Introduction to Neural Networks Two separate questions: (1) What is a neural network? What does it do? (2) How do we produce a good one for our task? This lecture addresses (1). Future lectures address (2).

Ę	ouvces	· · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·
•	Book: "	Neural Net	works From Scratch	n Rython"
*	lots of	onlive re	sources and Youtube	videos
· · ·	that	I'll shave	as we go.	· · · · · · · · · · · · · · ·
· · ·	· · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·
· · ·				
· · · ·	· · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · ·	
· · · ·	· · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·
• • •	· · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·
	· · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·

Goals: * Understand the foundations of neural networks. * See examples of training NNs to accomplish a task (> "training" = "find a good NN" * Write our own Python ade to create and train NNs (not using Machine Learning libraries) Maybe: * Learn about Pythen ML libraries (pytouch, tensouflow) * Learn about specialized kinds of NNs for certain tasks.

Strong Analogy: Linear Regression What is it? Smplest version: you have a bunch of (xy) points and you want to find the line the best approximates them Usually, the (x,y) points represent inputs (+) and outputs (y) of some unknown function. x: time since Jan 1 this year y: temperature on my outdoor thermometer

Strong Analogy: Linear Regression x: time since Jan 1 this year y: temperature on my outdoor thermometer We only have sparadiz readings. Linear Regression asks "what line is closest to these points?" "Closest" means minimizing the sum of ([actual y value] - [preducted y value])² over all known points.

Strong Analogy: Linear Regression We are trying to imminize the sum of the squares of the lengths of the yellow lives

Strong	Aralogy:	Linear	Regression	· · · · ·	· · · · · ·	· · · · · · ·	•
							•
· · · · · · · · ·					• • • • •		٠
				• • • •	• • • • •		•
						• • • • • •	
							•
			· · · · · · ·	••••			•
				• • • •	• • • • •	• • • • • •	•
							•
							•
	🗭			• • • •			•
							•
							•
				• • • •			•
	🧔						
	. 🤞			• • • •			•
							•
		Je are	trying to	m	mize		•
			JN Y		10.000		•
		the su	m of the	. , , , , , , , , , , , , , , , , , , ,	40.62		•
					ана <mark>и</mark> ана н		٠
		of the	lengths of	the	yellow	lives	•
			•••••••••••••••••••••••••••••••••••••••				•

Strong Analogy: Linear Regression We are trying to imminize the sum of the squares of the lengths of the yellow lines

Problem: What values of m and b make the line y=mx+b with the smallest error? Demo: mlu-explain.github.io/ Imear-regression

Purpose:	Estmate	the	output	at	new	in puts.	· · · · · ·	· · · ·
. 	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	· · · · ·	· · · · · ·	· · · ·	· · · · · · ·			· · · ·
. <td< td=""><td></td><td></td><td>· · · · · · ·</td><td></td><td></td><td></td><td>· · · ·</td></td<>			· · · · · · ·				· · · ·
· · · · · · · · ·								· · · ·
. .					· · · · · ·			· · · ·
		· · · · ·	Devic	• • • • • • • • • • • • • • • •	u-exp	linear-	io/ regressi	icn.

This can be done with any # of mput variables, and then you're finding planes and hyperplanes meteod of lines. Some idea though. How do you find the m, b that make the best line? Formulas, Linear Algebra

The problem is a lot of data isn't linear. y2 ۶ <mark>۲</mark>

X2

X₁

The four datasets composing Anscombe's quartet. All four sets have identical statistical parameters, but the graphs show them to be considerably different

https://commons.m.wikimedia.org/wiki/File:Anscombe%27s_quartet_3.svg

Neuval Network: Approximate data with <u>any function</u> Pros: Can approximate data much better Cons: Requires a lot of computation to produce	Linear	Regression: App	roxmate c	lata with a	line
Pros: Can approximate data much better Cons: Requives a lot of computation to produce	Neuval	Network: Appr	oxmate de	ata with any	function
Cons: Requives a lot of computation to produce	· · · · · · · ·	Pros: Can ap	proximate	data much bet	Her
produce	· · · · · · · · ·	Cons: Requires	a lot o	f computation	<i>t</i> b
		produce	2		
		· · · · · · · · · · · · ·			
			• • • • • • •		
· · · · · · · · · · · · · · · · · · ·					
			• • • • • • •		

