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Introduction

Example: Consider the idea of flipping a coin, i.e., consider {Xi}∞i=1 ∈ {0, 1}. Define

Sn :=

n∑
i=1

Xi.

“Everyone knows” that

lim
n→∞

Sn
n

= 0.5.

This is exhibited by the simulation:

This is an intuition we have about the Laws of Large Numbers, which we need to make rigorous.

Similarly, the intuition we have about the Central Limit Theorem is that

1√
n

(
Sn
n
− µ

)
dist−−−−→ N(0, σ),

which says that the distribution approaches a normal curve.

1
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Note: In this course, we’ll consider some other types of convergence, such as the Martingale Convergence
Theorem and Ergodicity.

Example: (random walks modulo N) Let Xi ∈ {−1, 1}. Define

Sn :=

n∑
i=1

Xi

and set

Zn := Sn (mod N).

This is exhibited by the simulation:

We’re now interested in the quantity
Zn
N

. These paths do not converge to a certain point, and so this does not

have the same kind of Law of Large Numbers as the previous example. In fact,
Zn
N

is “uniformly distributed”

in the intuitive sense. “Ergodicity” is the idea that a time-average is the same as a population-average
(looking at a walk far into the future is equivalent to looking at a lot of walks at an instant in time).
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Example: (Polya urn scheme) Start with an orange ball and a blue ball in an urn. Pull one out at random.
Whichever color you pick, take an outside ball of the same color and put them both in. Now there are three
balls, two of one color and one of the other. Repeat this process. We look at the proportion of balls which
are a certain color. As you can see, this simulations has a very different appearance:

It turns out that this can converge to any point in [0, 1] (and does converge “almost surely”). These are also
called “reinforced random walks”, and it is an example of the Martingale Convergence Theorem.
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Chapter 1 - Sets and Events

Section 1.5 - Set Operations and Closure (The Rigorous Represen-
tation of Information)

Example: Let X ∈ Ω := {1, 2, 3, 4, 5, 6} be the outcome of the roll of a fair die. There are two observers.
Observer A sees if the roll is even. Observer B sees if the roll has value ≤ 2. Let A and B denote the sets
of all possible inferences based on the observations of A and B. In other words, A is the set of subsets of Ω
for which we can know based on Observer A whether the roll is in the subset.

For starters, {1, 2, 3, 4, 5, 6} ∈ A and ∅ ∈ A , trivially. Also, we see that {2, 4, 6} ∈ A and {1, 3, 5} ∈ A . By
contrast, {1} 6∈ A , because you can never tell whether the outcome is 1 just by asking Observer A. So

A = {∅, {1, 3, 5}, {2, 4, 6},Ω}.

Similarly,

B = {∅, {1, 2}, {3, 4, 5, 6},Ω}.

We observe two general properties of such an “inference set”. Let Ω denote a set of possible outcomes and
let E be a set of inferences. Then,

(1) ∅,Ω ∈ E

(2) If E ∈ E , then EC ∈ E .

Now suppose that we have reports from A and B. For example, if A says TRUE and B says FALSE then we
can infer X ∈ {4, 6}. This shows us the properties:

(3) If E1 ∈ E and E2 ∈ E , then E1 ∩ E2 ∈ E .

(3’) If E1 ∈ E and E2 ∈ E , then E1 ∪ E2 ∈ E .

Property (3’) comes from applying DeMorgan’s Law to Property (3).

Definition 1.5.2: A field is a non-empty class of subsets of Ω which satisfies (1), (2), and (3’) above.

Definition 1.5.3: If a non-empty class of subsets of Ω satisfies (1), (2), and:

(3σ) : If Ei ∈ E for i ≥ 1, then

∞⋃
i=1

Ei ∈ E

4
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then we say it is a σ-field.

Examples of σ-fields:

(-) The power set: E = P(Ω).

(-) The trivial σ-field: E = {∅,Ω}.

(-) The countable / co-countable σ-field: Let Ω := R and define

E := {E ⊆ R : E is countable or EC is countable}.

Example of a field which is not a σ-field: Let Ω = (0, 1] and let A contain the empty set and all finite
unions of disjoint intervals of the form (a, b]. To prove this, we first need to verify that A is a field:

(i) By definition, ∅ ∈ A and Ω = (0, 1] ∈ A .

(ii) Complementation within Ω:
(a, b]C = (0, a] ∪ (b, 1]

This also needs to be verifies for sets of finite unions, but we skip that here.

(iii) We will check that A is closed under finite intersections. Suppose 0 < a1 < a2 ≤ 1 and a1 < b1 < b2 ≤ 1.
Well, if a2 ≤ b1, then the intersection is empty, so this case is trivial. If a1 ≤ b1 ≤ a2 ≤ b2, then the
intersection is (b1, a2], which is in A . If a1 ≤ b1 ≤ b2 ≤ a2, then the intersection is (b1, b2], which is
also in A . Hence A is closed under pairwise intersections, and therefore under finite intersections.

Lastly we show that A is not a σ-field. Define

Sn :=

n∑
i=1

(
1

2

)i
and consider the set

A := (0, S1] ∪ (S2, S3] ∪ (S4, S5] ∪ · · · .

Then, A is a countable union of sets in A , but is not a member of A .

Section 1.6 - The σ-field Generated by a Given Class C

Example: In the leading example, we had Ω = {1, 2, 3, 4, 5, 6} with two observers A and B that know the
truth of X ∈ A := {2, 4, 6} and X ∈ B := {1, 2}, respectively. Then we get the σ-field:

E = {∅,Ω, A,AC , B,BC , A ∩B,A ∩BC , AC ∩B,AC ∩BC , (A ∩B)C , (A ∩BC)C , (AC ∩B)C , (AC ∩BC)C}
= {∅,Ω, {2, 4, 6}, {1, 3, 5}, {1, 2}, {3, 4, 5, 6}, {2}, {4, 6}, {1}, {3, 5}, {1, 2, 4, 6}, {2, 3, 4, 5, 6}, {1, 2, 3, 5}, {1, 3, 4, 5, 6}}

We call E the σ-field generated by A and B. Notationally,

E = σ(A,B).

Remark: If Ω is finite, then σ(C) can always be constructed by enumeration of intersections and
complements. However, this method is not possible when Ω is infinite. (In fact, it turns out the σ-fields are
either finite or uncountable, and we certainly can’t enumerate an uncountable set!)

Corollary 1.6.1: The intersection of σ-fields is a σ-field.

Proof: Just check conditions.
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Definition 1.6.1: Let C be a collection of subsets of Ω. The σ-field generated by C, denoted σ(C) is a σ-field
satisfying:

(a) C ⊂ σ(C)

(b) If E ′ is some σ-field containing C, then σ(C) ⊂ E ′.

Remark: σ(C) is sometimes called the minimal σ-field containing C.

Proposition 1.6.1: Given a class C of subsets of Ω, there is a unique minimal σ-field which contains C.

Proof: Let
ℵ := {E | E is a σ-field and C ⊂ E}.

Since P(Ω) is a σ-field containing C, ℵ is nonempty. Now define

ℵ# :=
⋂
E∈ℵ

E .

We claim that ℵ# = σ(C).

By Corollary 1.6.1, ℵ# is a σ-field itself. Furthermore, C ⊂ ℵ#. To see minimality and uniqueness,
suppose E ′ is a σ-field containing C. Since E ′ ∈ ℵ, it follows that ℵ# ⊆ E ′. �

Section 1.7 - Borel Sets on the Real Line

Definition: Suppose Ω := R and let C := {(a, b] | −∞ ≤ a ≤ b ≤ ∞}. The Borel subsets of R are defined
to be

B(R) := σ(C).

It is worth noting that:

B(R) = σ({(a, b) | −∞ ≤ a ≤ b ≤ ∞})
= σ({[a, b) | −∞ ≤ a ≤ b ≤ ∞})
= σ({[a, b] | −∞ ≤ a ≤ b ≤ ∞})
= σ({(−∞, x] | x ∈ R})
= σ(open subsets)

= σ(closed subsets).

In general, if we consider a metric space S, then the Borel subsets of S are the collection

B(S) = σ(open subsets of S).

Important examples: S = Rd, R∞, C((0, 1]).
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Chapter 2 - Probability Spaces

Section 2.1 - Basic Definitions and Properties

Definition: A probability space is a triple (Ω,B,P) where:

- Ω is the sample space,

- B is a σ-field of subsets of Ω,

- P is a probabiliy measure,

where a probability measure is a function P : B → [0, 1] such that

(i) P(A) ≥ 0 for all A ∈ B,

(ii) P is σ-additive, meaning if {An}n∈N are disjoint events in B, then

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An),

(iii) P(Ω) = 1.

Properties: We should verify the following properties:

(1) P(AC) = 1− P(A)

Proof: 1 = P(Ω) = P(A ∪AC) = P(A) + P(AC)

(2) P(∅) = 0

Proof: P(∅) = P(ΩC) = 1− P(Ω) = 1− 1 = 0

(3) P(A ∪B) = P(A) + P(B)− P(AB)

Proof: P(A) = P(AB) + P(ABC) and P(B) = P(AB) + P (ACB). So,

P(A ∪B) = P(AB ∪ (ABC) ∪ (ACB)) = P(AB) + P(ABC) + P(ACB) = P(A) + P(B)− P(AB).

(4) Inclusion-Exclusion:

P

 n⋃
j=1

Aj

 =
∑
i

P(Ai)−
∑
i,j

P(AiAj) +
∑
i,j,k

P(AiAjAk)− · · ·+ (−1)n+1P(A1A2 · · ·An).

7



8 CHAPTER 2. CHAPTER 2 - PROBABILITY SPACES

(5) Monotonicity: For events A,B ∈ B, if A ⊂ B, then P(A) ≤ P(B).

Proof: Observe P(B) = P(BA) + P(BAC) = P(A) + P(BAC), since BA = A. Since all
probabilities are non-negative, P(B) ≥ P(A).

(6) Subadditivity:

P

( ∞⋃
n=1

An

)
≤
∞∑
n=1

P(An)

Proof: Follows from monotonicity.

(7) Continuity: If {An}n∈N is a monotone increasing sequence of events in B, i.e.,

A1 ⊆ A2 ⊆ A3 ⊆ · · ·

and there exists A such that An 1 A, then

lim
n→∞

P(An) = P(A).

Proof: Define B1 := A1, B2 := A2 r A1, . . . , Bk := Ak r Ak−1, etc. These are disjoint events
whose union is A. So,

P(A) = P

( ∞⋃
n=1

Bn

)

=

∞∑
n=1

P(Bn)

= lim
N→∞

N∑
n=1

P(Bn)

= lim
N→∞

P

(
N⋃
n=1

Bn

)
= lim
N→∞

P (AN )

(8) Fatou’s Lemma:

P
(

lim inf
n→∞

An

)
≤ lim inf

n→∞
P(An) ≤ lim sup

n→∞
P(An) ≤ P

(
lim sup
n→∞

An

)
Each inequality can be strict. For example, pick Ω := (−1, 1) and pick Xk to be drawn “uniformly”
between −1 and 1. Define A2k be the event that X2k ∈ (0, 1) and let A2k+1 be the event that
X2k+1 ∈ (−1, 0). It follows that

lim inf
n→∞

An =

∞⋃
n=1

∞⋂
k=n

Ak = ∅.

So,

P
(

lim inf
n→∞

An

)
= P(∅) = 0.

On the other hand, P(An) =
1

2
for all n. So,

0 = P
(

lim inf
n→∞

An

)
< lim inf

n→∞
P(An) =

1

2

and the inequality is strict.

Now we prove Fatou’s Lemma:
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Proof:

P
(

lim inf
n→∞

An

)
= P

( ∞⋃
n=1

∞⋂
k=n

Ak

)
= P

(
lim
n→∞

∞⋂
k=n

Ak

)
.

Observe that

Bn :=

∞⋂
k=n

Ak

is a monotone increasing sequene of sets (since we are intersecting over fewer sets). So, by
continuity (7), we have

P

(
lim
n→∞

∞⋂
k=n

Ak

)
= lim
n→∞

P

( ∞⋂
k=n

Ak

)
≤ lim inf

n→∞
P(An)

where in the last step we use the fact that

∞⋂
k=n

Ak ⊂ An. �

(9) If An → A, then lim
n→∞

P(An) = P(A). (This is like (7) without the requirement of monotonicity.)

Proof: If An → A then by the definition of “limit”

lim sup
n→∞

An = lim inf
n→∞

An = A.

By Fatou’s Lemma,

P(A) = P
(

lim inf
n→∞

An

)
≤ lim inf

n→∞
P(An)

≤ lim sup
n→∞

P(An)

≤ P
(

lim sup
n→∞

An

)
= P(A).

Hence there is equality throughout, and so

lim
n→∞

P(An) = P(A). �

Example 2.1.2: (The Graduates and their Caps) A bunch of students are graduating and they all throw
their caps in the air. An instantaneous tornado mixes them all up and each student catches a cap. What is
the probability that every student ends up with a cap which is not their own?

Label the students (and their caps) from 1 through n. When each student picks up a cap, they look at the
label. This induces a permutation on the set [n]. So,

Ω = {(x1, x2, . . . , xn) | xi ∈ {1, . . . , n} and xi 6= xj , if i 6= j} = {permutations of [n]}.

The σ-field generated by Ω is B := P(Ω). For any (x1, x2, . . . , xn) ∈ Ω, set

P((x1, x2, . . . , xn)) :=
1

n!

and corresponding for a set B ∈ B in the σ-field, we set

P(B) :=
1

n!
· (the number of elements of B).
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We have now defined our probability space (Ω,B,P).

Define Ai ⊂ Ω to be all events where xi = i. The event that at least one student picks up their own cap is

A :=

n⋃
i=1

Ai.

We use inclusion-exclusion to see that

P(A) =

n∑
i=1

Ai −
∑

1≤i<j≤n

AiAj +
∑

1≤i<j<k≤n

AiAjAk − · · ·+ (−1)n+1P(A1A2 · · ·An).

It is clear that for all i,

P(Ai) =
(n− 1)!

n!
=

1

n
.

So,

P(A) =

(
n

1

)
(n− 1)!

n!
−
(
n

2

)
(n− 2)!

n!
+

(
n

3

)
(n− 3)!

n!
− · · ·+ (−1)n+1

(
n

n

)
1

n!

= 1− 1

2!
+

1

3!
− · · ·+ (−1)n

n!

Recall that

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

and so
P(A) ≈ 1− e−1 ≈ 0.632 . . .

for n large. So, the probability that no one catches their cap is approximately

1− (1− e−1) = e−1.

Definition: Let Ω := R. Suppose P is a probability measure on B(R). Define F (x) by

F (x) = P((−∞, x])

for all x ∈ R. This is a distribution function.

Lemma: Let F be as above. Then,

(i) F is right-continuous.

(ii) F is monotone increasing.

(iii) F has limits at ±∞:
F (∞) := lim

x→∞
F (x) = 1,

F (−∞) := 0.

