



































































Scientificcomputings April 28 2025
Announcements

Homework 6 due Friday May 2 11 59pm

Final exam is take have an

assigned FriMay2T
due Fri May 9

Effetors
Mont Fri

oss Functions
930am 1030am

Backpropagation
Cudahy 307






































































How do we measure how goodorbad a NN
is in terms of matching known data

Linear Regression Mean Squared Error actual predicted
pts

0.7 0.3
0.1

0.4 no
0.1

0.724

97 0.4 8

0.39 10.1

Ño 0.2 0.037 0.8

0.7 0.2 it 05 0.3
0.601

0.24 ax 05 0.2

0.1 0.598

0.7
058

0.8

32 knobs in this very small example






































































1056
The score of a NN relative to particular
training data

Change weights or biases loss goes up bad
or down good






































































10556
Two types of problems we'll use NNs for

1 Regression predict output values based on
input values

Predict home price based on zip code sqft
bedrooms bathrooms crime rate schoolquality

etc
Predict of bike rentals based on day weather
holiday etc

2 Classification classify input into categories
MNIST digits

Predict whether a patient has diabetes prediabetes
or neither based on health and lifestyle data






































































We use different lossfunctions for each type of
problem Scoring function for

a NN smaller is bette

Regression

Actually first some notation
The loss function is defined not for one input output
pair at a time but for a whole batch of
input output pairs Remember batching from

our last lecture

batch of loss for
that batchof

outputs one






































































I Eton at taten

Remembereachinptisawholeve.to one
permpuFI

and same for each output

Nn

i te 3 n I I yj yet
For a batch of size n we call the infectorst X2 Xn
the expected output y.is Yu and the actual output
yi.ge Jn
Training www.Fizallvectars






































































The goal of a loss function is to measure how far
apart the actual output j is from the desired output
y and tra make the loss get smattert






































































Regression

Loss function 1 Mean Squared Error MSE

For a NN whose output layer has 1 neuron

and for a batch of n input output pairs

loss EEE
squared diff between actualJeanofand expected output

that over the whole
batch

For a NN whose output layer has k neurons and
for a batch of n input output pains

Yij is the jth
loss yis yij component of the

vector Yi






































































Example

3 output neurons batch of 5 inputoutput pairs






































































Regression

Loss function 2 Mean Absolute Error MAE

For a NN whose output layer has 1 neuron

and for a batch of n input output pairs

loss lyi Jil

For a NN whose output layer has k neurons and
for a batch of n input output pains

Yij is the jth
loss the yis gil component of the

vector Yi






































































Regression

Example

y y F
off by 4

MSE 5 1 1 1 8

MAE 15 11 11 11 2

very
y I y 33

04 071 2

MSE 13 1
2

3 1
2 ye

smaller

MAE 13 11 13 11 2 E same






































































Classification

Recall that if we are sorting inputs into k classes

e.g 10 digits for MNIST

then there are k output neurons

We pass them collectively through the softmax
activation function to turn them into a

probability distribution

Each output in 50,17
Outputs sum to 1






































































Previously

Unlike our other activation functions Softmax
works on the whole vector at once not one
value at a time individually

etys

1 Fat etys where

I s E ex
Eils

Obvious these add up to 1 because the denominator
is their sum

Obviously 0 because et 70






































































Previously

Ex
0.037

0 0.8

1 0.7 0.041

2 0.3 0.111

3 0.1 0.091
4 18.4 chance

5 8 0.136 the digitis
6 a 4

fexiz 12.06
0.101

7 10.3 0.061

0.082
0.6 0.150






































































Classification

Goal of a loss function measure the distance between
the actual classification and
the predicted probability distr

Ex Actual O O O O 1 0 0 0 0 0

Predicted 0.01 0.03 0.1 0.07 0.33 0.11 0.01 0.21 0.03 0.1

Anotherpredicted 0 0 01 0.03 0.92 0.02 0.01 0 0.01 0

Second one is much closer to the actual answer so

the loss should be lower






































































Classification

D Éd 01 03
8.18.07 01.33

0 1 01 215 07

Anotherpredicted 0 0 01 0.03 0.92 0.02 0.01 0 0.01 0

Lots of ways to devise a loss

functiftocapturethisclosenessThe most popular is Categorical Cross Entropy
For 1 sample with k outputs 6 10 for digits

loss yiloglyi ool

y log F yilogly.lt ye log yi

log ya in this sample






































































Classification

Ex Actual O O O O 1 0 0 0 0 0

Predicted 50.01 0.03 0.1 0.0700330 11 0.01 0.21 0.03 0.1

Anotherpredicted 0 0 01 0.030092 0.02 0.01 0 0.01 0

k

loss EY logly

O for the wrong classes
I for the correct class

So this simplifies to loss log jc
where y is the confidence

level of the correct class






































































Classification

Ex Actual O O O O 1 0 0 0 00

Predicted 50.01 0.03 0.1 0.07 0.33 0.11 0.01 0.21 0.03 0.1

Anotherpredicted 0 0 01 0.03 0.92 0.02 0.01 0 0.01 0

loss loglige

loss log 0.33 0.48

smaller

Kloss

log 0.92 0.03






































































Classification

For the loss of a whole batch of inputs outputs just
average the loss of each input output pair individually

same thing we did for regression

Why this formula
Connections to statistics distance between discrete

probability distributions
Works well in practice






































































So whether we're doing regression or classification we

have a loss function that measures

for a batch of inputs how far is the actual
from what the training data says it should be

