Scientific Computing March 28, 2025 Announcements > Homework 4 assigned, see D2L Due Wednesday, April 2, 11:59pm Office Hours: Today Mont Fri -> Hill Climbing 9:30am - 10:30am -> Simulated Annealing Cudahy 307

•	•	•	•				•	•				<u></u>			•			d		•		r k				•			H	h	Or	λ-		•	•	•	•	•	•	•	•	•	•
•	•	•	•	•		•	V	15	5 4	19)]]	2	Q	ナ	V				()	D 0	le	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Topic 12 - Smulated Annealing * Annealing Metal [youtube video]

* Simulated Annealing is a MH inspired by the physical process. Hill climbing: only noves that improve score are allowed. SA: Worsening moves are accepted with some probability

At the start, the system has a high temperature and the prob. of accepting a worse move is high. Over time, the system cools down (lover temp.) and the probability of accepting a worse move decreases. Very high temp: basically a random walk, accepting all tweaks Very low temp: basically hill climbing

Intuition: As the system cools down, you hope to wander and a good hill and stay there. [Denno: Cns. Func. #1]

Technical Details: * Assuming maximizing! * Acceptance Condition: Suppose the current temperature is T. Let s = tweak(x) and $\Delta = score(s) - score(x)$ If $\Delta > 0$, then s is an improvement over x, always accept If $\Delta \leq O$, then s is worse than x. Accept with probability $p = e^{\Delta/T}$. $[T>0, 50 \quad \Delta | T \leq 0, 50 \quad O \leq e^{\Delta T} \leq 1]$ High T => D/T close to O => e D/T close to 1

Why this formula $p = e^{\Delta/7?}$ Comes from the Bottzmann distribution in physics. (probability a system is in a certain state given its energy) * If minimizing, add a negative sign: p=e-D/T $(If minimizing, P = e^{-\Delta/T})$