Proof of (i): Let x ∈ R and suppose that {xn} ⊂ R such that xn % x. Then,

F (x) = P((−∞, x])

= P

( ∞⋂
n=1

(−∞, xn]

)
= lim
n→∞

P((−∞, xn])

= lim
n→∞

F (xn). �
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Section 2.2 - More on Closure

We want to develop the mathematical tools to prove things such as the following corollary.

Corollary 2.2.2: Let Ω := R. Let P1 and P2 be two probability measures on (R,B(R)) such their cumulative
distribution functions (cdfs) are equal, i.e.,

∀x ∈ R : F1(x) := P1((−∞, x]) = P2((−∞, x]) =: F2(x).

Then, P1 ≡ P2 on B(R).

Remark: To borrow language from Chapter 1, the probability measures P1 and P2 are “closures” of the
information contained in their respective cdfs. We need to generalize the notion of closure for certain
mathematical “structures” (defined to be a collection of subsets of Ω satisfying some closure axioms).
Examples of some structures: σ-fields, σ-rings, monotone class, π-systems, λ-systems.

Definition 2.2.1: The minimal structure S generated by a class C is a nonempty structure satisfying:

(i) C ⊆ S,

(ii) If S ′ is another structure containing C, then S ⊆ S ′.

Proposition 2.2.1: The minimal structure S(C) generated by a class C in Ω exists and is unique.

Proof: Define ℵ := {G | G is a structure and C ⊂ G}. Then, define

S(C) :=
⋂
G∈ℵ

G,

This requires our “minimal structure” to be closed under infinite intersections. �

Definition: A π-system is a class P which is closed under finite intersections.

Definition: A λ-system is a class L of subsets of Ω satisfying:

(λ1) Ω ∈ L ,

(λ2) If A ∈ L then AC ∈ L ,

(λ3) If {An}∞n=1 is a sequence of mutually disjoint sets in L , then

∞⋃
n=1

An ∈ L .

Remark: Every σ-field is a λ-system, but not vice versa.

Theorem 2.2.2: (Dynkin’s π-λ Theorem)

(a) If P is a π-system and L is a λ-system containing P, then σ(P) ⊆ L .

(b) If P is a π-system, then σ(P) = L (P ).

We will prove Dynkin’s Theorem later. For now, we will prove a proposition and some corollaries.
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Proposition 2.2.3: Let P1 and P2 be two probability measures on (Ω,B). The class

L := {A ∈ B | P1(A) = P2(A)}

is a λ-system.

Proof: We verify each of the properties:

(λ1) P1(Ω) = P2(Ω) = 1, and so Ω ∈ L .

(λ2) Suppose A ∈ L . Then,

P(AC) = 1− P1(A) = 1− P2(A) = P2(AC).

(λ3) Suppose {Aj} is a mutually disjoint sequence in L . Then,

P1

(⋃
Aj

)
=
∑
j

P1(Aj) =
∑
j

P2(Aj) = P2

(⋃
Aj

)
.

Hence L is a λ-system. �

Corollary 2.2.1: If P1 and P2 are probability measures on (Ω,B) and if P ⊆ B is a π-system such that for
all A ∈ P we have P1(A) = P2(A), then

∀B ∈ σ(P) : P1(B) = P2(B).

Proof: From Proposition 2.2.3, L := {A ∈ B | P1(A) = P2(A)} is a λ-system. Furthermore,
P ⊂ L . By Dynkin’s Theorem, σ(P ) ⊂ L , which proves the statement. �

Corollary 2.2.2: If F1(x) = F2(x) for all x ∈ R, then P1 = P2 on B(R). F1(x) and F2(x) are defined as in
the lemma preceding this section.

Proof: Define P := {(−∞, x] | x ∈ R}. Then P is a π-system since

(−∞, x] ∪ (−∞, y] = (−∞,min(x, y)] ∈ P.

Recall also that σ(P) = B(R). So, using Corollary 2.2.1, B(R) ⊆ L ⊆ B(R) (where L is defined as
in the previous corollary), and so L = B(R), i.e.,

P1(A) = P2(A)

for all A ∈ B(R). �

Proposition 2.2.4: A class L that is both a π-system and a λ-system is a σ-field.

Proof: By (λ1), Ω ∈ L . Suppose that A ∈ L. By (λ2), AC ∈ L . Suppose that {Ai}i=∞i=1 ⊆ L . We
want to show that the infinite union of the Ai is an element of L . Define

B1 := A1, B2 := A2 ∩AC1 , B3 := A3 ∩AC1 ∩AC2 , . . . , Bn := An ∩AC1 ∩ · · · ∩ACn−1, . . . .

In general, Bn ∈ L only if L is a π-system, which we assumed it is. So, the union of the Ai equals
the union of the Bi, which is now a disjoint union. So, L is closed under arbitrary unions. Therefore,
L is a σ-field. �

Now we will prove Dynkin’s π-λ Theorem. We restate it first.
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Theorem 2.2.2: (Dynkin’s π-λ Theorem)

(a) If P is a π-system and L is a λ-system containing P, then σ(P) ⊆ L .

(b) If P is a π-system, then σ(P) = L (P ).

Proof of (a): Let L (P) be the λ-system generated by P. By minimality,

P ⊆ L (P) ⊆ L .

Now suppose for a moment that L (P) is also a π-system. Then, by Proposition 2.2.4, L (P) is a
σ-field. By minimality of σ(P), we have the chain

P ⊆ σ(P) ⊆ L (P) ⊆ L .

This would give the result. So it remains to show that L (P) is also a π-system.

Given A ⊆ Ω, define
LA := {B ⊆ Ω | A ∩B ∈ L (P)}.

Claim 1: If A ∈ L (P), then LA is a λ-system.

Proof: Since A ∈ L (P), by hypothesis it follows that Ω ∩ A = A ∈ L (P). Therefore,
Ω ∈ LA and so (λ1) is verified. Next, suppose B ∈ LA. We need to show that BC ∈ LA, i.e.,
BC ∩ A ∈ L (P). So, we need to rewrite this as the complement of a disjoint union of sets in
L (P ). Clearly

BC ∩A = (AC ∪ (A ∩B))C ∈ L (P).

So, (λ2) is verified. To show (λ3), assume that {Bi}i∈N is a disjoint sequence of sets. Then,

A ∩
(⋃

Bi

)
=
⋃

(A ∩Bi) ∈ L (P)

because A∩BC is also the union of disjoint sets of L (P). So, this claim is proved and LA is a
λ-system in the case where A ∈ L (P). �

Claim 2: If A ∈ P, then L (P) ⊆ LA.

Proof: Since A ∈ P ⊆ L (P), then LA is a λ-system. By minimality (since LA ⊇ P because
P is a π-system), L (P) ⊆ LA. �

Remark: Suppose A ∈ P and B ∈ L (P). Then since B ∈ L (P ) ⊆ LA, we have that A∩B ∈ L (P).

Claim 3: If A ∈ L (P), then L (P) ⊆ LA.

Proof: First, suppose B ∈ P. Then by the previous remark, A ∩ B ∈ L (P). Therefore
P ⊆ LA. But from Claim 1, LA is a λ-system. By minimality, L (P) ⊆ LA.

If A ∈ L (P) and B ∈ L (P), then B ∈ LA. By definition of LA, A ∩ B ∈ L (P). Hence, L (P) is a
π-system. This completes part (a) of the theorem. �

Proof of (b): Since P is a π-system contained in the λ-system L (P), part (a) implies

σ(P) ⊆ L (P).

On the other hand, every σ-field is a λ-system. Therefore σ(P) is a λ-system by minimality. So,

L (P) ⊆ σ(P).

Hence,
L (P) = σ(P). �
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Section 2.4 - Construction of Probability Spaces

Definition 2.4.1: A class S of subsets of Ω is a semialgebra if the following hold:

(i) ∅,Ω ∈ S

(ii) S is a π-system

(iii) If A ∈ S, then there exists some finite collection of disjoint C1, C2, . . . , Cn ∈ S such that

AC =

n⊔
i=1

Ci.

Remark: For the disjoint union, rather than the conventional notation

n⊔
i=1

, Resnick uses the notation

n∑
i=1

.

Note: AC is not necessarily in S, since S is not assumed to be a λ-system.

Example: Let Ω := R and define S1 := {(a, b] | −∞ ≤ a ≤ b ≤ ∞}. Then,

(i) ∅,Ω ∈ S1

(ii) Suppose I1, I2 ∈ S1. Then it’s clear that I1 ∩ I2 ∈ S1.

(iii) Suppose I = (a, b] ∈ S1. Then,
IC = (−∞, a] t (b,∞].

Remark: Note that S1 is not closed under complements, since IC 6∈ S1.

Example: Let Ω := Rk = {(x1, x2, . . . , xk) | xi ∈ R}. Define Sk to be the set of all rectangles, i.e., sets of
the form

A = I1 × I2 × · · · × Ik.
Then, Sk is a semialgebra.

Lemma 2.4.1: (the field generated by a semialgebra) Suppose S is a semialgebra of subsets of Ω. Then, the
smallest field containing S, denoted A (S) can also be written

A (S) =

{⊔
i∈I

Si

∣∣∣∣∣ |I| <∞, Si ∈ S
}

(∗)

Proof: Define

Λ :=

{⊔
i∈I

Si

∣∣∣∣∣ |I| <∞, Si ∈ S
}
.

We first show that S ⊆ Λ. Note that for any S ∈ S, we have that S ∈ Λ by taking I := {1} and
S1 := {S}. Now show that Λ is a field.

(i) Since Ω ∈ S by definition of semialgebra, we have Ω ∈ Λ.

(ii) Suppose
⊔
i

Si ∈ Λ and
⊔
j

S′j ∈ Λ. We need to show that their intersection is also contained in

Λ. Note (⊔
i

Si

)⋂⊔
j

S′j

 =
⊔
i,j

(Si ∩ S′j).

(You may need to think about it a bit to see that this is indeed a disjoint union.) Now, each
Si ∩ S′j ∈ S since semialgebras are π-systems.
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(iii) Suppose
⊔
i

Si ∈ Λ, then (⊔
i

Si

)C
=
⋂
i

SCi .

Each SCi can be written as

SCi =
⊔
ik

Sik

for some collection Sik . Since Λ is closed under finite intersections, we have(⊔
i

Si

)C
∈ Λ.

This shows that Λ is a field containing S, and so A (S) ⊆ Λ. To see the reverse, note that each element
is a (disjoint) finite union of elements of S, and A (S) contains these elements of S and is closed under
finite unions, and so Λ ⊆ A (S). So, we have shown equality. �

Theorem 2.4.1: (First Extension Theorem) Suppose S is a semialgebra of subsets of Ω and P : S → [0, 1]
is σ-additive on S and satisfies P (Ω) = 1. Then, there exists a unique extension P ′ of P to A (S) defined by

P ′

(⊔
i

Si

)
:=
∑
i

P (Si)

which is a probability measure on A (S).

Proof: First we show uniqueness of the extension. Suppose that A ∈ A (S) has two distinct
representations,

A =
⊔
i

Si =
⊔
j

S′j .

We must confirm that ∑
i

P (Si) =
∑
j

P (S′j).

Indeed, ∑
i

P (Si) =
∑
i

P (Si ∩A)

=
∑
i

P

(
Si ∩

(⊔
i

S′j

))

=
∑
i

P

⊔
j

(
Si ∩ S′j

) .

Now, since S is a π-system, Si ∩ S′j ∈ S. So, by the additivity of P ,

∑
i

P

⊔
j

(
Si ∩ S′j

) =
∑
i

∑
j

P (Si ∩ S′j) =
∑
j

P (S′j).

The last equality is shown by reversing the logic.

Next, we need to show that P ′ is σ-additive on A (S). Suppose

A =

∞⊔
i=1

Ai ∈ A (S)
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and that for each Ai,

Ai =
⊔
j∈Ji

Si,j ∈ A (S)

where |Ji| <∞ and Si,j ∈ S. Since A ∈ A (S), there must be some finite representation

A =
⊔
k∈K

Sk

where |K| <∞ and Sk ∈ S. By the definition of P ′,

P ′(A) =
∑
k∈K

P (Sk).

But,

Sk = Sk ∩A =

∞⊔
i=1

[Sk ∩Ai] =

∞⊔
i=1

⊔
j∈Ji

[Sk ∩ Si,j ] .

Since S is a π-system, Sk ∩ Si,j ∈ S. Separately, we know that Sk ∈ S. Since P is σ-additive,

P (Sk) =

∞∑
i=1

∑
j∈Ji

P (Sk ∩ Si,j)

and so

P ′(A) =
∑
k∈K

P (Sk)

=
∑
k∈K

∞∑
i=1

∑
j∈Ji

P (Sk ∩ Si,j)

=

∞∑
i=1

∑
j∈Ji

∑
k∈K

P (Sk ∩ Si,j)

=

∞∑
i=1

∑
j∈Ji

P (Si,j)

=

∞∑
i=1

P ′

⊔
j∈Ji

Si,j


=

∞∑
i=1

P ′(Ai).

Thus, P ′ is σ-additive. �

Theorem 2.4.2: (Second Extension Theorem) A probability measure P defined on a field A of subsets of
Ω has a unique extension to a probability measure on σ(A ).

Remark: See book for proof.

Theorem 2.4.3: (Combo Extension Theorem) Suppose S is a semialgebra of subsets of Ω and that
P is a σ-additive set function mapping S into [0, 1] such that P(Ω) = 1. Then, there exists a unique
probability measure on σ(S) that extends P.

Remark: This combines the first and second extension theorems. We are responsible for being able
to state this theorem on a test, while defining each of the underlined terms in the process.
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Section 2.5 - Measure Constructions

Construction: To define the Lebesgue Measure on (0, 1], take Ω := (0, 1]. Let B be the Borel sets on (0, 1]
and S = {(a, b] | 0 ≤ a ≤ b ≤ 1} (we showed already that S is a semialgebra and that σ(S) = B). Define
λ : S → [0, 1] by λ(∅) = 0 and λ((a, b]) = b− a for b > a.

The only thing left to be shown is σ-additivity on S. For finite additivity, let (a, b] ∈ S be written by a finite
disjoint union of S, i.e.,

(a, b] =

k⊔
i=1

(ai, bi].

Then (with some possible renumbering), ai = bi−1 for all 2 ≤ i ≤ k. Well,

P((a, b]) = b− a

by definition, but now we have

P

(
k⊔
i=1

(ai, bi]

)
=

k∑
i=1

bi − ai = bk − a1 = b− a.

So we have shown finite additivity. See the book for the σ-additive part.

Remark: How do we draw from arbitrary probability distributions from uniform random variables?

Example: We now discuss generating exponential random variables: P(X > x) = e−λx, where λ > 0 and
x > 0. Then, the cdf is

F (x) := P(X < x) = 1− e−λx.

We claim that if u ∼ Unif(0, 1) then F−1(u) ∼ Exp(λ). Indeed,

P(X > x) = P(F−1(u) > x)

= P(U > F (x))

= 1− F (x).

