size of a tree be the number of internal nodes.
Then,

B = E +Z ×B × B.

2Like all serious combinatorialists, we draw our trees with the root on top and the leaves on bottom.

LECTURE 5 – COMPOSITIONS, WORDS, TREES, AND MORE 9

Due to its recursive nature, the E in this construction does not just represent the case of a
tree with a single node (which has size 0 by our definition), but also that any leaves will
have size 0.

From the construction, we see that

B(z) = 1 + zB(z)2,

and thus

B(z) =
1−
√

1− 4z
2z

= 1 + z + 2z2 + 5z3 + · · · .

What if instead we want the size of a tree to be the total number of nodes? Then,

B = Z +Z ×B × B,

and we find

B(z) =
1−
√

1− 4z2

2z
= z + z3 + 2z5 + 5z7 + · · · .

What if the size is the number of leaves? Then,

B = Z + E × B × B,

and so

B(z) =
1−
√

1− 4z
2

= z + z2 + 2z3 + 5z4 + · · · .

Let Ω be a subset of the positive integers that includes 0 and suppose we want to construct
the class of all planar trees such that the number of children of any node is a number in Ω.
If the size of a tree is the total number of nodes, then

T = Z × SEQΩ(T),

giving a functional equation

T(z) = z ∑
ω∈Ω

T(z)ω.

For most Ω, this functional equation cannot be solved explicitly. However, we will learn a
technique called Lagrange inversion that allows us to extract coefficients.

As with the other classes of combinatorial objects, we can use the principals described
above to build more complicated objects.

Example: Let T be the class of planar trees where the nodes are colored either red or blue,
the root is always red, all red nodes have an even number of children which must all be
blue, and all blue nodes have an odd number of children which must all be red. Let the
size of a tree be the total number of nodes. We derive the specification

10 JAY PANTONE

T = 1 +R,

B = Zblue × SEQodd(R),
R = Zred × SEQeven(B).

Converting to functional equations, we see

T(z) = 1 + R(z),

B(z) =
zR(z)

1− R(z)2 ,

R(z) =
z

1− B(z)2 .

To solve, we see that
R(z) =

z
1− B(z)2 =

z

1−
(

zR(z)
1− R(z)2

)2

and so
0 = R(z)5 − zR(z)4 − (z2 + 2)R(z)3 + 2zR(z)2 + R(z)− z.

Since T(z)− 1 = R(z), we have

0 = (T(z)− 1)5 − z(T(z)− 1)4 − (z2 + 2)(T(z)− 1)3 + 2z(T(z)− 1)2 + (T(z)− 1)− z.

Expanding,

0 = T(z)5 − (z + 5)T(z)4 − (z2 − 4z− 8)T(z)3 + (3z + 2)(z− 2)T(z)2 − 3z2T(z) + z2 .

Since this functional equation cannot be solved explicitly, let’s take a quick detour and see
how we can use Maple to calculate the series expansion of T(z).

Maple
> solve(R = z/(1-(z*R/(1-Rˆ2))ˆ2),R);

5 4 2 3 2
RootOf(_Z - z _Z + (-z - 2) _Z + 2 z _Z + _Z - z),

5 4 2 3 2
RootOf(_Z - z _Z + (-z - 2) _Z + 2 z _Z + _Z - z)

> R_expr := Rˆ5 - z*Rˆ4 - (zˆ2+2)*Rˆ3 + 2*z*Rˆ2 + R - z:

> T_expr := subs(R=T-1,R_expr);
5 4 2 3 2

T_expr := (T - 1) - z (T - 1) - (z + 2) (T - 1) + 2 z (T - 1) + T - 1 - z

> T_expr := expand(subs(R=T-1,R_expr));
5 4 3 2 4 3 2 2 3 2 2

T_expr := T - T z - T z - 5 T + 4 T z + 3 T z + 8 T - 4 T z - 3 T z

2 2
- 4 T + z

LECTURE 5 – COMPOSITIONS, WORDS, TREES, AND MORE 11

Maple (continued)
> T_expr := collect(T_expr, T, factor);
T_expr :=

5 4 2 3 2 2 2
T + (-z - 5) T + (-z + 4 z + 8) T + (3 z + 2) (z - 2) T - 3 z T + z

