Матн 2100 / 2105 / 2350 – Номеwork 5

due Wednesday, April 10, at the beginning of class

This homework assignment was written in ET_{FX} . You can find the source code on the course website.

Instructions: This assignment is due at the *beginning* of class. **Staple your work** together (do not just fold over the corner). Please write the questions in the correct order. If I cannot read your handwriting, you won't receive credit. Explain all reasoning.

- 1. Prove that any real number r that makes the equation $r \frac{1}{r} = 5$ true must be irrational.
- 2. Prove that if $a + b + c + d \ge 26$, then either $a \ge 3$, $b \ge 7$, $c \ge 7$, or $d \ge 9$.
- 3. Use the pigeonhole principle to prove that given any five integers, there will be two that have a sum or difference divisible by 7.
- 4. Prove that at a completely full Milwaukee Bucks game at the new Fiserv Forum, there *must* be at least two people that have both the same birthday *and* the same first initial. (Note: you will have to look up the capacity of the new arena!)
- 5. Show that if you pick 17 points from a square with side length 4, then there must be 2 of those points that are within $\sqrt{2}$ of each other.
- 6. Prove or disprove: For any two sets *A* and *B*, $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$.
- 7. Prove or disprove: For any two sets *A* and *B*, $A \setminus B = A \cap \overline{B}$.
- 8. Prove the following set inequality:

$$(\{n^2 - 1 : n \in \mathbb{Z}\} \cap \{2k : k \in \mathbb{N}\}) \subseteq \{4m : m \in \mathbb{Z}\}.$$

9. Prove the following set inequality:

 $(\{6k+1: k \in \mathbb{Z}\} \cup \{6m-1: m \in \mathbb{Z}\}) \subseteq \{2n+1: n \in \mathbb{Z}\}.$

10. Use induction to prove that for all $n \ge 1$, if *A* is a set of size *n*, then the number of subsets of *A* is 2^n . (In other words, $|\mathcal{P}(A)| = 2^{|A|}$.)