Big Picture:
* A neural network is just a fancy function.
* It takes numbers as inputs and produces numbers as outputs, just like any function from Calculus
Finding a good neural network that approximates your data is hard.
Also: Lots of interesting things can be framed as a (numerical inputs) > (numerical outputs)
function

Example function: Juput: a 28 × 28 grayscale image Output: what digit it is big weird function How is this "numeric input"?

Example function: (Input: a 28 + 28 grayscale image Output: what digit it is * Each image is 28×28 = 784 pixels Each pixel has a grayscale value from O to 255 (white) (block) (In practice, we divide 0, 3, 18, 18, 18, 126, 136, 175, 26, 166, 255, 247, 127, 30, 36, 94, 154, 170, 253, 253, 253, 253, 253, 225, 172, 253, 242, 195, by 255 to make a decimal between O and 18, 219, 253, 253, 253, 253, 253, 198, 182, 247, 241, 0, 0. 0, 80, 156, 107, 253, 253, 205, 11, 0, 43, 154, 0, 0, 14, 1, 154, 253, 90, 0, 0, 0, 0, 0, 0, 0, 0, 139, 253, 190, 2, 0, 0, 0, 0, 0, 0. 0, 11, 190, 253, 70, 0, 0, 0. 0. 0, 35, 241, 225, 160, 108, 1, 0, 0, 81, 240, 253, 253, 119, 25, 0, 0, 0, 45, 186, 253, 253, 150, 27, 0, 0, 0, 0, 16, 93, 252, 253, 187, 0, 0. 0, 0, 0, 0, 0, 249, 253, 249, 64. 0, 0, 46, 130, 183, 253, 253, 207, 2, 0. 0, 0. 0, 0, 39, 148, 229, 253, 253, 253, 250, 182, 0, 0, 24, 114, 221, 253, 253, 253, 253, 201, 78, 0. 0, 23, 66, 213, 253, 253, 253, 253, 198, 81, 2, 0, 0. 0. 0, 18, 171, 219, 253, 253, 253, 253, 195, 80, 9, 0, 0, 0, 0, 0. 55, 172, 226, 253, 253, 253, 253, 244, 133, 11, 0, 0, 0, 0, 0, 0. 0. 0, 136, 253, 253, 253, 212, 135, 132, 16, 0,

= #5 -7 big weird function + slight lie, our output will be a little different So this is a 784-dimensional function. And not really well-defined because many mput pictures are not obviously a particular number

That's fine! We'll produce a neural network that tokes 784 mput #s (1 por pixel) and predicts the #. We'll use "training data" known (imput, output) pairs, to build the NN. 20-5 20-0 20-4 20-1 (just like using data to find a linear regression line) $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 25 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 25 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ MNIST data set

 A neural network is just a fancy function. It takes numbers as imputs and produces numbers as outputs, just like any function from Calculus.
* It takes numbers as inputs and produces numbers as outputs, just like any function from Calculus.
Finding a good neural network that approximates your data is hard.
We do this using lots of known (input, output) pairs.
Then we can use that good NN to predict new digits for us.

* Web applet demo * Imagine if your job was to write an algorithm to look of the pixels manually a say what # it is! That would be so difficult.

What is a neural network? A fancy function defined in the following way.

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2weird stuff

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2١į each circle is a neuron

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2output layer input ayer A NN can have any # of layers, and they can be hidden layers any size.

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2real # (decimals) Every edge between neurons has a real # attached to it called its weight

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2I'm using #s to 1 decimal place for simplicity, but typically the are fill floating point #s.

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2Every neuron (except the next layer) has a # attached to it called its bias.

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2The #s u and v get "fed forword" the neurous in the next layer.

