
 

MSSC 6000
Feb 282022 Day 16

Topic 6 Divide and Conquer continued

Ex3_ Counting Inversions

Consider a list of distinct

Ammo
5 6 1 3 2 2 1 0 20

An inversion is a pair hi lil where
icj but Li Lj an out of underpaid

20 inversions
Goal compute the of inversions in a

list of n elements
Obvious Algorithm Check every pain Ou
Divide Conquer Ola logCal



Duidet Conquer

Thief retrsivef.int
4 inversions 5 inversions

so we count 9 inversions within a half
but we're missing the Il between halves

One solution check all pairs A B where
A is in the first half and B in second

half 12.2 4 0 u2 So this

would defeat the purpose of Dtc

Here's the trick While we're counting
inversions we'll also sort the list with
merge sort which takes Oln logins time

fief toot
recursively count

4 inversions 5 inversions

C 7 2 3 19 I 10 0 I 6



Now we recombine the lists just like with
mergesort and when do we detect an
inversion

Any time we take from the red list
there is an inversion for everything
left in the blue lost

i

Y

Il

4 5 11 20 inversions

Tome Tca 2 TLE 2n
Ten Ocn login

Ext Closest Pair of Points
Brute Force O na

70s Dtc Olu logan



2 more famous Dtc algos

IntegerMultiplication
Input Two n digit s x and y
Output x y

Brute Force 772
42 Oln
344 0

Divide t Conquer Ten E 3T E n

Thn OGlogics

0 n
1.59

Matrix Multiplication n dimension

E JEFEat
9 now Col pairs n operations per pair



O n3 Determinants

1969 Strassen's algo 06 9247 042.807

1978 n
2.796

1979 n2 780 No one knows how

1981 n
2 522

fast matrix multiplication
1986 n

2.479
can get

1990 42.3755
2010 n

373
Lower bound Ola

2013 42.3729
2014 423728639

2020 U2
3228596

TopicH2Backtraching
Like Dtc Backtracking is an algorithmic
paradigm to find an optimal solution
in a search space without checking
every candidate one by one

Very simple idea Build solutions one part
at a time and give up when a partially
built solution violates the constraints



With brute force

EIp.IE Pgack 27 128

1 8 13

if

t2 7
10 113,45 3

y s to a
5 2 I way too heavy
6 2

I 13 is too heavy
so checking 13,415,7
was silly

Build up possible solutions by deciding in steps
Item 1 is in or out
Item 2 is in or out



weights values
Bathing

s yo 1 Y Y
rink otossibilities

outtout 10114rinzonti.IE Igi

Katt Il'sl

outfitting
outs

in lout in I

Kintalout
etc EE

Way better than brute force

What are we doing
Putting a hierarchy on decisions that
builds the whole search space
with the critical property that if
a partially built solution is bad
then every way of completing it



must also be bad

Knapsack with 7 items
Search space all subsets of 1,23,45,6 73

Hierarchyighing
Item I in or out0

I 1 12 Item 2

a

Traverse this tree and whenever you
reach a candidate that is bad prune
the branch stop exploring downward

go back upward and explore a different
branch


