An	Nounc	emen	ts.	• •	• •	• •	• •	• •	• •	, . , .	• •	• •	 		· · · ·	
	Home	work	5	du	Q	Fri	A	pr i	18,]/	:59	on	· ·	• •	• • •	· · · · · ·
· · · ·	No	class	, F		Apr	18,		Yan		pr	21		Eas	ter	Bn	ale)
			• •	• •	• •	••••	• •	•••	• •) e	• •	• •	••••	• •		
• • •			• •	• •	• •	• •	•••	• •	• •	• •	• •	• •	• •	• •	• • •	
			• •				•••		• •	• •	• •	•••		• •	• • •	
									•	•						
• • •			• •	• •	• •	• •	• •	• •	• •	• •	• •	•••	•••	• •	• • •	
	· · ·	· · ·	· ·	· ·	• •	• •	• •	• •	• •	•	· ·	• •	· ·	0	fice	Hours:
sday			• •	• •		• •	•••		• •	• •	• •	••••	• •	•	M	ent Fri
	Sim	ubted	A	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ing	• •	· ·	• •	• •	• •	• •	• •	• •	•	9:30	Dam-10:3
. .	JNt	ro to	Ner	val	Net	wor	ks	• •	• •	• •	• •	• •	• •		Cur	lahu 30

* Spring Demo - continuous - staying within constraints by re-tweaking - playing with parameters - discrete * Knapsach Demo

* Kvapsach Demo (1) Bad tweak function (2) Constraint penalty solutions, but we'll penalte Score -> score · (1 - M · Capacity) where in can be turned statically 1% over or dynamically capacity

The constraint penalty idea lets us use simulated annealing as problems with palu	•
constraints, like Sudoku.	•
Score = [# of now conflicts] + [# of line on [1:1]	•
+ [# of square conflicts]	•
Goal: Minimize score, hope to get to O	•
Tweaks?	•
	•
	•

Parallel Tempering An interesting related idea: Instead of mining one system that cools over time, run multiple systems each at constant, but different, temperatures that are allowed to swap solutions. Intuition: Person A is very good at exploring Person B is very good at exploiting They both run for a while, until Person A says "Hey, I think I'm on a good hill, let's swap So you can exploit it."

· · · · · · · · · · · · · ·	tion in the second s	>Tz	· · · · · · · · ·	· · · ·	· · ·
explorer	A	-> B 	exploiter		
· · · · · · · · · · · · · ·	Solution S,	solution sz	· · · · · · · · ·	· · · · ·	· · ·
Should they	swap solutions	?	· · · · · · · · ·	· · · · ·	· · ·
Let Ei:	= score (si).	· · · · · · · · · ·	· · · · · · · · ·		• • •
At any p	p = min(1)	swap with e^{Δ})	. probability		
where	$\Lambda = \left(E_1 - E_1 \right)$			· · · · ·	· · ·
	70 when the 15 winning	explorer alwa	ys >0		· · · ·

 $\Lambda = \left(E_1 - E_2 \right) \left(\frac{1}{\tau_2} - \frac{1}{\tau_1} \right)$ >0 when the explorer always >0 15 winning When the explorer is winning, we should definitely swap, so the exploiter can improve it. In this case, $\Delta > 0$ so $p = min(1, e^{\Delta}) = 1$. Otherwise $E_1 - E_2 \subset C$ and $P = e^{1/\tau_2 - 1/\tau_1} \leq 1$. The better the explorer is doing, the more likely they are to swap.

More generally: k different explorers $\begin{array}{c} T_{1} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} T_{2} \\ \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} T_{3} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} T_{k} \\ \end{array} \begin{array}{c} \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} T_{k} \\ \end{array} \begin{array}{c} \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} T_{k} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} T_{k} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} T_{k} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \begin{array}{c} T_{k} \\ \end{array} \xrightarrow{} \\ \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \xrightarrow{} \\$ $\Delta_{i} = (E_{i} - E_{i+1}) \left(\frac{1}{T_{i+1}} - \frac{1}{T_{i}} \right)$ Swap Si and sith with prob pi=min(1, e di)

Kecap Wont to use Hill Climburg or Simulated Annealing to solve a problem? You need: * to understand the search space (or even road to have a south space)
* a scoring function that rates things space)
in the search space as better or worse. * a "tweak" function that turns any solution into a very similar ("close") solution - and each solution, should have many different tweaks possible
* a stopping condition For SA: * an initial temp and a cooling schedule (how to cool and when to cool)

Crazy Example: Seff-Driving Car Problem: We want to teach a 2D car to drive around a track.

What data does the car have? Let's say it has 7 sensors that tell it the distance to the wall along that sensor direction. To drive, the car decides two things each step * acceleration (how much to change its speed) * turning wheel (how much to change its steering angle) [manual demo]

Conversion to an optimization problem: Find the function f that makes the car drive the best. Gensor 1 Sensor L -> next accel next steer current accel For now, we have to pick a specific form for f.