Example: Now we look at discrete random variables. Let X be the time of the first successful trial and let
p ∈ [0, 1] be the probability of success. Then,

P(X = k) = (1− p)k−1p

for k ≥ 1.
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We get the density function:

1 2 3 4 5 6 7 8 9 10

.9
.81

.729

...

The corresponding cdf:

1 2 3 4 5

.1
.19

.271

...

Construction: Now we construct a probability measure from a cumulative distribution function . Let F (x)
be a cdf. Define

PF ((−∞, x]) := F (x).

Define the left-continuous inverse of F by

F−1(y) := inf{x | F (x) ≥ y}

and define
A(y) := {x | F (x) ≥ y}.

Suppose A ∈ B(R). Then, let
ξF (A) := {u ∈ (0, 1] | F−1(u) ∈ A}.

By Lemma 2.5.1, if A ∈ B(R), then ξF (A) ∈ B((0, 1]).

The complete definition of PF is given by PF := λ ◦ ξF with

A 7→ λ(ξF (A)).



Chapter 3

Chapter 3 - Random Variables

Section 3.0 - Motivation for Random Variables

Colloquially, what is a random variable? It’s a characterization of a random outcome (as opposed to a cold
census).

Example: (Yahtzee!) A 5-of-a-kind when rolling fair dice is called a “Yahtzee!”. We will construct a random
variable for this event. Our universe of rolls is

Ω := {1, 2, 3, 4, 5, 6}5.

We write a roll w ∈ Ω as w = (w1, w2, w3, w4, w5). We define

B := P(Ω)

and define P on Ω by P(w) =
1

65
for all w ∈ Ω. Now we define the random variable:

Y :=

{
1, if w1 = w2 = w3 = w4 = w5

0, otherwise
.

Let E be the event {Y = 1}. Then,

P(E) = (# of ways to Yahtzee!) · (probability each happens) = 6 · 1

65
=

1

64
.

Now suppose that there are two observers with restricted points of view:

- Observer A can only see how many of the dice are odd.

- Observer B can only check to see if pairs of dice have equal value.

Observer B can determine the value of Y, but A will not necessarily be able to (A may be able to rule out a
Yahtzee in some circumstances).

In the context of Chapter 2, σ(B) $ B, σ(A) $ B and both σ(B) $ σ(A) and σ(A) $ σ(B).

These statements motivate a desire to want to write something like

ρ(Y ) ⊆ σ(B), but ρ(Y ) 6⊆ σ(A)

where ρ is some structure generated by knowledge of Y .

19
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Section 3.1 - Inverse Maps

Definition: Suppose Ω, R are two sets. (R will almost always be R and is always a “range” of a function.)
Let X : Ω→ R. Then, X determines an inverse set function

X−1 : P(R)→ P(Ω)

defined by
X−1(A) = {w ∈ Ω | X(w) ∈ A}.

Proposition 3.1.1: If B is a σ-field of subsets of R, then X−1(B) is also a σ-field.

Proof: We verify the three properties.

(i) Note that R ∈ B and also X−1(R) = Ω. Hence, Ω ∈ X−1(B). Also, ∅ ∈ B and X−1(∅) = ∅ by
definition. Hence, ∅ ∈ X−1(B).

(ii) Suppose A ∈ B. This means that AC ∈ B as well. This implies that both

X−1(A) ∈ X−1(B) and X−1(AC) ∈ X−1(B).

Now,

(X−1(A))C = {ω ∈ Ω | X(ω) ∈ A}C

= {ω ∈ Ω | X(ω) ∈ AC}
= X−1(AC) ∈ X−1(B).

(iii) Suppose that {An}n∈N is a sequence in B. Then,
⋃
An ∈ B since B is a σ-field. Now observe

Definition:
⋃
n∈N

X−1(An) = {ω ∈ Ω | X(ω) ∈ An for some n}

=

{
ω ∈ Ω

∣∣∣∣∣ X(ω) ∈
⋃
n∈N

An

}

= X−1

(⋃
n∈N

An

)
∈ B.

Hence X−1(B) is a σ-field. �

Proposition 3.1.2: If C is a class of subsets of R, then

X−1(σ(C)) = σ(X−1(C)).

Proof: From Proposition 3.1.1 we have that X−1(σ(C)) is a σ-field. Note that since C ⊆ σ(C), we
have

X−1(C) ⊆ X−1(σ(C)).

Therefore, by minimality,
σ(X−1(C)) ⊆ X−1(σ(C))}.

To show the reverse inclusion, define

F := {A ∈ P(R) | X−1(A) ∈ σ(X−1(C)).

We claim that F is a σ-field. See the textbook or lecture notes for the proof of this claim.
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By definition, X−1(F) ⊆ σ(X−1(C)). Furthermore C ⊆ F and so X−1(C) ⊆ X−1(F). Because F is a
σ-field, σ(C) ⊆ F . Hence by minimality,

X−1(σ(C)) ⊆ X−1(F) ⊆ σ(X−1(C)).

This completes the proof. �

Section 3.2 - Measurable Maps and Random Elements

Definition: If (Ω,F) and (R,B) are measure spaces and X : Ω→ R, we say that X is F-measurable if

X−1(B) ⊆ F .

In the special case where (R,B) is R with the Borel sets, then we say that X is a random variable.

Definition: Let (Ω,F ,P) be a probability space and suppose X is F-measurable. For a set A ∈ R, we define

[X ∈ A] := X−1(A) = {ω ∈ Ω | X(ω) ∈ A}.

Define the set function
(P ◦X−1)(A) := P(X−1(A)).

Then, P ◦X−1 is a probability measure on (R,B) and is called the probability measure induced by X, or the
distribution of X

Remark: To verify that this is a probability measure, we check:

(a) (P ◦X−1)(R) = P(X−1(R)) = P(Ω) = 1.

(b) (P ◦X−1)(A) ≥ 0 for all A ∈ B since P(E) ≥ 0 for all E ∈ F .

(c) Suppose that {An}n∈N is disjoint and in B. Then,

(P ◦X−1)

(⊔
n

An

)
= P

(
X−1

(⊔
n

An

))

= P

(⊔
n

X−1(An)

)

=

∞∑
n=1

P(X−1(An))

=

∞∑
n=1

(P ◦X−1)(An).

Notation: We often write (P ◦X−1)(A) = P[X ∈ A] or P{X ∈ A}.

Example: (Yahtzee!) In the context of our earlier example using the game of Yahtzee!, we can write:

P[Y = 1] = P(Y −1({1}))

= P

(
6⊔
i=1

(i, i, i, i, i)

)

=

6∑
i=1

P((i, i, i, i, i))

= 6 · 1

65
=

1

64
.
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Meanwhile, P[Y = 0] = 1− 1

64
.

The range measure space “(R,B,P)” is

({0, 1}, {∅, {1}, {0}, {0, 1}},P ◦ Y −1).

Proposition 3.2.1: (Test for Measurability) Suppose X : Ω → R where (Ω,F) and (R,B) are measure
spaces. Let C be a class such that σ(C) = B. Then,

[X is F-measurable] ⇐⇒ [X−1(C) ⊆ F ].

Proof:

(⇐=) Suppose X−1(C) ⊆ F . Then by minimality, σ(X−1(C)) ⊆ F . However, X−1(σ(C)) = X−1(B)
since we assume that σ(C) = B. Also, we proved that X−1(σ(C)) = σ(X−1(C)) in Proposition
3.1.2. Hence

X−1(B) = σ(X−1(C)) ⊆ F . �

(=⇒) Suppose X is F-measurable, i.e., X−1(B) ⊆ F . Since C ⊆ B, we have

X−1(C) ⊆ X−1(B) ⊆ F . �

Corollary 3.2.1: X : Ω→ R is F-measurable if X−1((−∞, x]) = [X ≤ x] ∈ F .

Example: (Yahtzee! with two dice) We have

Ω = {ω = (ω1, ω2) | ωi ∈ {1, 2, 3, 4, 5, 6}}.

Define the random variable

Y :=

{
0, if ω1 = ω2

1, otherwise
.

Observer E knows the number of even dice, so E ∈ {0, 1, 2}. E itself is a random variable. Then, we can
define the σ-field generated by E as

σ(E) = σ(E−1(P({0, 1, 2})))
= σ({E−1({0}), E−1({1}), E−1({2})})

Now, we calculate these sets:

E−1({0}) = {(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5)},
E−1({1}) = {(2, 1), (1, 2), (2, 3), (3, 2), (2, 5), (5, 2), (4, 1), (1, 4), (4, 3),

(3, 4), (4, 5), (5, 4), (6, 1), (1, 6), (6, 3), (3, 6), (6, 5), (5, 6)},
E−1({2}) = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)}.

The intersections of each pair of these is empty. Hence,

σ(E) = σ(E−1(P({0, 1, 2})) = {∅, E−1({0}), E−1({1}), E−1({2}), E−1({0})C , E−1({1})C , E−1({2})C ,Ω).
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Proposition 3.2.6: Let X1, X2, . . . be random variables defined in (Ω,F). Then,

(i) inf
n∈N

Xn and sup
n∈N

Xn are random variables.

Proof: First note that

[supXn ≤ x] = {ω ∈ Ω | supXn(ω) ≤ x}

=
⋂
n

{ω ∈ Ω | Xn(ω) ≤ x}.

This is a countable intersection of sets in the σ-field F , and hence the intersection itself is in F .
Therefore,

[supXn ≤ x] ∈ F .

The proof for the infimum is analogous. �

(ii) lim inf
n→∞

Xn and lim sup
n→∞

Xn are random variables.

Proof: lim inf
n→∞

Xn = sup
n∈N

(
inf
k≥n

Xn

)
. �

(iii) If lim
n→∞

Xn(ω) exists for all ω ∈ Ω, then lim
n→∞

Xn is a random variable.

Proof: If lim
n→∞

Xn(ω) exists, then lim
n→∞

Xn(ω) = lim inf
n→∞

Xn(ω). �

(iv) The set on which {Xn} has a limit is F-measurable, i.e.,

{ω | lim
n→∞

Xn(ω) exists} ∈ F .

Proof: Let Q be the set of all rationals. Then,

{ω | lim
n→∞

Xn(ω) exists}C = {ω | lim inf
n→∞

Xn < lim sup
n→∞

Xn}

=
⋃
r∈Q

[
lim inf
n→∞

Xn ≤ r < lim sup
n→∞

Xn

]

=
⋃
r∈Q

([
lim inf
n→∞

Xn ≤ r
]
∩
[
lim sup
n→∞

Xn > r

])
. �



Chapter 4

Chapter 4 - Independence

Section 4.0 - Motivation for Independence

The motivation for the definition of independence comes from conditional probabilities, i.e., the formula

P(A | B) =
P(A ∩B)

P(B)
.

The intuitive notion of independence says that if A is independent of B, then the probability of A happening
in the B-universe should be equal to the probability of A happening in the Ω-universe, i.e.,

P(A) =
P(A)

P(Ω)
= P(A | B) =

P(A ∩B)

P(B)
.

Cross-multiplying, we see that if this occurs, then

P(A ∩B) = P(A)P(B).

Section 4.1 - Basic Definitions

Definition 4.1.2: Suppose (Ω,F ,P) is a probability space. The events A1, . . . , An ∈ F are defined to be
independent if

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai)

for all finite I ⊆ {1, . . . , n}. Note that this is actually

n∑
k=2

(
n

k

)
= 2n − n− 1

equations to check, all collections of 2 or more elements of F .

24
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Theorem 4.1.1: (Basic Criterion) If for each i ∈ [n], Ci is a class of events satisfying

(i) Ci is a π-system,

(ii) {Ci}ni=1 is independent,

then σ(C1), . . . , σ(Cn) are independent.

Remark: A set of classes is considered to be independent if for any choices {Ai ∈ Ci}, we have that
the events {Ai} are independent.

Proof: We show the n = 2 case. Fix an event A2 ∈ C2 and define

L := {A ∈ F | P(A ∩A2) = P(A)P(A2)}.

We now show that L is a λ-system.

(λ1) P(Ω ∩A2) = P(A2) = P(Ω)P(A2). So, Ω ∈ L .

(λ2) Suppose A ∈ L . Then,

P(AC ∩A2) = 1− P((A ∩A2) tAC2 )

= 1− (P(A ∩A2) + P(AC2 ))

= 1− (P(A)P(A2) + 1− P(A2)) (since A ∈ L )

= P(A2)− P(A)P(A2)

= P(A2)(1− P(A))

= P(A2)P(AC).

Hence AC ∈ L .

(λ3) Suppose B1, . . . , Bn ∈ F are disjoint. Then.

P

((⊔
i

Bi

)⋂
A

)
= P

(⊔
i

(Bi ∩A)

)
=
∑
i

P(Bi ∩A)

=
∑
i

P(Bi)P(A)

= P

(⊔
i

Bi

)
P(A).

Hence L is a λ-system. Note that C1 ⊆ L . Therefore, σ(C1) ⊆ L , i.e., σ(C1), A2 are independent.
Since A2 was arbitrary, σ(C1), C2 are independent. Reversing the entire argument, A1, σ(C2) are
independent for all A1 ∈ σ(C1). Combining, we get σ(C1), σ(C2) are independent.

Proceed by induction to prove cases where n > 2. �

Definition 4.1.4: Let T be an arbitrary index set. The classes {Ct}t∈T are independent families if for each
finite I ⊆ T , the set {Ct}t∈I is independent.

Corollary 4.1.1: If {Ct}t∈T are nonempty π-systems that are independent, then {σ(Ct)}t∈T are independent.

Proof: Proceed as in the above theorem. �
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Section 4.2 - Independent Random Variables

Definition 4.2.1: {Xt}t∈T is an independent family of random variables if {σ(Xt)}t∈T are independent σ-

fields. Recall that σ(Xt) = σ(X−1(B(R))) where X : (Ω,F)→ (R,B(R)).

Remark: An important concept related to this section is finite dimensional distributions:

FJ ({xt}t∈T ) = P{Xt ≤ xt ∀t ∈ J}

for all finite subsets J ⊆ T .

Theorem 4.2.1: (Factorization Condition) A family of random variables {Xt}t∈T is independent if and only
if for all finite J ⊆ T

FJ ({xt}t∈T ) =
∏
t∈J

P{Xt ≤ xt} (F)

for all xt ∈ R.

Proof: By Definition 4.1.4, it suffices to show for finite index sets J that {Xt}t∈J is independent if
and only if (F) holds. Define

Ct :=
{
{ω ∈ Ω | Xt(ω) ≤ x} | x ∈ R

}
= {[Xt ≤ x] | x ∈ R}.

(i) We claim that Ct is a π-system:

[Xt ≤ x] ∩ [Xt ≤ y] = [Xt ≤ min({x, y})] ∈ Ct.

(ii) Additionally, σ(Ct) = σ(Xt).

(F) is sufficient to imply that {Ct}t∈J is an independent family. By the “Basic Criterion” in Theorem
4.1.1, {σ(Ct)}t∈J is independent. �

Corollary: A finite collection of random variables {Xi}ki=1 is independent if and only if

P{X1 ≤ x1, X2 ≤ x2, · · · , Xk ≤ xk} =

k∏
i=1

P{Xi ≤ xi}.

