Homework Preview

MSSC 6000 — Scientific Computing — Spring 2025

To assist with preparation for Midterm Exam

1. The website FiveThirtyEight focuses on data-driven journalism in politics and sports, but they also have
a weekly Riddler puzzle column. Each week, there is a “Riddler Express” and a “Riddler Classic”. Oc-
casionally, the Riddler Express has been a type of puzzle they call CrossProduct; see the Riddler Express
here: https://fivethirtyeight.com/features/can-you-win-riddler-jenga/.

2. For this problem, you will implement a backtracking algorithm for the Two Knapsacks Problem, as de-
scribed in the previous question. Your function should be called backtracking_two_knapsacks and it
should accept the same arguments and return the same information as in question 1.

Use your brute force solution from Homework 3 to test your backtracking algorithm and make sure it’s
correct. You may also choose to use my brute force solution if yours was not correct.

(a) For part (a), submit your backtracking code.

(b) Did testing your results against your brute force solution help you catch any bugs?

(c) With capacities set at 150 and using the random_item generation function from Homework 3, what
is the most number of items you can run with where you usually finish within a minute?

(d) Collect some data on how long your runs take for various numbers of items, and form a prediction
for how long it would take to run with 100 items. (This is less clear cut than problem 1c from Home-
work 3, so I am mostly evaluating your ability to gather evidence and make a reasoned estimate.)

3. In Homework 2, we considered the Job Scheduling Problem. First, I will restate it.

As a graduate student, you have a very busy day ahead of you. You have n tasks that you could do. Each
one has: an amount of time it takes to do (duration, in minutes), a deadline (given in number of minutes
from the start of the day, which we’ll call 0), and an amount of profit you get for completing it (in dollars,
or gold stars, or slices of pizza, or whatever we pay graduate students with these days). You can’t do
jobs that would finish after the deadline. Your goal is to maximize profit.

To make sure you understand the problem, here is an example:

Job # \ 1 2 3 4 5
Duration |2 5 1 1 2
Deadline |5 8 2 3 2

Profit |3 2 1 3 5

Job #1, for example, takes 2 minutes to complete, and its deadline is 5 minutes after the start of the day.
So you can start it right away (at minute 0), or at minute 1, 2, or 3, but you can’t start it at minute 4,
because then you would miss the deadline.

One (non-optimal) solution for this example would be to do jobs 3, 4, and 2, in that order. In this solution,
job 3 runs from time 0 to time 1, job 4 runs from time 1 to time 2, and job 2 runs from time 2 to time 7.
The total profit is 1 + 3 +2 = 6. The optimal solution in this case is to do jobs 5, 4, and 1, in that order.
(At least, I think so, I only did it in my head.)

https://fivethirtyeight.com/features/can-you-win-riddler-jenga/

On this assignment, you will design a branch-and-bound algorithm to solve it. I have provided code,
attached as separate file on D2L, that does all parts of it, including the recursion, except the upper
bound.

e First, read through the code carefully so you understand it. I have used an object-oriented approach,
so there are Job objects and Schedule objects.

* [have provided a function to compute the brute force solution, so you can compare your answers
(for small numbers of jobs, at least) to make sure they are correct. Try running this function a few
times for practice.

¢ [have provided a list called “all_jobs” with 50 jobs that will be used for testing the speed of your
algorithm.

* You will try to think of a useful upper bound, and then you will implement it in the appropriate
spot of the code.

Submit a written document with answers to (a), (b), and (d) and submit your code to (c).

(a) Based on the code I provided, describe the branching procedure.

(b) Come up with an upper bound for a partially-determined schedule, and explain it clearly. Providing
an example may help me to understand your bound.

(c) Implement your upper bound into the code I provided, and submit it along with your written doc-
ument. See below for information about how I will evaluate your bound.

(d) There is one thing we discussed in class that helps branch-and-bound algorithms get a head start
that I am not doing in my code. What is it?

Information about evaluation. Better upper bounds will receive better scores on this assignment. Part
(b) will be worth four points total. In the table below, I show you speeds for brute force, backtracking
alone (no upper bound), three different upper bounds I came up with, and a technique called dynamic
programming that we may cover later!. Runtimes can vary tremendously for different sets of jobs, even
of the same size. In this case n means I ran with the first n jobs of the “all_jobs” list defined in the code I
provided (except for n = 2000 which was randomly chosen). Entries that are blank mean the run took so
long I gave up.

n brute force backtracking UB1 UB2 UB3 dyn. prog.

10 10.9 0 0 0 0 0
20 0.5 02 0.08 01 0.0009
25 10.7 5.3 1.7 13 0.001
27 76 32 9 6 0.001
30 260 17 6 0.0015
35 42 22 0.002
40 72 23 0.0024
45 87 26 0.003
50 101 29 0.0032
2000 5

¢ If your upper bound is equivalent to backtracking (i.e., never prunes anything), you will receive one
point for (b).

¢ If your upper bound is roughly as good as my UB1 (can do the first 27 jobs of “all_jobs” in about a
minute on my computer), you will received three points for (b).

e If your upper bound is roughly as good as my UB2 (can do the first 50 jobs in under 3 minutes), you
will receive a for full points for (b).

* If your upper bound is as good as my UB3 (can do 50 jobs in under a minute), then you will receive
bonus points for (b).

If any of this is confusing, don’t hesitate to email me and ask about it!

1t does not apply to many problems, but when it does it can be very fast, like here.

