Lecture #34/42 Friday, April 16 Neighborhoods in Continuous Space Picking points randomly in a d-sphere Bod: picking x first, then y Bod: pick Θ , then Γ Muller method (good) To pick points randomly (uniformly) in a d-dimensional sphere: • picking (u, uz, ..., ud) each from a Gaussian (normal) distribution with mean O and std. dev. 1. • set norm = $\int u_1^{2} + u_2^{2} + \dots + u_d^{2}$ $\frac{1}{d}$ • set $r = (random \# in [0,1])^{1/d}$ (random.random()) · your random point is: x= <u>.</u> Norm

The d-sphere and d-cube are very different

d	volume of d-sphere	vol. of d-cube
(2	2
2	3.14	4
3	4.19	8
Ч	4. <i>q</i> 3	16
5	5.26	32
6	5.168	64
10	2.55	1,024
20	0.03	1,048,576
		•
Very different neighborhoods.		
J U		
Other ways to move around space:		
1) Gaussian Random Walk (Brownian		
Motion		
For each component, add a shift		
drawn from a normal distr.		
$N(0, \delta)$		

Median shift in Ś 28 35 -35 -25 - 5 each component 95% is < d99.7% 5=1 Thin tails 2) Lévy flight a different distribution with Uses much thicker tails => larger probabilities of really big jumps. Pareto distribution (power law)

Pr(X=x)3.0 pick from this larger X $-\alpha = \infty$ 2.5 $-\alpha=3$ distribution, subtract 1 = thinner 2.0 $-\alpha=2$ tails 1.5 mylliply by II $-\alpha=1$ 1.0 randomly 0.5 5 × 4 2 3 To pick a random # from this distr. $S = \gamma''^{\alpha}$, and r is uniformly from (0,1]. drawn

Topic 17 - Fivefly Search and Luckoo Search Two MHs inspired by biological Drocesses. processes. <u>Tvick</u>: separate the clever ones from gimmicks Firefly Search Fireflies use their lights to attract each other, and the level of a Hraction depends on the intensity of the light and the distance between them. F.S. is a population MH. Kind of like PSO but with different movement rules. Each firefly represents a solution. The better the solution. the brighter the firefly.

A frefly's movement in each step is toward each other brighter firefly plus a random component (Gaussian or Lévy movement). PSO - we never compare gualities