Section 4.3 - Ranks, Records, Renyi’s Theorem

Let {Xn}n≥1 be iid with a common continuous cdf F (x).

Lemma: There can be no ties (almost surely), where

{ties} =
⋃
i6=j

{Xi = Xj}.

Proof: By subadditivity:

P{Xi = Xj for some i, j} ≤
∑
i6=j

P{Xi = Xj} = 0.

We will show the equality with zero above momentarily, which will then complete the theorem. �
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Definition: Call Xn a record if
Xn > max

i∈[n−1]
Xi.

Warnings: As always, there are hidden ω’s. The correct interpretation is

An(ω) :=

{
1, Xn(ω) > Xi(ω) ∀i ∈ [n− 1]
0, otherwise

.

This is the official definition associated with Resnick’s “An = {Xn is a record}”.

Remark: Renyi’s first result says that:

P{An = 1} =
1

n
.

Furthermore, the family {An}n≥1 is independent. This is a slightly surprising result. For example, the fact
that the 10th draw was a record has no bearing on whether or not the 11th draw will be a record. We will
prove this shortly.

Lemma: Suppose that X1 and X2 are independent with a common continuous cumulative distribution
function F . Then,

P{X1 = X2} = 0.

Proof: We start by relaxing the exact equality and bounding the probability above by the probability

of landing in the same partition of width
1

2n
.

P{X1 = X2} ≤
∞∑

k=−∞

P
{
k − 1

2n
< X1 ≤

k

2n
,
k − 1

2n
< X2 ≤

k

2n

}

=

∞∑
k=−∞

[[
F

(
k

2n

)
− F

(
k − 1

2n

)][
F

(
k

2n

)
− F

(
k − 1

2n

)]]

≤ sup
k∈Z

[
F

(
k

2n

)
− F

(
k − 1

2n

)]
·
∞∑

k=−∞

[
F

(
k

2n

)
− F

(
k − 1

2n

)]
= sup

k∈Z

[
F

(
k

2n

)
− F

(
k − 1

2n

)]
(telescoping sum)

Demanding that sup
k∈Z

[
F

(
k

2n

)
− F

(
k − 1

2n

)]
is bounded for all n is equivalent to the condition that F

is uniformly continuous on R. Recall that a function which is continuous on a compact set is uniformly
continuous.

Claim: Suppose f ∈ C([0,∞)) and lim
x→∞

f(x) = L <∞ exists. Then, f ∈ UC([0,∞).

Proof: Say that |x− y| < 1, for convenience. Because lim
x→∞

f(x) = L, there exists M such that

for all x ≥M , |f(x)−L| < ε/2. So, for all x, y ≥M , |f(x)− f(y)| ≤ |f(x)−L|+ |L− f(y)| < ε.
Otherwise, x, y ∈ [0,M+1], and since this is compact the function is uniformly continuous here.
�

Since F is continuous on (−∞,∞) and lim
x→±∞

F (x) each exist, we have that F ∈ UC((−∞,∞)), i.e.,

given ε > 0, there exists n such that for all |x− y| < 1

2n
, |F (x)− F (y)| < ε.

So, for any ε > 0, P{X1 = X2} < ε, i.e., P{X1 = X2} = 0. �
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Notation: Suppose X1, X2, . . . are iid random variables with common continuous cdf. For each n, let Rn
be the relative rank of Xn among {X1, . . . , Xn}, i.e.,

Rn =

n∑
i=1

1{Xi≥Xn}

so that Rn = 1 if Xn is a record.

Theorem 4.3.1: (Renyi’s Theorem) The sequence of random variables {Rn}n≥1 is independent, and

P{Rn = k} =
1

n

for all k ∈ [n].

Proof: For (almost) all ω ∈ Ω, note that there are n! orderings of {Xi(ω)}ni=1. Because the values are

iid, all orderings occur with the same probability:
1

n!
. (Remember, there are no ties, almost surely!)

Each realization R1, . . . , Rn uniquely determines an ordering. For example, if for ω1 we have

R1(ω1) = 1 R2(ω1) = 1 R3(ω1) = 1

then we have

X1(ω1) < X2(ω1) < X3(ω1).

If for ω2 we have

R1(ω2) = 1 R2(ω2) = 2 R3(ω2) = 3

then we have

X1(ω2) > X2(ω2) > X3(ω2).

Of course, each ordering has probability
1

n!
. So, for any sequence (r1, . . . , rn), where ri ∈ [i], the

probability that

P{R1 = r1, R2 = r2, · · · , Rn = rn} =
1

n!
.

Now fix n. We will compute P{Rn = rn}.

P{Rn = rn} =
∑

r1,r2,··· ,rn−1

P{R1 = r1, R2 = r2, · · · , Rn = rn}

=
∑

r1,r2,··· ,rn−1

1

n!

= (n− 1)! · 1

n!

=
1

n
.

Show the general argument with induction. �

Example: (Independence / Dyadic Expansions of Uniform Real Numbers) Define (Ω,F ,P) = ((0, 1],B((0, 1]), λ)
where λ is the Lebesgue measure. For a given ω ∈ Ω, write

ω =

∞∑
n=1

1

2n
dn(ω) = 0.d1(ω)d2(ω)d3(ω) · · ·
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where each di(ω) ∈ {0, 1}. Note that with this representation

1 =

∞∑
n=1

1

2n
= 0.1111 · · · ,

and
1

2
= 0.1 = 0.01111 · · · .

To overcome this, we only consider nonterminating sequences.

Fact 1: Each dn is a random variable.

We need to show that the sets {dn = 0} and the set {dn = 1} are both in B((0, 1]). (Recall,
{dn = 0} = {ω ∈ Ω | dn(ω) = 0}.) Since they are complements, we only need to show this for
one of them. Observe that

{d1 = 1} = {ω ∈ (0, 1] | d1(ω) = 1}

i.e., ω has the form ω = 0.1d2d3d4 · · · >
1

2
. (The inequality is strict because we’re ignoring

terminating sequences.) So

{d1 = 1} =

(
1

2
, 1

]
∈ B((0, 1]).

Similarly, {d2 = 1} consists of ω of the form 0.d11d4d4 · · · , i.e.,

{d2 = 1} =

(
1

4
,

1

2

]
∪
(

3

4
, 1

]
∈ B((0, 1]).

We see now that for arbitrary n, the set {dn = 1} is measurable. This proves the fact.

Fact 2: For all n, P{dn = 1} = λ({ω ∈ Ω | dn(ω) = 1}) =
1

2
. So, the dn are identically distributed.

Fact 3: {dn}n≥1 is an independent sequence.

It suffices to show independence for {di}ni=1. We need to calculate

P

{
n⋂
i=1

{di = ui}

}

for a given vector u = (u1, u2, . . . , un) ∈ {0, 1}n. Note that saying ω ∈
n⋂
i=1

{di = ui} means that

ω has the form

ω = 0.u1u2 · · ·undn+1dn+2 · · · ∈ (0.u1u2 · · ·un0000 · · · , 0.u1u2 · · ·un1111 · · · )

and this interval has size
1

2n
.

P

{
n⋂
i=1

{di = ui}

}
=

1

2n
=

n∏
i=1

P{di = ui}.
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Section 4.5 - Independence, Zero-One Laws, Borel-Cantelli Lemma

Borel-Cantelli Lemma: Let {An}n≥1 be a sequence of events in F . If

∞∑
n=1

P{An} <∞, then

P{An i.o.} = P{lim sup
n→∞

An} = 0.

Proof: Recall that using ωs, we are showing

P{ω ∈ An i.o.} = P{ω ∈ lim sup
n→∞

An} = 0.

We know that

P{An i.o.} = P
{
ω ∈ lim

n→∞

⋃
j≥n

Aj
}

(by definition)

= lim
n→∞

P
{ ⋃
j≥n

Aj
}

(by continuity of P)

≤ lim
n→∞

∞∑
j=n

P(Aj).

We claim this sum is zero. Since

∞∑
j=1

P{Aj} <∞, for all ε > 0 there exists N such that for all n > N ,

∞∑
j=n

P(Aj) < ε. �

Example: Suppose {Xn}n≥1 is a sequence of Bernoulli random variables where pn := P{Xn = 1} satisfies
∞∑
n=1

pn <∞. Then, P{ lim
n→∞

Xn = 0} = 1.

Proof:

lim inf
n→∞

{Xn = 0} = lim inf
n→∞

{ω ∈ Ω | Xn(ω) = 0}

= {ω ∈ Ω | Xn(ω) = 1 i.o.}C

= {ω ∈ Ω | ∃Nω such that ∀n > Nω, Xn(ω) = 0}
= {ω | lim

n→∞
Xn(ω) = 0}.

Borel Zero-One Laws: If {An}n≥1 is a sequence of independent events, then

P{An i.o.} =


0,

∞∑
n=1

P{An} <∞

1,

∞∑
n=1

P{An} =∞
.

Proof: By the Borel-Cantelli Lemma, if

∞∑
n=1

P{An} <∞, then P{An i.o.} = 0.
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Conversely, suppose

∞∑
n=1

P{An} =∞. Well,

P{An i.o.} = P{ω | ω ∈ lim sup
n→∞

An}

= 1− P{lim inf
n→∞

ACn } (we are leaving out the ωs now)

= 1− P

 lim
n→∞

⋂
k≥n

ACk


= 1− lim

n→∞
P

⋂
k≥n

ACk

 (since the measure is finite)

= 1− lim
n→∞

P

{
lim
m→∞

m⋂
k=n

ACk

}

= 1− lim
n→∞

lim
m→∞

P

{
m⋂
k=n

ACk

}

= 1− lim
n→∞

lim
m→∞

m∏
k=n

P(ACk ) (by independence)

= 1− lim
n→∞

lim
m→∞

m∏
k=n

[1− P(Ak)] .

Note that for large k, P{Ak} is < 1, so we use the approximation e−x ≈ 1− x. Recall that

e−x = 1− x+
x2

2
− x3

3
+ · · ·

and so in fact for x ∈ (0, 1),

1− x ≤ e−x ≤ 1− x+
x2

2
.

Claim: e−x ≥ 1− x for all x ∈ [0, 1]

Proof: By the Mean Value Theorem, for any x ∈ (0, 1), there exists c ∈ (0, 1) such that

e−x − e−0

x− 0
= −e−c.

So, e−x = 1− xe−c > 1− x.

Now,

lim
m→∞

m∏
k=n

(1− P{An}) ≤ lim
m→∞

m∏
k=n

e−P{Ak}

= lim
m→∞

exp

(
−
∞∑
k=n

P{Ak}

)

= exp

(
−
∞∑
k=n

P{Ak}

)
= 0.

This completes the proof. �
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Example: (Behavior of Exponential Random Variables) Let {En}n≥1 be a sequence of independent and
identically distributed random variables on exp(1), i.e., for all n, P{En > t} = e−t for t > 0. Then,

lim sup
n→∞

En
log(n)

= 1.

Proof: Translate the statement: For a given ω ∈ Ω, lim sup
n→∞

En(ω)

log(n)
= 1 means that

∀ε > 0, ∃Nω such that
En(ω)

log(n)
< 1 + ε,

and, because of the equality to 1,

∀M, ∃n > M such that
En(ω)

log(n)
> 1− ε.

So,

1− ε < En(ω)

log(n)
< 1 + ε

for the first inequality happens infinitely often and the second inequality happens eventually always.
This is the statement that we will prove.

First we show the left-hand inequality, i.e., that

P
{

En
log(n)

> 1− ε i.o.

}
= 1.

To apply the Borel Zero-One Law, we compute
∞∑
n=1

P
{

En
log(n)

> 1− ε
}

and show that this is infinite. Well,
∞∑
n=1

P
{

En
log(n)

> 1− ε
}

=

∞∑
n=1

P {En > (1− ε) log(n)}

=

∞∑
n=1

e−(1−ε) log(n)

=

∞∑
n=1

1

n1−ε =∞.

On the other hand,

P
{

En
log(n)

> 1 + ε

}
= 0

since by a similar argument
∞∑
n=1

1

n1+ε
<∞.

After some bookkeeping which can be found in the textbook, this proves the theorem. �

Definition: Let {Xn}n∈N be a sequence of random variables and define

F ′n := σ(Xn+1, Xn+2, . . .)

where n ∈ N. The tail σ-field T is defined by

T :=

∞⋂
n=0

F ′n.
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Examples:

(1)

{
ω

∣∣∣∣∣
∞∑
n=1

Xn(ω) converges

}
∈ T . Why is this true? For all m,

∞∑
n=1

X(ω) converges if and only if

∞∑
n=m

Xn(ω) converges.︸ ︷︷ ︸
∈ F ′m

(2) lim sup
n→∞

Xn, lim inf
n→∞

Xn,
{
ω
∣∣∣ lim
n→∞

Xn(ω) exists
}
∈ T .

(3) (Important!) Define Sn := X1 +X2 + · · ·+Xn. Then,{
ω

∣∣∣∣ lim
n→∞

Sn(ω)

n
= 0

}
∈ T .

Definition: A σ-field whose events all have probability 0 or 1 is called almost trivial.

Lemma 4.5.1: Let G be an almost trivial σ-field and let X be a random variable such that X ∈ G. Then,
there exists c such that P{X = c} = 1.

Proof: See book.

Theorem 4.5.3: (Kolmogorov Zero-One Law) Let {Xn}n∈N be independent random variables with tail
σ-field T . Then, for any A ∈ T ,

P{A} ∈ {0, 1}.

Proof: Suppose A ∈ T . We claim that A is independent of itself. This immediately implies that
P(A) ∈ {0, 1} and the theorem follows. We now show that A is independent of itself.

Define

Fn := σ(X1, X2, . . . , Xn) =

n∨
j=1

σ(Xj)

and

F∞ := σ(X1, X2, . . .) =

∞∨
j=1

σ(Xj).

Note that A ∈ T ⊆ F ′n for any n. In particular,

A ⊆ T ⊆ F ′1 = F∞.

Since the Xn’s are independent,

Fn ⊥ F ′n.

Therefore, A ⊥ Fn (since A ∈ F ′n). This is true for all n. Hence,

A ⊥
∞⋃
n=1

Fn.

Even though

∞⋃
n=1

Fn 6= F∞, we do have that σ

( ∞⋃
n=1

Fn

)
= F∞.
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Let C1 := {A} and let C2 :=

∞⋃
n=1

Fn. Note that C1 ⊥ C2. Recall a basic criterion for independence:

σ(C1) ⊥ σ(C2) if C1 and C2 are π-systems.

But, A ∈ σ({A}) and A ∈ F∞ = σ(C2). So, A ⊥ A, which completes the theorem. �



Chapter 5

Chapter 5 - Integration and
Expectation

Section 5.1 - Preparation for Integration

Definition: Let (Ω,F ,P) be a probability space. We say that X : Ω → R is a simple function (or a
simple random variable) if it has finite range. We can write

X(ω) =

k∑
i=1

ai1{Ai}

where ai ∈ R, Ai ∈ F , {Ai} are disjoint, and

k⊔
i=1

Ai = Ω.