Lower is better

Goal pick weights and biases that make the loss as
low as possible on your training data and hope
that the resulting NN performs well on whatever
new data you have for it

How do we find good weights and biases






































































Bad idea Pick random for them over and over

again until some combination is good

Interesting Idea Do Hill Climbing or Simulated Annealing
Change same all of the weights and
biases by a little see if the loss of
the new NN is better or worse

This is not ever done in practice and I've

never seen it discussed much Why

My guesses too slow
So many parameters that it's hard
to go downhill

the method people do use is good
and fast

Next topic Backpropagation






































































I 9

Topical Backpropagation

Big picture
Start with a NN with random weights and
biases

Feed all of the known inputs training data through
in one batch and get all their outputs

Compute the loss between the expected outputs y
and the actual outputs J

Use CALCULUS to figure out how to tweak
the weights biases a little to make the loss go
down a little

Repeat until your NN is good enough








































































CALCULUS
Let's recall the idea of Gradiedescet
Suppose you have a function f x y z

The vector gf

f

tells you the

direction of steepestascent from

any point x y

The negative version Fx is the direction of steepest

of of
decent






































































CALCULUS
The negative version Fx is the direction of steepest

decent

This means if you're only going to walk 1 step in the
mountains then are step in thatdirection will get
you as low as possible among all possible one steps

EI f x g cos x sinly
4131

1.15.25
cos x sinly 2

Fy cos c sinly






































































CALCULUS

EI f xiy Xcos x sinly 1 5,25

sinly cos x sin x

Fy Xcos x 2 sincy cos y

f 1.5 2 5 sm 2.5 cost 1 5 1.5s.nl 5

1 1.5 cos 1.57.2 sin 2.5 cos 2.5

0.5105

0.1017




















































CALCULUS

EI f x y cos x sinly
2 1.5 2.5

Vf 1.5 2.5 0.5105

0 1017

This doesn't mean you move

0.51 on the x axis an 0.10

on the y axis That would be a huge step

Instead you move a small step maybe too of that

E f and repeat
Vf is the same Just new

points



Gradient Descent Demo



We have been thinking about Neural Networks as

big functions

inated outfit
For now instead of thinking of the input data as the
variables we'll think of all the training data as a fixed
constant and the weightsandbiases as the variables

a single

inputdated INNI output loft
weights

5ᵈc



a single

inputdated INNI output loaf
weights dlIO

Ows

How can we find the inputs that minimize the output

Gradient Descent

Suppose the neural network has weights w we Wm
and biases bi.ba ba Let l be the mean loss
over the whole batched input

What is NN www.wm.bi.ba bn



l NN Wi We Wm bi be bn

How will we compute

d
ow CALCULUS

specifically

VNN the CHAIN RULE

ie

T1



the CHAIN RULE

f t

If 3 5 means if you change go from

3 to 3 a little more

E

then f x goes from

f 3 to f 3 5 a little more



the CHAIN RULE s 5
Suppose h x g f

Y

a

compositing

Larule h x g f x f x

how much g changes

when f changes a
how much h changes little
when changes a

little how much f changes
when changes a

little



the CHAIN RULE

Neural Networks are just really big multivariate
compositions of simple functions

addition multiplication activation functions loss functions

a single

inputdated INNI output loft
O

We can apply the chain rule a lot to see how
changing any weight or bias individually affects the loss



the CHAIN RULE a single

inputdat

stNNIsoutputtlossfweights.id

We can apply the chain rule a lot to see how
changing any weight or bias individually affects the loss

That means we'll know the gradient
oNN f

and we can do gradient descent



Estexample No AF no hidden layers 3 input I output
only are point of training data

Training data
1 1 2 1.5

WE 0.2 y loss

6 0.5

3

1 4 1 11.5 1 6
2
0.01

1 We 0.2 1.6 loss

050
50.5

2

How do we adjust w We.ws b to
make I go down for this training data



Training data
1 1,2 1.5

1 4
50

lossY w̅É02 1.6

i I wantidf.ff.fr2

1 5 1.5 5 1 w 1 wzt2 ws tb

so
dfw 1 814 1 Its 2.15 1sa.es ii

af

ff 1T 0.2.1 02
Tannate

Of 0.2
3

0.4 11 0.2



Training data
1 1 2 1.5

1
o g l

1 we 0.2 1.6 loss 0.01

3v50
5 0.5

2
Now adjust each weight
a small amount in this
direction Let's do too

roffi W 0.1 0.098

We 0.2 0.198

W3 0.4 0.396
b 0.5 0.498



Training data
1 1 2 1.5

1
0098 y l

1 we 0.198 1.586 loss
0.007396 prov 0.01

3050
6 0.498

2

Now repeat Compute VNN with these
altered weights adjust by too of it

and so on

Python demo