> root_of := RootOf(T_expr,T);
5 4 2 3

root_of := RootOf(_Z + (-z - 5) _Z + (-z + 4 z + 8) _Z

2 2 2 2
+ (3 z - 4 z - 4) _Z - 3 z _Z + z)

> series(root_of,z,10);
2 3 / 17 \ 4 /35 \ 5

%1 z + (-1/2 %1 - 1/8) z + 3/8 %1 z + |-1/4 %1 + ---| z + |--- %1 - 1/4| z
\ 128/ \128 /

/ 17 359 \ 6 /1071 \ 7 / 473 27077\ 8
+ |- -- %1 + ----| z + |---- %1 - 1/2| z + |- --- %1 + -----| z +
\ 32 1024/ \1024 / \ 256 32768/

/102531 \ 9 10
|------ %1 - 3/2| z + O(z)
\32768 /

2
%1 := RootOf(4 _Z - 1)

> simplify(convert(%,radical));
2 3 4 29 5 87 6 47 7 3195 8

1/2 z - 3/8 z + 3/16 z + 1/128 z - --- z + ---- z + ---- z - ----- z +
256 1024 2048 32768

4227 9 10
----- z + O(z)
65536

> root_of := RootOf(T_expr,T,index=2);
5 4 2 3

root_of := RootOf(_Z + (-z - 5) _Z + (-z + 4 z + 8) _Z

2 2 2 2
+ (3 z - 4 z - 4) _Z - 3 z _Z + z , index = 2)

> simplify(convert(series(root_of,z,10),radical));
2 3 33 4 99 5 631 6 2095 7 57349 8

- 1/2 z + 1/8 z - 3/16 z + --- z - --- z + ---- z - ---- z + ----- z
128 256 1024 2048 32768

200835 9 10
- ------ z + O(z)
65536

> root_of := RootOf(T_expr,T,index=3);
5 4 2 3

root_of := RootOf(_Z + (-z - 5) _Z + (-z + 4 z + 8) _Z

2 2 2 2
+ (3 z - 4 z - 4) _Z - 3 z _Z + z , index = 3)

12 JAY PANTONE

Maple (continued)
> simplify(convert(series(root_of,z,10),radical));

5 7 9 10
1 + z + z + 2 z + 6 z + O(z)

> coeff(simplify(convert(series(root_of,z,110),radical)),z,100);
0

> coeff(simplify(convert(series(root_of,z,110),radical)),z,103);
173434427207614586061351407294

Let us mention explicitly the Maple command RootOf used above. When you wish to
find the series expansion of an generating function f (z) defined implicitly by the minimal
polynomial P(z, f (z)), you should not use the solve command. Instead, use

RootOf(P(z,f),f,index=N),

where index ranges from 1 to deg f (P). One of these will be the right series, which you
can confirm checking the initial terms. Sometimes the series command will produce terms
with smaller RootOf expressions that themselves evaluate to real (or complex) numbers.
To force this evaluate, wrap the series in

convert([series], radical)

and then simplify.

One last note about Maple: as a way to save space, Maple will use placeholder markers
such as the %1 seen in the code above which it them defines at the bottom of the output for
the command.

The reader has likely noticed that every class of trees enumerated in this section was planar.
This is because the order of the children of a given node does not matter in a non-planar
tree, which means the sequence construction won’t work. In order to build a non-planar
tree, we must have a construction that builds sets of objects, rather than sequences. This is
one construction, among others, that we define in the next lecture.

	Compositions
	Words
	Set Partitions
	Dyck Paths
	Trees