Remark: Let E be the space of all simple random variables. We claim that E is a vector space. We check
the conditions.

• Closure under scalar multiplication: If

X =

k∑
i=1

ai1{Ai}

then

αX =

k∑
i=1

αai1{Ai} ∈ E .

• Closure under addition: If

Y =
∑̀
j=1

bj1{Bj}

then

(X + Y )(ω) =

k∑
i=1

∑̀
j=1

(ai + bj)1{Ai∩B)j}(ω) ∈ E .

Additionally, note that if X,Y ∈ E , then XY ∈ E . Also, X ∨ Y ∈ E and X ∧ Y ∈ E .

35
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Theorem 5.1.1: (Measurability) Suppose X(ω) ≥ 0 for all ω ∈ Ω. Then, X is F-measurable if and only if
there exist simple random variables {Xn} ⊆ E such that

0 ≤ lim
n→∞

Xn 1 X.

Proof: Let Xn ∈ E such that 0 ≤ lim
n→∞

Xn 1 X. Then, Xn ∈ F (since σ(Xn) = σ(An1 , . . . , A
n
k ), where

each Ani ∈ F). If Xn 1 X, then X is F-measurable as well, by the results in Section 3.2.

Conversely, suppose X is F-measurable. Define,

Xn :=

n2n∑
k=1

(
k − 1

2n

)
1k − 1

2n
≤ X <

k

2n


+ n1{X≥n}.

Xn is F-measurable by construction since both{
k − 1

2n
≤ X <

k

2n

}
and {X ≥ n}

are. Consider the following picture, with Ω = [0,∞).

ω

X(ω)

1 2 3 4 5 6

1

2

3

Let Ank =

{
k − 1

2n
≤ X <

k

2n

}
and Bn = {X ≥ n}. Then,using our picture:

A2
2

B2

For any given ω ∈ Ω,
Xn(ω) ≤ Xn+1(ω) ≤ X(ω).

If X(ω) <∞, then lim
n→∞

Xn(ω) exists. Furthermore,

|X(ω)−Xn(ω)| < 1

2n
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for sufficiently large n. So,
lim
n→∞

Xn(ω) = X(ω).

If X(ω) =∞, then
lim
n→∞

Xn(ω) =∞.

This completes the proof. �

Remark: Note further that if sup
ω∈Ω

X(ω) <∞, then sup
ω∈Ω
|Xn(ω)−X(ω)| → 0.

Section 5.2 - Expectation and Integration

The undergraduate version of expectation is the formula:

E[X] =

∫
R
x dP (x).

For us:

E[X] :=

k∑
i=1

aiP{Ai}.

Example: E[c] = cP{Ω} = 1 and

E[1A] = 1 · P{A}+ 0 · P{AC} = P{A}.

Remark: Expectation is linear. Recall that

αX + βY =
∑
i,j

(αai + βbj)1{Ai∩Bj}.

So,

E[αX + βY ] =
∑
i,j

(αai + βbj)P{Ai ∩Bj}

=
∑
i,j

αaiP{Ai ∩Bj}+
∑
i,j

βbjP{Ai ∩Bj}

= α
∑
i

ai
∑
j

P{Ai ∩Bj}+ β
∑
j

bj
∑
i

P{Ai ∩Bj}

= α
∑
i

aiP{Ai}+ β
∑
j

bjP{Bj}

= αE[X] + βE[X].

Remark: A random variable can have P{X <∞} < 1. For example, consider the return time of a Brownian
motion in 3 dimensions to a finite sphere. Note that this allows that the cdf of a probability distribution not
approach 1 as x→∞.

Remark: A random variable can have P{X < ∞} = 1 yet E(X) = ∞. An example of this is the Cauchy
distribution. The density function of a Cauchy random variable is

f(x) =
c

1 + x2
.
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Then,

E[X] = 2

∫ ∞
0

cx

1 + x2
dx = 2

∫ ∞
1

c

u
du = 2[ln(u)]∞u=1 =∞,

where u = 1 + x2 and du = 2x dx.

Notation: Let E+ be the set of nonnegative simple random variables and define

X+ := {X : Ω→ R | X ≥ 0, σ(X) ∈ F}

where R = R ∪ {−∞,∞}.

Construction: Let X ∈ X+ and suppose P{X =∞} > 0. Then define E[X] =∞.

Now suppose P{X = ∞} = 0. By the measurability theorem above, there exists a sequence of simple
nonnegative nondecreasing random variables {Xn}n≥1 ⊂ E+ such that

lim
n→∞

Xn = X.

By monotonicity of expectation, {E[Xn]}n≥1 is a nondecreasing sequence of reals, and so lim
n→∞

E[Xn] exists

in R+. So, it is unambiguous to define
E[X] := lim

n→∞
E[Xn]

where E[X] ∈ R+.

Example: For the Cauchy distribution, construct an approximating sequence Xn as in the above
measurability theorem and compute E[Xn].

Proposition 5.2.1: The operator E is well defined on X+ in the sense that if Xn 1 X and Yn 1 X, then

lim
n→∞

E[Xn] = lim
n→∞

E[Yn].

Proof: It suffices to show that if
lim
n→∞

Xn ≤ lim
n→∞

Yn

then
lim
n→∞

E[Xn] ≤ lim
n→∞

E[Yn].

Fix n ∈ N for the moment. For any m ∈ N, we have Xn ∧ Ym ∈ E+. Additionally, note that

lim
m→∞

Xn ∧ Ym = Xn

(since lim
m→∞

Ym ≥ lim
n→∞

Xn ≥ Xn). By monotonicity,

E[Xn] = lim
m→∞

E[Xn ∧ Ym] ≤ lim
m→∞

E[Ym].

This is true for all n¿ So,
lim
n→∞

E[Xn] ≤ lim
m→∞

E[Ym].

Symmetry gives the reverse inequality. �

Basic Properties: Suppose X ∈ X+. Then we have,

(1) 0 ≤ E[X] ≤ ∞,
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(2) linearity,

(3) monotone convergence theorem.

Proof: Suppose {Xn}n≥1 is an ω-by-ω increasing sequence such that

lim
n→∞

Xn = X.

Then,
lim
n→∞

E[Xn] = E[X],

or, as Resnick says,

E
[

lim
n→∞

1 Xn

]
= lim
n→∞

1 E[Xn].

For each n, there exists a sequence {Y (n)
m }m≥1 ⊆ E+ such that

Y (n)
m 1 Xn.

We need to construct a sequence {Zm}m≥1 ⊂ E+ such that

Zm 1 X.

To this end, define

Xm :=
∨
n≤m

Y (n)
m .

Observe that {Zn} is indeed increasing. For n ≤ m:

Y (n)
m ≤ Zm ≤ Xm

m→∞

Xn

?
≤ lim
m→∞

Zm
?
≤ lim
m→∞

Xm

?

n→∞

X = lim
n→∞

Xn

?
≤ lim
n→∞

Xn

?
≤ lim
n→∞

Xn

?
= X

Also,

E[Xn] = lim
m→∞

E[Y (n)
m ]

≤ lim
m→∞

E[Zm]

≤ lim
m→∞

E[Xm].

Taking n→∞,
lim
n→∞

E[Xn] ≤ lim
m→∞

E[Zm] ≤ lim
m→∞

E[Xm].

Hence,

E[X] = E
[

lim
m→∞

Zm

]
= lim
m→∞

E[Zm] = lim
m→∞

E[Xm]. �

Definition: Given an F-measurable random variable X, define

X+ := X ∨ 0

and
X− := −(X ∧ 0).
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Note that |X| = X+ +X−. If E[X+] <∞ and E[X−] <∞ then we say X is integrable (X ∈ L1(P)) and

E[X] := E[X+]− E[X−].

Remark: If only one of E[X+] and E[X−] is finite, then we say that X is quasi-integrable, and E[X] = ±∞.
E[X] is considered undefined if both are infinite.

Properties:

(1) If X ∈ L1(P ), then P{X = ±∞} = 0.

(2) (Linearity) If E[X] exists, then E[cX] = xE[X]. Futhermore, if X,Y ∈ L1(P), then E[X + Y ] =
E[X] + E[Y ].

(3) (Monotonicity) If X ≥ 0, then E[X] ≥ 0.

(4) (Continuity) If {Xn}n≥1 ⊆ L1 such that Xn 1 X, then E[Xn] 1 E[X].

(5) (Modulus Inequality) If X ∈ L1, then |E[X]| ≤ E[|X|].

(5) (Variance, Covariance) Recall Var(X) := E
[
(X − E[X])2

]
. Well,

Var(X) = E
[
(X − E[X])2

]
= E

[
X2 + 2XE[X] + (E[X])2

]
= E[X2]− (E[X])2.

Recall Cov(X,Y ) = E [(X − E[X])(Y − E[Y ])]. By a similar calculation

Cov(X,Y ) = E[XY ]− E[X]E[Y ].

Later in the course, we will show that independence implies E[XY ] = E[X]E[Y ], i.e., X ⊥ Y implies
Cov(X,Y ) = 0. However, the converse is not true.

(6) Independence implies that the variance of a sum is equal to the sum of the variances.

Var

(
n∑
i=1

Xi

)
= Cov

(
n∑
i=1

Xi,

n∑
i=1

Xi

)
=
∑
i

Cov(Xi, Xi) +
∑
i 6=j

Cov(Xi, Xj) (by bilinearity)

=
∑
i

Cov(Xi, Xi) =

n∑
i=1

Var(Xi). (by independence)

(7) (Markov Inequality) If X ∈ L1, then

P{|X| ≥ λ} ≤ E[|X|]
λ

.

(8) (Chebyshev Inequality) If X ∈ L2, then

P{|X − E[X]| ≥ λ} ≤ Var(X)

λ2
.

(9) (Weak Law of Large Numbers) Let {Xn}n≥1 be iid with finite mean µ and finite variance σ. Then, for
all ε > 0,

lim
n→∞

P

{∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ > ε

}
= 0.
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Proof: Calculating,

P

{∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ > ε

}
≤ 1

ε2
Var

(
1

n

n∑
i=1

Xi

)
(Chebyshev Inequality)

=
1

ε2
1

n2
Var

(
n∑
i=1

Xi

)

=
1

n2ε2
nVar(X1)

=
1

nε2
Var(X1).

Clearly,

lim
n→∞

Var(X1)

nε2
= 0. �

Section 5.3 - Limits and Integrals

Recall the Monotone Convergence Theorem: If 0 ≤ Xn 1 X, then 0 ≤ E[Xn] 1 E[X].

Series Version of Monotone Convergence Theorem: Suppose {Xn}n≥1 ≥ 0. Then,

E

[ ∞∑
n=1

Xn

]
=

∞∑
n=1

E[Xn].

Proof: We see that

E

[ ∞∑
n=1

Xn

]
= E

[
lim
N→∞

N∑
n=1

Xn

]

= lim
N→∞

E

[
N∑
n=1

Xn

]
(MCT)

= lim
N→∞

N∑
n=1

E[Xn] (linearity)

=

∞∑
n=1

E[Xn]. �

Fatou’s Lemma: If {Xn}n≥1 ≥ 0, then

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn]. (F)

In general, if there exists Z ∈ L1 such that Xn ≥ Z for all n, then (F) still holds.

Proof: Observe

E
[
lim inf
n→∞

Xn

]
= E

[
lim
n→∞

∞∧
k=n

Xk

]

= lim
n→∞

E

[ ∞∧
k=n

Xk

]
(MCT)

≤ lim inf
n→∞

E[Xk].
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The justification for the last step is that for almost all ω ∈ Ω,

E

( ∞∧
k=n

Xk(ω)

)
≤ E(Xk∗) <

(
inf
k>n

E(XK)

)
+ ε,

where we define k∗(ε) so that E(Xk∗) <

(
inf
k>n

E(Xn)

)
+ ε. �

Corollary: E
[
lim sup
n→∞

Xn

]
≥ lim sup

n→∞
E[Xn].

Dominated Convergence Theorem: If Xn → X and if there exists a dominating random variable Z ∈ L1

in the sense that |Xn| ≤ Z for all n, then E[Xn]→ E[X] and E[|Xn −X|]→ 0 (convergence in L1).

Proof: We have −Z ≤ Xn ≤ Z. So, apply Fatou’s Lemma to both sides. Then,

E[X] = E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn]

≤ lim sup
n→∞

E[Xn]

≤ E
[
lim sup
n→∞

Xn

]
≤ E[X].

So, we have equality throughout. �

Example: Take (Ω,F ,P) = ([0, 1],B([0, 1]), λ) and define

Xn := n21[0,1/n].

Note that

lim
n→∞

Xn(ω) = 0

for all ω ∈ (0, 1]. However,

lim
n→∞

E[Xn] = lim
n→∞

n2P{ω < 1/n} = lim
n→∞

n =∞.

So in this case

lim
n→∞

E[Xn] > E
[

lim
n→∞

Xn

]
.

Section 5.4 - Indefinite Integrals

Definition: Let (Ω,F ,P) be a probability space. If X ∈ L1(P), then we define∫
A

XdP := E [X1A] .

This is called the integral of X restricted to the event A.
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Section 5.5 - The Transformation Theorem and Densities

Let there be two spaces (Ω,F), (Ω̃, F̃). Let P be a probability measure on (Ω,F). Suppose

T : (Ω,F)→ (Ω̃, F̃).

Define
P̃ := P ◦ T−1

so that
P̃(Ã) = P(T−1(Ã)).

Transformation Theorem: Suppose X̃ : (Ω̃, F̃)→ (R,B(R)).

(i) If X̃ ≥ 0, then ∫
Ω

X̃(T (ω))P(dω) =

∫
Ω̃

X̃(ω̃)P̃(dω̃),

i.e.,

E
[
X̃ ◦ T

]
= Ẽ

[
X̃
]
.

(ii) X̃ ∈ L1(P̃) if and only if X ◦ T ∈ L1(P), in which case∫
T−1(Ã)

X̃(T (ω))P(dω) =

∫
Ã

X̃(ω̃)P̃(dω̃).

Proof of (i): We prove the statement first for indicator random variables, then for simple random
variables, then for nonnegative random varibles (by MCT), then for all random variables (by DCT).

Suppose X̃ = 1Ã where Ã ∈ F̃ , i.e.,

X̃(T (ω)) = 1Ã(T (ω)) = 1T−1(Ã)(ω).

Then, ∫
Ω

X̃(T (ω))P(dω) =

∫
Ω

1T−1(Ã)(ω)P(dω)

= P(T−1(Ã))

= P̃(Ã)

=

∫
Ω̃

X̃(ω̃)P̃ (dω̃).

Now suppose X̃ is simple, i.e.,

X̃ =

k∑
i=1

ãi1Ãi .