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2To calculate the value for a neuron, we multiply the value of each connected neuron from the last layer by the weight of the connection, add these all up, and add the bios

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2 $W_{1} = (0.4)(0.1) + (-0.7)(-0.7) + 0.1$ = 0.7

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2 $W_2 = (04)(-03) + (-0.7)(0.1) + -0.2$ -0.39

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2 $W_3 = (0.4)(0.7) + (-0.7)(0.7) + (0.1)$ = 0.24

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2 $W_{y} = (0.4)(-0.5) + (-0.7)(-0.6) + -0.8$ = -0.58

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2Then, the neurons from the first hidden layer feed forward to the next hidden layer.

<u>Example</u> : A	NN that takes	2 inputs and flur	has 1 output J = 2
			. .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.3	
	0-71 0-1 -058		· · · · · · · · · · · · · · · · · · ·
W = (0.7)(0.3)	-08 + (-0.39)(0.8)+ (0 -724	- <mark>24)(-0.</mark> 2)+(-0.58))(0.3)+0.4

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2

Example: A NN that takes 2 inputs and has 1 output f(u,v) = 2

A NN that takes 2 inputs and has 1 output f(u,v) = 2Example: So, for this particular neural network, with these weights and biases, the inputs (0.4, -0.7) produce output -0.601 f(0.4, -0.7) = -0.601

Example: A NN that takes 2 inputs and has 1 output $f(u,v) = z$
(04) weived function -07) -060)
So, for this particular neural network, with these weights and biases, the inputs (0.4, -0.7) produce output -0.601

* NNs can have any # of layers * The layers can have any # of neurons in them * If every neuron m a layer is connected to every neuron in the next layer, then the network is "fully connected" * But we're missing a really key component so for.

 $W_1 \mathcal{U} + W_2 \mathcal{V} + b_1 \in$ W12 M+W22V+ 62 6 W134+W22V+b3)14 U+ W24 V+ by Wiz $= \chi_{11}(1 + \chi_{21}(1 + \chi_{31}(1) + \chi_{41}(1) + C_{1})$ $= (x_{11}w_{11} + x_{21}w_{12} + x_{31}w_{13} + x_{41}w_{14}) \cdot u$ $+(\chi_{11}w_{21}+\chi_{21}w_{22}+\chi_{31}w_{23}+\chi_{41}w_{24}) \cdot \vee$ $+ (b_1 + b_2 + b_3 + b_4)$ 🗤 🗴 🗤 🐝 🗤 1 + w11*x12*y21 + w11*x13*y31 + w12*x21*y11 + w12*x22*y21 + w12*x23*y31 + w13*x31*y11 + w13*x32*y21 + w13*x33*y31 + w14*x41*y11 + w14*x42*y21 + w14*x43*y31) * u + (w21*x11*y11 + w21*x12*y21 + w21*x13*y31 + w22*x21*y11 + w22*x22*y21 + w22*x23*y31 + w23*x31*y11 + w23*x32*y21 + w23*x33*y31 + w24*x41*y11 + w24*x42*y21 + w24*x43*y31) * v + b1*x11*y11 + b1*x12*y21 + b1*x13*y31 + b2*x21*y11 + b2*x22*y21 + b2*x23*y31 + b3*x31*y11 + b3*x32*y21 + b3*x33*y31 + b4*x41*y11 + b4*x42*y21 + b4*x43*y31 + c1*y11 + c2*y21 + c3*y31 + d1 As we've built them NNs are still just (big) linear functions, so this is no better than linear regression.

The problem is even more obvious when there's only one input and one output. -0-3 $\Rightarrow y = 0.026 \times -0.25$ Just a live defined in a complicated way!

-0.8 0-C-U-I -U-I 0-7 1.0 -0.3 $= 0.026 \times -0.25$ (0.026)(0.3) - 0.25 =Understanding check: Let's feed ferward x=0.3 A = (0.2)(0.3) + 1.0 = 1.06B = (-0.6)(0.3) - 10 = -1.13(=(0.7)(0.3)-0.5=-0.24 (\mathbf{X}) -0.6 B . **I. O** E D = 0.244E = -1.001F = 0.079y= -0-2422