 $f(s_1, s_2, ..., s_2, \alpha_c, s_c) = (\alpha_n, s_n)$ One possibility: assume f is a linear function. $\alpha_{n} = (?)_{s_{1}} + (?)_{s_{2}} + (?)_{s_{3}} + \dots + (?)_{s_{4}} + (?)_{a_{c}} + (?)_{s_{c}} + (?$ $S_{n} = (?)S_{1} + (?)S_{2} + (?)S_{3} + \cdots + (?)S_{7} + (?)a_{e} + (?)S_{e} + (?)S_{1} + (?)S_{1} + (?)S_{2} + (?)S_{2}$ 20 unknown coefficients that we get to choose. 20-dimensional vectors of deamaks, R²⁰ Search space: > next arce 1 s i f next accel currant accel current steer

Search space: 20-dimensional vectors of decimals, R²⁰ tueak: change all (or some?) of the coefficients by a little bit (how much?) Still need a saving function! What do you want the car to do? * Distance travelled without croshing? * Incorporate average velocity?

Hill Climbing Start with 20 random coefficients for f. Put the car on a track and run it. Each step, f decides how the car moves. If the av saves better, that's your new "best". Tweak it and try again. If the tweak is worse, throw it or . sensor 2 F Run for a long time! > next arcel y y z z current accel / next steer

Limitations: * Slow sooring function! * Maybe assuming self-driving is linear is very constraining - more complicated functions have more freedom to treat sensor input differently * One car at a time doesn't give you a lot of diversity. Should try 100-trials steepest ascent or other metaheuristics like genetic algorithms [demo]

Introduction to Neural Networks Two separate questions: (1) What is a neural network? What does it do? (2) How do we produce a good one for our task? This lecture addresses (1). Future lectures address (2).

· ·			Ö	ú	<u>~</u>	Ŀ	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •		A	5	B	0	sk		11.	N	eu		2	•	Ņ)@	ł	Ŵ	0V	k	5	F		M		•	Sc	N	7	Ŀ	4	•	•)	1	•	1) Y	H	, NO	Ń	n L	•	•	•	•
• •		k	•	le	fc	5		A	•	Ø	∧]	۱Ņ	Ľ	•	J	e	SC	Ņ	re	eg	5	C	in	d	•	Yc	Ų,	tu	b	2	•		` 0	le	09	7	•	•	•	•	•	•	•	•
· ·		•	•	•	┦	h		ŀ		Ľ	[] [:]	•	sl	1a	V (ė	•	Q	5	•	i	e		Je	· •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
· ·		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Goals: * Understand the foundations of neural networks. * See examples of training NNs to accomplish a task (> "training" = "find a good NN" * Write our own Python ade to create and train NNs (not using Machine Learning libraries) Maybe: * Learn about Pythen ML libraries (pytouch, tensorflow) * Learn about specialized kinds of NNs for certain tasks.

Strong Analogy: Linear Regression What is it? Smplest version: you have a bunch of (xy) points and you want to find the line the best approximates them Usually, the (x,y) points represent inputs (+) and outputs (y) of some unknown function. x: time since Jan 1 this year y: temperature on my outdoor thermometer

Strong Analogy: Linear Regression x: time since Jan 1 this year y: temperature on my outdoor thermometer We only have sparadiz readings. Linear Regression asks "what line is closest to these points?" "Closest" means minimizing the sum of ([actual y value] - [preducted y value])² over all known points.

Strong Analogy: Linear Regression We are trying to imminize the sum of the squares of the lengths of the yellow lives

Strong	Aralogy:	Linear	Regression	· · · · ·	· · · · · ·	· · · · · ·	• •
							• •
· · · · · · · · · · · · · · · · · · ·				• • • •			• •
		· · · · · ·		• • • •			• •
							• •
				••••			• •
				• • • •			• •
							• •
							• •
	💻	🎃.	· · · · · · · ·	• • • •			• •
· · · · · · · ·							• •
				· · · · ·			
							• •
	🧶			• • • •		• • • • •	• •
	. 🖕						• •
		· · · · · · ·					• •
	N	Ue are	trying to		mite		
		History	JA HAD	s ca	INSOC .		• •
		The su			44.62		• •
		ι ή ή το					• •
		ot the	lengths ot	TR	yenow	lives	• •
					N N		
							• •

Strong Analogy: Linear Regression We are trying to imminize the sum of the squares of the lengths of the yellow lines

Problem: What values of m and b make the line y=mx+b with the smallest error? Demo: mlu-explain.github.io/ Imear-regression

Purpose:	Estmate	the	output	at	new	in puts.	· · · · · ·	• •
.	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	· · · · ·	· · · · · ·	· · · ·	· · · · · · ·			· · ·
. 				· · · · · · · · · · · ·			· · · · · ·	· · ·
· · · · · · · · ·							· · · · · ·	· · ·
. .					· · · · · ·		· · ·
		· · · · ·	Demo); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	u-exp	lin.github. Imear-r	io/ regressic	