Then, ∫
Ω

X̃(T (ω))P(dω) =

k∑
i=1

ãiP(T−1(Ãi)

=

k∑
i=1

ãiP̃(Ãi)

=

∫
Ω

k∑
i=1

ãi1Ãi(ω̃)︸ ︷︷ ︸
X̃(ω̃)

P̃(ω̃).
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Next, let X̃ be nonnegative (i.e., X̃ ≥ 0) and F-measurable. Then, there exists a sequence of random

variables X̃n such that X̃n 1 X̃. This implies

X̃n ◦ T 1 X̃ ◦ T.

This should be checked by the reader.

Next, we calculate, using the Monotone Convergence Theorem:∫
Ω

X̃(T (ω))P(dω) =

∫
Ω

lim
n→∞

X̃n(T (ω))P(dω)

= lim
n→∞

∫
Ω

X̃n(T (ω))P(dω) (MCT)

= lim
n→∞

∫
Ω̃

X̃n(ω̃)P̃(dω̃)

=

∫
Ω̃

lim
n→∞

X̃n(ω̃)P̃(dω̃) (MCT)

=

∫
Ω̃

X̃(ω̃)P̃(dω̃).

Lastly, by the Dominated Convergence Theorem, we can apply the result to all random variables (not
just the nonnegative ones). �

Proof of (ii): Follows the same ideas. �

Remark: We have said that the cdf F can be thought of as F (x) = P{X ≤ x}. In this case, we are treating
F like a function. However, we can also view F as a measure

F : B(R)→ [0, 1]

by
F (A) := (P ◦X−1)(A)

for all A ∈ B(R).

Corollary to the Transformation Theorem:

(i) Suppose X is a random variable with cdf F . Then,

E[X] =

∫
xF (dx).

(ii) Suppose X : (Ω,F)→ (S,S) with cdf F = P ◦X−1. Furthermore, suppose

g : (S,S)→ (R,B(R))

and that f is S-measurable. Then, the expected value of g(X) is

E[g(X)] =

∫
Ω

g(X(ω))P(dω) =

∫
x∈S

g(x)F (dx).

Proof of (i): Let X : (Ω,F) → (R,B(R)) and X̃ : (R,B(R)) → (R,B(R)), where X̃(x) = x. Recall
the equation ∫

Ω

X̃(T (ω))P(dω) =

∫
Ω̃

X̃(ω̃)P̃(dω̃).
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Here, we have that the right hand side is ∫
R
xF (dx).

Set T (ω) = X(ω). Then the the left-hand side becomes∫
Ω

X(ω)P(dω).

Since these are equal, we get the result. �

Remark: We say that X or F is absolutely continuous if there exists a nonnegative function f : S→ R such
that

F (A) =

∫
A

f(x)dx

for all A ∈ S. In particular,

E[g(X)] =

∫
S
g(x)f(x)dx.

We say that F (dx) has density f(x)dx.



Chapter 6

Chapter 6 - Convergence Concepts

Section 6.1 - Almost Sure Convergence

Definition: (Almost Sure Convergence)

Consider a probability space (Ω,F ,P). Then this is defined by: there exists N ∈ F with P(N) = 0 such that
the statement of interest holds if ω ∈ NC . N is often called the exception set.

Remark: A typical statement may be X = X ′ a.s. or X ≥ X ′ a.s. or lim
n→∞

Xn = X a.s..

Example: Consider the probability space ([0, 1],B([0, 1]), λ). Define

Xn(ω) =

{
n, if ω ∈ [0, 1/n]
0, if ω ∈ (1/n, 1]

.

Then, Xn → X almost surely. The exception set is N = {0}.

Proposition: Let {Xn}n≥1 be iid random variables with a common cdf F (x). Suppose F (x) < 1 for all
x ∈ R. Define

Mn =

n∨
i=1

Xi.

For all ω, Mn(ω) = max
i∈[n]

Xi(ω). Then, Mn 1∞ almost surely.

Proof: P {Mn ≤ x} = P {X1 ≤ x, . . . ,Xn ≤ x}

=

n∏
i=1

P {Xi ≤ x} (by independence)

= (F (x))n. (common cdf)

Note that,

∞∑
n=1

P {Mn ≤ j} =

∞∑
n=1

(F (j))n

=
F (j)

1− F (j)

<∞.

46
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So, by the Borel-Cantelli Lemma (note that the Mns are dependent), we have that

P {Mn ≤ j i.o.} = 0,

i.e.,

P
{

lim sup
n→∞

{ω |Mn(ω) ≤ j}
}

= 0.

Define
Nj := lim sup

n→∞
{Mn ≤ j}

and then note that
NC
j = lim inf

n→∞
{Mn > j}.

So, for all ω ∈ NC
j and for all n∗, there exists n > n∗ such that Mn(ω) > j.

Define
N :=

⋃
Nj .

Now,

P {N} ≤
∞∑
j=1

P {Nj} =

∞∑
j=1

0.

Hence,
P
{
NC

}
= 1. �

Section 6.2 - Convergence in Probability

Definition: (Convergence in Probability) {Xn}n≥1 converges in probability to X, denoted Xn
P−−→ X if,

for all ε > 0,
lim
n→∞

P {|Xn −X| > ε} = 0.

Remark: This is usually demonstrated by Chebyshev’s Inequality.

Remark: We can write the definition of almost sure convergence alternatively:

P
{
ω ∈ Ω | lim

n→∞
Xn(ω) = X(ω)

}
= 1.

Theorem: [Almost Sure Convergence] =⇒ [Convergence in Probability].

Proof: Suppose Xn
a.s.−−−−→ X. Then, for all ε > 0,

0 = P {|Xn −X| > ε i.o.}

= P
{

lim sup
n→∞

{|Xn −X| > ε}
}

= lim
N→∞

P

 ⋃
n≥N

{|Xn −X| > ε}


≥ lim
n→∞

P {|Xn −X| > ε} .



48 CHAPTER 6. CHAPTER 6 - CONVERGENCE CONCEPTS

Hence,
lim
n→∞

P {|Xn −X| > ε} = 0

which gives convergence in probability. �

Section 6.3 - Connections Between Almost Sure and In Probability
Convergence

Theorem: Suppose {Xn}n≥1 and X are random variables.

(a) The Cauchy criterion for random variables is: for all ε, δ > 0, there exists N such that for all n,m > N ,
we have

P {|Xn −Xm| > ε} < δ.

This is true if and only if Xn
P−−−→ X.

Proof: Assume Xn → X in probability. Let ε > 0 be given. By the triangle inequality,

{|Xn −Xm| > ε} ⊆ {|Xn −X| > ε/2} ∪ {|Xm −X| > ε/2}.

Taking probabilities and using subadditivity,

P {|Xn −Xm| > ε} < P {{|Xn −X| > ε/2} ∪ {|Xm −X| > ε/2}} ≤ P {|Xn −X| > ε/2}+P {|Xm −X| > ε/2} .

Now, for ε/2, and δ/2, there exists N such that for all n,m > N ,

P {|Xn −X| > ε/2} < δ/2.

Conversely, suppose {Xn}n≥1 is Cauchy in probability. We claim that there exists a subsequence
{Xnj} which converges almost surely. To see this, define n0 = 1 and

nj = inf
{
N > nj−1 | ∀n,m ≥ N P

{
|Xn −Xm| > 2−j

}
< 2−j

}
.

It follows that
P
{
|Xnj+1 −XnJ | > 2−j

}
< 2−j .

Hence,
∞∑
j=1

P
{
|Xnj+1

−Xnj | > 2−j
}
<∞.

Define
N := lim sup

j→∞
{|Xnj+1 −Xnj | > 2−j},

i.e.,
N = {ω ∈ Ω | |Xnj+1

(ω)−Xnj (ω)| > 2−j i.o.}.
By Borel-Cantelli,

P {N} = 0.

Well, observe that for all ω ∈ NC , the sequence {Xnj (ω)}j≥0} is a Cauchy sequence of real
numbers. So, there exists X(ω) such that Xnj (ω)→ X(ω), for all ω ∈ NC .

To show that having a convergence subsequence and being Cauchy in probability implies
convergence in probability note that

P {|Xn −X| > ε} ≤ P
{
|Xn −Xnj | > ε/2

}
+ P

{
|Xnj −X| > ε/2

}
.

The second summand on the right-hand side is < δ/2 by the almost sure convergence of the
subsequence. The first summand on the right-hand side is < δ/2 by the Cauchy subsequence, as
long as we pick nj to be the smallest index in the convergence subsequence which is > n. �
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(b) Xn
P−−−→ X if and only if for each subsequence {Xnk} there exists a further subsequence Xnk(i) such

that convergence is almost sure.

Proof: Suppose Xn → X in probability. Then, any subsequence {Xnj} converges in probability
(to X) as well. By part (a), {Xnj} is Cauchy in probability as well, and we already showed that
this implies that there exists a further subsequence that converges almost surely.

Conversely, suppose that for all subsequences {Xnj} there exists a further subsequence that
converges to X almost surely. We proceed by contradiction. Suppose Xn 6→ X in probability.
Then, there exists a subsequence {Xnk} and an ε > 0 and δ > 0 such that for all nk,

P {|Xnk −X| > ε} ≥ δ. (F)

However, by hypothesis, Xnk has a convergent subsequence. This is a contradiction to (F),
because

P
{
Xnk(i) converges to X

}
= 1− P

{
|Xnk(i) −X| > ε i.o.

}
By a Borel-Cantelli Argument, using the fact that

∞∑
i=1

P
{
|Xnk(i) −X| > ε

}
≥
∞∑
i=1

δ =∞,

we see that we have a contradiction. �

Section 6.5 - Lp Convergence

Definition: For p ∈ (0,∞), define Lp by

X ∈ Lp if E [|X|p] <∞.

The distance on this space is

d(X,Y ) = (E [|X − Y |p])1/p
.

The Lp norm is

‖X‖p := (E [|X|p])1/p
.

Definition: We say that Xn
Lp−−−→ X if

lim
n→∞

E [|Xn −X|p] = 0.

Example: Suppose {Xn}n≥1 are iid with E [Xn] = µ and Var(Xn) = σ2. Then,

1

n

n∑
i=1

Xi
L2−−−→ µ.

Proof: Define

Sn :=

n∑
i=1

Xi.

Then,

E

[∣∣∣∣ 1nSn − µ
∣∣∣∣2
]

=
1

n2
E
[
|Sn − nµ|2

]

=
1

n2
Var(Sn)

=
nσ2

n2
→ 0. �
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Remark: Observe that

[Xn
Lp−−−→ X] =⇒ [Xn

P−−−→ x].

To see this, use the generalized Chebyshev inequality:

P {|Xn −X| > ε} ≤ E [|Xn −X|p]
εp

→ 0.

The converse is false. Consider the space ([0, 1],B([0, 1]), λ). Define

Xn(ω) := 2n · 1(0,1/n](ω).

This is because

P
{
Xn(ω) >

1

n

}
=

1

n
→ 0,

yet

E [|Xn|p] =
2np

n
→∞.

Remark: Hoeffding’s Inequality provides exponential estimates, but without calculating E[eaX ]. This opents
the way for what are called “Concentration Inequalities”, which will appear in Homework 5.

Lemma: If E[X] = 0 and a ≤ X ≤ b, then

E[etX ] ≤ et
2(b−a)2/8.

Proof: First, by convexity,
etX ≤ αetb + (1− α)ta

where α =
X − a
b− a

and 1− α =
b−X
b− a

. Take expextations of each side:

E[etx] ≤ − aetb

b− a
+

beta

b− a
= eg(t(b−a)),

where

g(u) = −γu+ log(1− γ + γeu,

where

γ = − a

b− a
.

Note that g(0) = 0 and g′(0) = 0. Furthermore, g′′(u) ≤ 1/4 for all u > 0. By Taylor’s Theorem,
there exists ξ ∈ (0, u) such that

g(u) = g(0) + ug′(0) +
1

2
u2g′′(ξ)

≤ t2(b− a)2

8
. �

Lemma: (Chernoff’s Method) Let X be a random variables. Then,

P {X > ε} ≤ inf
t≥0

e−tεE[etX ].

Proof: Generalized Chebychev Inequality together with optimization over t. �
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Theorem: (Hoeffding’s Inequality) Let {Xn}n≥1 be iid such that E[Xn] = µ and a ≤ Xn ≤ b. Then, for all
ε > 0,

P

{∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε
}
≤ 2e

−2nε2

(b− a)2
.

Corollary: If {X1, . . . , Xn} are iid with a ≤ Xi ≤ b, then with probability at least 1− δ,∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≤
√

(b− a)2

2n
log

(
2

δ

)
.

Proof: Without loss of generality, µ = 0. Now, define

Xn :=
1

n

n∑
i=1

Xn.

So,
P
{∣∣Xn

∣∣ ≥ ε} = P
{
Xn ≥ ε

}
+ P

{
−Xn ≥ ε

}
.

Observe that

P
{
Xn ≥ ε

}
= P

{
t

n∑
i=1

Xi ≥ tnε

}

= P

e
t

n∑
i=1

Xi

≥ etnε



≤ e

−tnεE


e

t

n∑
i=1

Xi


(Gen. Cheb. and Chern. Ineq.)

= e−tnε
n∏
i=1

E
[
etXi

]
(independence)

= e−tnεE
[
etX1

]n
(independence)

≤ e−tnε
(
et

2(b−a)2/8
)
. (Lemma)

So,

P
{
Xn ≥ ε

}
≤ e−nt

2(b−a)2/8−tε.

By calculus, the exponent is minimized when t = 4ε/(b− a)2. Apply also to −Xn and then plug in. �

Inequalities:

(1) Cauchy-Schwartz Inequality:

|E[XY ]| ≤ E[|XY |] ≤ E[X2]1/2E[Y 2]1/2.

(2) Hölder’s Inequalitky:
E[|XY |] ≤ E[|X|p]1/pE[|Y |q]1/q

where
1

p
+

1

q
= 1.
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(3) Minkowski’s Inequality:
‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.

(4) Jensen’s Inequality: If f(x) is convex, then

E[f(x)] ≥ f(E[x]).



Chapter 7

Chapter 7 - Laws of Large Numbers
and Sums of Independent Random
Variables

Section 7.1 - Truncation and Equivalence

Definition: The truncation of a random variable is

Xn · 1{|Xn|≤n}.

Example: Suppose Var(Xn) = ∞, but nevertheless, Var(Xn · 1{|Xn|≤n}) < ∞ for all n. The truncations
will help.

Definition: Two sequences of random variables {Xn} and {X̃n} are tail equivalent if

∞∑
n=1

P
{
Xn 6= X̃n

}
<∞.

Proposition: (Equivalence) Suppose {Xn} and {X̃n} are tail equivalent. Then,

(1)

∞∑
n=1

(Xn − X̃n) converges almost surely,

(2)

∞∑
n=1

Xn converges if and only if

∞∑
n=1

X̃n converges,

(3) If there exists a sequence {an} ⊆ R such that an 1∞ and if there exists a random variable X such that

1

an

n∑
j=1

Xj → X almost surely,

then also
1

an

n∑
j=1

X̃j → X almost surely,

53
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Proof: By Borel-Cantelli, P
{
Xn 6= X̃n i.o.

}
= 0 implies that

P
{

lim inf
n→∞

(Xn = X̃n)
}

= 1.

Restrict to the set ω ∈
{

lim inf
n→∞

(Xn = X̃n)
}

. We have that there exists N(ω) such that for all n >

N(ω), Xn(ω) = X̃n(ω). This immediately yields (1).

Furthermore, for each such ω,

∞∑
n=N(ω)

Xn(ω) =

∞∑
n=N(ω)

X̃n(ω), which implies (2).

To prove (3), observe that

1

an

n∑
j=1

X̃j =
1

an

n∑
j=1

X̃j −Xj +
1

an

n∑
j=1

Xj .

The first term on the left-hand side goes to 0 almost surely as n → ∞, and the second term on the
right-hand side goes to X almost surely as n→∞. This completes the theorem. �

Section 7.2 - A General Weak Law of Large Numbers

Theorem: (General WLLN) Suppose {Xn}n≥1 are independent random variables and define Sn :=

n∑
j=1

Xj .

Then, if

(i)

n∑
j=1

P {|Xj | > n} → 0, and

(ii)
1

n2

n∑
j=1

E
[
X2
j · 1{|Xj |≤n}

]
→ 0,

then we have that
Sn − an

n
→ 0 in probability

where

an =

n∑
j=1

E
[
Xj · 1{|Xj |≤n}

]
.

Remark: In the special case where the random variables are iid, with E[X] = µ and Var(X) = σ2,
then

n∑
j=1

P {|X| > n} → 0 (in probability) iff nP {|X| > n} → 0 (in probability).

(To prove this special case, use Chebyshev.)

Proof: Define X̃nj := Xj1{|Xj |≤n}, and S̃n :=

n∑
j=1

X̃nj . Then,

n∑
j=1

P
{
X̃nj 6= Xj

}
=

n∑
j=1

P {|Xj | > n} → 0.
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We claim that Sn − S̃n
P−−−→ 0. To see this, note that

P
{
|Sn − S̃n| > ε

}
≤ P

{
Sn 6= S̃n

}
≤ P


n⋃
j=1

X̃nj 6= Xj


≤

n∑
j=1

P
{
X̃nj 6= XJ

}
P−−−→ 0.

Apply Chebyshev’s inequality to P
{

1

n

∣∣∣Sn − E[S̃n]
∣∣∣ > ε

}
. So,

P
{

1

n

∣∣∣Sn − E[S̃n]
∣∣∣ > ε

}
≤ Var(S̃n)

n2ε2

≤ 1

n2ε2

n∑
j=1

E
[
X̃nj

2
]

=
1

ε2
1

n2

n∑
j=1

E
[
X2
j 1{|Xj |≤n}

]
→ 0,

by hypothesis. Above, we used the fact that

Var(Y ) = E[Y 2]− (E[Y ])2 ≤ E(Y 2).

Therefore,

S̃n − an
n

P−−−→ 0.

Hence,

Sn − an
n

=
Sn − S̃n

n︸ ︷︷ ︸
%P 0

+
S̃n − an

n︸ ︷︷ ︸
%P 0

P−−−→ 0. �

Theorem: (Khintchin’s WLLN, with only first moment) Let {Xn} be iid and E[X1] = µ. Assume X1 ∈ L1,
i.e., E[|X1|] <∞. Then,

Sn
n

P−−−→ µ.

Proof: We need to check the two conditions.

(1)
n∑
j=1

P {|Xj | > n} = nP {|X1| > n}

= nE
[
1{|X1|>n}

]
= E

[
n1{|X1|>n}

]
= E

[
|X1|1{|X1|>n}

]
=→ 0,

because |X1|1{|X1|>n}(ω)
a.s.−−−−→ 0 and since |X1| ∈ L1(P) and |X1| is dominating.
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(2) For iid random variables, we’re actually showing (by linearity) that,

1

n
E
[
X21{|X|≤n}

]
→ 0.

Well,

1

n
E
[
X21{|X|≤n}

]
≤ 1

n

(
E
[
X21{|X|<ε

√
n}
]

+ E
[
X21{ε

√
n≤|X|≤n}

])
≤ 1

n

(
ε2n+ E

[
n|X|1{ε√n≤|X|≤n}

])
≤ ε2 + E

[
|X|1{ε√n≤|X|≤n}

]
→ ε2. (DCT)

Also,
1

n
an =

nE
[
X11{|X1|≤n}

]
n

→ E[X1] = µ

by DCT. �

Theorem: (Feller’s WLLN, without first moment) Let {Xn} be iid random variables, with

lim
x→∞

xP {|Xn| > x} → 0.

Then,
Sn
n
− E

[
X11{|X1|≤n}

] P−−−→ 0.

Section 7.3 - Almost Sure Convergence of Sums of Independent
Random Variables

Theorem: (Lévy’s Theorem) If {Xn} is an independent sequence of random variables, then∑
n

Xn converges a.s. iff
∑
n

Xn converges in probability.

This means that the following are equivalent:

(1) Sn is Cauchy in probability.

(2) Sn converges in probability.

(3) Sn converges a.s.

(4) Sn is a.s. Cauchy.

Remark: Formally, (1) says that

∀ε, δ∃Nε,δ such that ∀n,m > Nε,δ : P {|Sn − Sm| > ε} < δ.

(4) says that

∀ε∃Nε(ω) such that (for ω ∈ Ω̃ where P
{

Ω̃
}

= 1)∀n,m > Nε(ω) : |Sn(ω)− Sm(ω)| < ε.

Proof: (1) ⇐⇒ (2) by Theorem 6.3.1(a). Also, (3) ⇐⇒ (4) by the corresponding equivalence for
sequences of real numbers shown in analysis. We’ve already shown that (3) =⇒ (2) by Theorem
6.2.1. The complete the proof, we will shoe (1) =⇒ (4).
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Define
ξN := sup

m,n≥N
|Sm − Sn| .

We need to show that (1) implies that

ξN
a.s.−−−−→ 0.

Note that {ξN}N∈N is a positive non-increasing sequence of random variables. By Exercise 6.1,

[ξN
P−−−→ 0] iff [ξN

a.s.−−−−→ 0].

So, we will show that ξN
P−−−→ 0. Now,

ξN := sup
m,n≥N

|Sm − SN + SN − Sn|

≤ 2 sup
n≥N
|Sn − SN |

= 2 sup
j≥0
|SN+j − SN | .

We will now show that this goes to zero in probability. To this end, let ε > 0 and S ∈ (0, 1/2). The
fact that {Sn} is Cauchy in probability implies that there exists Nε,δ such that for all n,m > Nε,δ, we
have

P {|Sn − Sm| > ε/2} ≤ δ.

So, for any N > Nε,δ, we have that

P {|SN+j − SN | > ε/2} ≤ δ

for all j.

Define

X̃i := XN+i

S̃j :=

j∑
i=1

X̃i = SN+j − SN .

Now,

P
{

sup
j≥0
|SN+j − SN | > ε/2

}
= P

{
lim

N ′→∞
sup
j∈[N ′]

|SN+j − SN | > ε/2

}

= lim
N ′→∞

P

{
sup
j∈[N ′]

|SN+j − SN | > ε/2

}
.

= P
{

sup
0≤N ′

∣∣∣S̃j∣∣∣ > ε/2

}
.

For the next step, we will use Skorohod’s Inequality, which tells us that there exists c ∈ (0, 1) such
that

P
{

sup
0≤N ′

∣∣∣S̃j∣∣∣ > ε/2

}
≤ 1

1− c
P
{∣∣∣S̃n∣∣∣ > ε/4

}
,

where
c = sup

j≤N ′
P
{∣∣∣S̃N ′ − S̃j∣∣∣ > ε/4

}
.

Since we have c < δ by the Cauchy property, the whole thing goes to zero, i.e., ξN
P−−−→ 0. �
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Section 7.4 - Strong Law of Large Numbers

We will discuss two motivating examples.

(1) Logarithm Growth of New Records.

(2) Explosions in Arrival Processes.

Example (1): Let {Xn} be an iid sequence of random variables with common cdf F . We defined Xn to be
a record if

max
i∈[n]

Xi = Xn.

Define µn =

n∑
i=1

1{Xi is a record}. The Strong Law of Large Numbers will allow us to prove the following result

characterizing the rate at which records are broken:

lim
n→∞

µn
log(n)

= 1 a.s..

Example (2): Define {τn}n≥1 to be the independent sequence of random variables with P {τn > t} = e−λnt

for all t > 0, i.e., τn ∼ Exp(λn).

Think of τn as the times between events and let Nt be the number of events as of time t. The Strong Law
of Large Numbers will help us characterize when such a process explodes to infinity.

Lemma 7.4.1: (Kronecker’s Lemma) Suppose {an}n≥1 and {xn}n≥1 satisfy xn ∈ R and 0 < an 1 ∞. If
∞∑
n=1

xn
an

converges, then

lim
n→∞

1

an

n∑
k=1

xk = 0.

Proof: Define rn :=

∞∑
k=n+1

xk
ak
. Then, rn → 0, and given ε > 0, there exists Nε such that for all

n > Nε, we have |rn| ≤ ε. Now, note that

xn
an

= rn−1 − rn.

So, xn = an(rn−1 − rn) and thus

n∑
k=1

xk =

n∑
k=1

(rk−1 − rk)ak.

The rest follows by some calculations which can be found on pg. 214 of Resnick. �

Recall: (Kolmogorov Convergence Criterion) If {Xn}n≥1 is independent with

∞∑
n=1

Var(Xn) <∞, then

∞∑
n=1

(Xn − E[Xn])

converges almost surely.
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Corollary 7.4.1: (Strong Law of Large Numbers) Let {Xn}n≥1 be independent with E
[
X2
n

]
<∞. Suppose

that {bn} is a sequence that increases to ∞ such that

∞∑
k=1

Var

(
Xk

bk

)
<∞.

Then,
1

bn
(Sn − E[Sn])

a.s.−−−−→ 0.

Apply the Kolmogorov Convergence Criterion and Kronecker’s Lemma. �

Example (1): (Record Counts) Define

1k := 1{Xk is a record}

and

µn :=

n∑
k=1

1k.

Proposition: lim
n→∞

µn
log(n)

= 1 almost surely.

Proof: Assume P {1k} =
1

k
and recall that E [1k] =

1

k
. Note that

Var (1k) = E
[
12
k

]
− E [1k]

2

=
1

k
− 1

k2

=
k − 1

k2
.

We now check convergence.

∞∑
k=2

Var

(
1k

log(k)

)
=

∞∑
k=2

1

(log(k))
2 Var(1k)

=

∞∑
k=2

k − 1

k2 (log(k))
2 .

By the integral test, ∫ ∞
2

1

x (log(x))
2 dx =

∫ ∞
log(2)

1

u2
du <∞.

Therefore, we conclude that
∞∑
k=2

1k − E [1k]

log(k)
<∞.

By the Strong Law of Large Numbers,

1

log(n)

(
n∑
k=1

(1k − E [1k])

)
a.s.−−−−→ 0

and so

µn
log(n)

a.s.−−−−→

n∑
k=1

E [1k]

log(n)
.
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We need to show that the right hand side goes to 1 as n→∞. Well,

1

log(n)

n∑
k=1

1

k

1−−→ − γ

log(n)
→ 0,

where γ is Euler’s Constant.

Example (2): (Explosions in Arrival Times) Let {τn}∞n=1 be independent with τn ∼ Exp(λn). Say we have
a counting process

Sn =

n∑
k=1

τk

with S0 = 0. Define

N(t) :=

∞∑
n=0

1{Sn≤t}.

N(t)

t

S1

1

S2

2

S3

3

S4

4

S5

5

S6

6

We get an explosion when
n∑
k=1

τk <∞,

which implies that there exists T such that

lim
t→T

N(t) =∞.

Claim: P {explosion} =


1,

∞∑
n=1

1

λn
<∞

0,

∞∑
n=1

1

λn
=∞

. (It can only be 0 or 1 because it is a tail event.)

Proof: Suppose that P

{ ∞∑
k=1

τk <∞

}
= 1. We aim to show that

∞∑
k=1

1

λk
<∞.

By hypothesis, exp

(
−
∞∑
k=1

τk

)
> 0, and so

E

[
exp

(
−
∞∑
k=1

τk

)]
> 0.
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Thus,

0 < E

[
exp

(
−
∞∑
k=1

τk

)]

= E

[ ∞∏
k=1

e−τk

]

= E

[
lim
n→∞

n∏
k=1

e−τk

]

= lim
n→∞

E

[
n∏
k=1

e−τk

]
(by MCT)

= lim
n→∞

n∏
k=1

E
[
e−τk

]
(by independence)

= lim
n→∞

n∏
k=1

∫ ∞
0

e−tλke
−λkt dt

= lim
n→∞

n∏
k=1

λk
1 + λk

.

Now,

E

[
exp

(
−
∞∑
k=1

τk

)]
> 0⇐⇒ − log

(
E

[
exp

(
−
∞∑
k=1

τk

)])
<∞

⇐⇒ −
∞∑
k=1

log

(
λk

1 + λk

)
<∞

⇐⇒
∞∑
k=1

log

(
1 +

1

λk

)
<∞

⇐⇒
∞∑
k=1

1

λk
<∞.

The last step is by the Limit Comparison Test and the fact that

lim
x→0

log(1 + x)

x
= 1. �

Section 7.5 - Strong Law of Large Numbers for IID Sequences

Theorem: (Kolmogorov’s SLLN) Let {Xn}n≥1 be iid random variables, and define Sn :=

n∑
k=1

Xk. Then,

there exists µ ∈ R such that

Xn :=
Sn
n

a.s.−−−−→ µ

if and only if

E [|X1|] <∞.

When convergence does occur, µ = E [X1].
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Proof:

(=⇒) Suppose that
Sn
n

a.s.−−−−→ µ.

Lemma 7.5.1: Let {Xn} be iid. Then, the following are equivalent.

(a) E [|X1|] <∞.

(b) lim
n→∞

∣∣∣∣Xn

n

∣∣∣∣ = 0 almost surely.

(c)

∞∑
n=1

P {|X1| > εn} <∞, for all ε > 0.

Proof: (sketch) [(b) ⇐⇒ (c)] can be shown using the Borel 0-1 Law.

[(a) ⇐⇒ (c)] can be shown by using the tail formula for expectation

E [|X1|] =

∫ ∞
0

P {|X1| > x} dx

and comparing to the sum. �

So, by Lemma 7.5.1, E [|X1|] <∞ if and only if

lim
n→∞

∣∣∣∣Xn

n

∣∣∣∣ = 0 almost surely.

But, note that

Xn

n
=
Sn − Sn−1

n

=
Sn
n
− Sn
n− 1

· n− 1

n
a.s.−−−−→ µ− µ · 1

= 0. �

(⇐=) Suppose E [|X1|] <∞.

Step 1: (Truncation.)

Define X̃n := Xn1{|Xn|≤n}. We need to show that Xn and X̃n are tail equivalent, i.e., that

∞∑
n=1

P
{
Xn 6= X̃n

}
=

∞∑
n=1

P {|Xn| > n} <∞

by Lemma 7.5.1 [(a) =⇒ (c)]. Therefore,

Sn
n

a.s.−−−−→ µ ⇐⇒ S̃n
n

a.s.−−−−→ µ.
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Step 2: If the truncated series converges, then it converges to the right value.

Claim:

(
S̃n
n
− E [X1]

)
a.s.−−−−→ 0 ⇐⇒ 1

n

n∑
k=1

(X̃k − E
[
X̃k

]
)

0−−→.

Proof: Note that∣∣∣∣∣ 1n
n∑
k=1

(
X̃k − E

[
X̃k

])
− 1

n

n∑
k=1

(X̃k − E [Xk])

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
k=1

E
[
X̃k

]
− E[X1]

∣∣∣∣∣
→ 0.

The last step is by DCT. �

Step 3: The truncated series converges.

Confirm that
1

n

n∑
k=1

(
X̃k − E

[
X̃k

])
→ 0 by showing that

∞∑
k=1

Var

(
X̃k

k

)
<∞.

See Corollary 7.4.1. �

Applications of the Strong Law of Large Numbers

Renewal Theorem: Let {Xn}n≥1 be iid with Xn ≥ 0. Let E[X1] =: µ ∈ (0,∞) and let E[|X1|] < ∞. By
the Strong Law,

Sn
n

a.s.−−−−→ µ.

Thus, Sn →∞ almost surely.

Define a counting process

N(t) =

∞∑
n=1

1{Sn≤t}.

N(t)

t

S1

1

S2

2

S3

3

S4

4

S5

5

S6

6
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Observe that

{N(t) ≤ n} = {Sn+1 > t}

and thus

SN(t) ≤ t ≤ SN(t)+1.

We claim that lim
t→∞

N(t)

t
=

1

µ
almost surely.

Proof: Define

Ω1 := {ω ∈ Ω | Sn(ω)

n
→ µ},

Ω2 := {ω ∈ Ω | (N(t))(ω)→∞}.

Then, Ω0 := Ω1 ∩ Ω2 has P {Ω0} = 1. (We assumed that P {Ω1} = 1, but we need to show that
P {Ω2} = 1 for this to be true. But,

lim
t→∞

P {N(t) ≤ m} = lim
t→∞

P {Sm+1 > t} → 0.

We have N(t)
P−−−→∞ and by monotonicity of N(t), we see N(t)→ a.s.∞.)

Well,
SN(t)

N(t)

t→∞−−−−−→ µ a.s..

Now,
t

N(t)
≤
SN(t)

N(t)
→ µ

and
t

N(t)
≥
SN(t)−1

N(t)
=

SN(t)−1

N(t)− 1
· N(t)− 1

N(t)
→ µ · 1 = µ.

Thus
t

N(t)
→ µ and

N(t)

t
→ µ−1. So, we have shown the claim. �

Theorem 7.5.2: (Glivenko-Cantelli Theorem)

Question: Let {Xn}n≥1 be iid random variables with common cdf F (x). How many samples do we
need to take to estimate the cdf well? (This is called the Kolmogorov-Smirnoff Test.)

Empirical Distribution Formula: Define

F̂n(x) =
1

n

n∑
i=1

1{Xi≤x}.

Precise Statement:

sup
x∈R

∣∣∣F̂n(x)− F (x)
∣∣∣ a.s.−−−−→ 0.

In other words, the convergence of F̂n(x) to F (x) is uniform.

Proof: See the online notes here:

http://uflprob.files.wordpress.com/2013/01/glivenko-cantelli-shaikh.pdf.

http://uflprob.files.wordpress.com/2013/01/glivenko-cantelli-shaikh.pdf
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Section 7.6 - The Kolmogorov Three Series Theorem

Theorem: (Kolmogorov’s Three-Series Theorem) Let {Xn}n≥1 be independent. Then,

∞∑
n=1

Xn converges

almost surely if and only if there exists c > 0 such that:

(i)

∞∑
n=1

P {|Xn| > c} <∞,

(ii)

∞∑
n=1

Var
(
Xn1{|Xn|≤c}

)
<∞,

(iii)

∞∑
n=1

E
[
Xn1{|Xn|≤c}

]
converges.

Remark: If Xi ≥ 0 for all i, then (i) and (iii) suffice. This is Exercise 7.15.

Proof: The necessity is hard to prove. There is a version in the book. A more natural proof uses the
Central Limit Theorem. Once we learn this, we’ll come back.

The proof of sufficiency is much easier. Define

X̃n := Xn1{|Xn|≤c}.

The first step is to check the tail equivalence of {Xn} and {X̃n}, i.e, that they converge/diverge
together i.e., that

∞∑
n=1

P
{
X̃n 6= Xn

}
<∞.

But, by construction
∞∑
n=1

P
{
X̃n 6= Xn

}
=

∞∑
n=1

P {Xn > c} <∞.

It remains to show now that the truncated series

∞∑
n=1

X̃n converges. Note that

∞∑
n=1

Var
(
X̃n

)
=

∞∑
n=1

Var
(
Xn1{Xn≤c}

)
<∞

by assumption (ii). So, by Kolmogorov’s Convergence Criterion implies that

∞∑
n=1

(
X̃n − E

[
X̃n

])
converges almost surely.

Noting that by (iii) that

lim
n→∞

n∑
k=1

E
[
X̃k

]

exists, so too does lim
n→∞

n∑
k=1

X̃k. By the tail equivalence that we showed, the proof is complete. �
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Remark: As mentioned in the remark before the proof, if Xi ≥ 0 for all i, then we don’t need the hypothesis
(ii).

Proof: Suppose Xi ≥ 0. Then,

∞∑
n=1

Var
(
Xn1{|Xn|≤c|}

)
=

∞∑
n=1

E
[
X2
n1{Xn≤c}

]
− E

[
Xn12

{Xn≤c}

]
≤
∞∑
n=1

E
[
X2
n1{Xn≤c}

]
≤
∞∑
n=1

cE
[
Xn1{Xn≤c}

]
<∞

So, (ii) follows from (iii). We still need (i) to show tail-equivalent. �

Application: This applies to the convergence of series of “heavy-tailed random variables”, meaning that
E [|Xi|] =∞. Examples are the Cauchy distribution and the Pareto distribution.



Chapter 8

Chapter 8 - Convergence in
Distribution

Section 8.1 - Basic Definitions

Example: The following is an example of the type of problems that we are interested in.

Define Un such that

P
{
Un =

k

n

}
=

1

n

for k ∈ [n]. In what sense does Un → U := Unif([0, 1])?

We may attempt the following failed reasoning: Suppose we ask that for every A ∈ B((0, 1]), we have

P {Un ∈ A} → P {U ∈ A} .

Why does this fail? Choose A = Q ∩ [0, 1]. Then, for all n,

P {Un ∈ A} = 1

but
P {U ∈ A} = 0.

So, this attempt at a definition of convergence in distribution fails.

Four Notations Of Convergence in Distribution:

Reminder: F is a distribution function if:

(i) F is right-continuous,

(ii) F is non-decreasing,

(iii) lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

We use the notation F ((a, b]) = F (b)− F (a).

(1) Vague Convergence: (Chung ’68, Feller ’71) We say that

Fn
v−−→ F

if for every interval I with endpoints at which F is continuous

Fn(I)→ F (I).

67
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(2) Proper Convergence: (Feller ’71) Fn converges properly to F if Fn
v−−→ F (as above) and

additionally F (R) = 1.

(3) Weak Convergence: (Billingsly ’68) We say that

Fn
w−−−→ F

if, for all x ∈ C(F ) := {x ∈ R | F is continuous},

Fn(x)→ F (x).

(4) Complete Convergence: (Lōene, 77) We say that Fn converges completely to F if Fn
w−−−→ F

(as above) and F (R) = 1.

Theorem: If F (R) = 1, then (1)–(4) are equivalent.

Proof:

(4) =⇒ (2): Let a, b ∈ C(F ). Then,

Fn((a, b]) = Fn(b)− Fn(a)

→ F (b)− F (a)

= F ((a, b]).

To extend this to all intervals (not just those with endpoints in the continuity set), we need to
following lemma.

Lemma 8.1: A distribution function is uniquely determined by its values on a dense set.

Proof: Suppose that FD is defined on a dense set D, such that FD satisfies the definition
of a distribution on the set D. Define

F (x) := inf
y∈D
y>x

FD(y).

Now check that F (x) has all of the right properties. See the textbook for the full proof. �

This completes this portion of the proof.

(2) =⇒ (4) Assume that Fn(I) → F (I) for all I such that F is continuous on I. Suppose that
a, b ∈ C(F ). Then,

Fn(b) ≥ Fn((a, b])
F−−−→ ((a, b]).

Thus,
lim inf
n→∞

Fn(b) ≥ F ((a, b])

and hence, taking the limit as a→ −∞

lim inf
n→∞

Fn(b) ≥ F (b).

Now suppose that ` < b < r for `, r ∈ C(F ), and furthermore suppose that

F
(
(`, r]C

)
< ε.

Now,
Fn
(
(`, r]C

)
→ F

(
(`, r]C

)
.

So, given ε > 0, there exists N such that for all n > N , we have

Fn
(
(`, r]C

)
< 2ε.
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Thus

Fn(b) = Fn(b)− Fn(`) + Fn(`)

= Fn((`, b]) + Fn(`)

≤ F ((`, b]) + 2ε.

Hence
lim sup
n→∞

Fn(b) ≤ F ((`, b]) + ε.

Taking ε→ 0 and `→ −∞, we get

lim sup
n→∞

Fn(b) ≤ F (b).

So, we have equality.

The other equivalences are trivial. �

Section 8.2 - Scheffé’s Lemma

Scheffé’s Lemma: Suppose F and Fn are cdfs. Then,

sup
B∈B(R)

|Fn(B)− F (B)| = 1

2

∫
R
|fn(x)− f(x)| dx.

If fn(x)→ f(x) almost everywhere, then Fn
w−−−→ F .

Proof: Let B ∈ BR. Then, since∫
R
(fn(x)− f(x))dx =

∫
R
fn(x)dx−

∫
R
f(x)dx = 1− 1 = 0,

we have

0 =

∫
B

(fn(x)− f(x))dx+

∫
BC

(fn(x)− f(x))dx,

which implies that ∣∣∣∣∫
BC

(fn(x)− f(x))dx

∣∣∣∣ =

∣∣∣∣∫
B

(fn(x)− f(x))dx

∣∣∣∣ .
Thus,

2|Fn(B)− F (B)| =
∣∣∣∣∫
B

(fn(x)− f(x))dx

∣∣∣∣+

∣∣∣∣∫
BC

(fn(x)− f(x))dx

∣∣∣∣
≤
∫
B
|fn(x)− f(x)| dx+

∫
BC
|fn(x)− f(x)| dx

=

∫
R
|fn(x)− f(x)| dx.

Hence,

|Fn(B)− F (B)| ≤ 1

2

∫
R
|fn(x)− f(x)| dx.

In order to equality under the supremum, we need only find one set B where equality holds. Define

B = {x : fn(x) ≥ f(x)}.
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Verify that this works.

Now suppose fn(x)→ f(x) almost everywhere. Then, (f − fn)+ → 0 almost everywhere. Also,

(f − fn)+ ≤ f

since fn is a density and so is always positive. Additionally, f is integrable on R with respect to
Lebesgue measure.

Since

0 =

∫
R

(f(x)− fn(x))dx

=

∫
R

(f(x)− fn(x))+dx−
∫
R
(f(x)− fn(x))−dx,

it follows that ∫
R
|f(x)− fn(x)| dx =

∫
R
(f(x)− fn(x))+dx+

∫
R

(f(x)− fn(x))−dx

= 2

∫
R

(f(x)− fn(x))dx.

Thus, (f − fn)+ ∈ L1 and (f − fn)+ → 0 almost everywhere, so by dominated convergence,∫
R
|f(x)− fn(x)| dx→ 0. �

Example: (Order Statistics) Let {Un}n≥1 be a sequence of iid Unif([0, 1]) random variables. Among the
first n, rewrite these in ascending order

U(1,1)

U(1,2) ≤ U(2,2)

U(1,3) ≤ U(2,3) ≤ U(3,3)

· · · ,

etc. Let kn be a sequence of integers such that
kn
n
→ 0. Define

ξn :=
U(kn,n) −

kn
n√

kn
n

(
1− kn

n

)
1

n

.

Then, the density of ξn converges to a standard normal density

1√
2π
e−x

2/2.

Hence, by Scheffé’s Lemma,

sup
B∈B(R)

∣∣∣∣P {ξn ∈ B} − ∫
B

1√
2π
e−x

2/2dx

∣∣∣∣→ 0.
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Section 8.3 - The Baby Skorohod Theorem

Remark: This section explores the relationship between almost sure convergence and weak convergence.

Notation: If random variables Xn have cdfs Fn which converge weakly to some proper F , then we write
Xn =⇒ X where F is the cdf of X.

Proposition 8.3.1: Suppose X and {Xn}n≥1 are random variables. Then, if Xn
a.s.−−−−→ X, we have

Xn =⇒ X.

Proof: Suppose Xn
a.s.−−−−→ X, i.e., ∃N with P {N} = 0 such that ∀ω ∈ NC , we have Xn(ω)→ X(ω).

We want to show that for all x ∈ C(F ), we have

Fn(x)→ F (x).

Observe that

NC ∩ {ω : X(ω) < x− h} ⊆ NC ∩ lim inf
n→∞

{ω : Xn(ω) ≤ x}

⊆ NC ∩ lim sup
n→∞

{ω : Xn(ω) ≤ x}

⊆ NC ∩ {ω : X(ω) ≤ x}.

Taking probabilities,

F (x− h) ≤ P
{

lim inf
n→∞

{Xn ≤ x}
}

≤ lim inf
n→∞

P {Xn ≤ x} (by Fatou’s Lemma)

≤ lim sup
n→∞

P {Xn ≤ x}

≤ P
{

lim sup
n→∞

{Xn ≤ x}
}

(by Fatou’s Lemma)

≤ F (x).

Letting h→ 0, we see that F (x− h)→ F (x) because we assume x ∈ C(F ). So,

F (x) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x).

Thus, equality holds, and so Fn(x)→ F (x). �

Lemma: Suppose Fn is the cdf of Xn so that Fn
c−−→ F . If t ∈ (0, 1) ∪ C (F←0 ), then

F←n → F←0 .

Proof: Let t be given. Given ε > 0, there exists x ∈ C(F0) such that

F←0 (t)− ε < x < F←0 (t)

because C(F0)C is countable. By definition, if x < F←0 (t), then

F0(x) < t.

Also, x ∈ C(F0), and so Fn(x)→ F0(x). So, for sufficiently large n, we have that

Fn(x) < t.
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Thus,

F←0 (t)− ε < x ≤ F←m (t)

which implies that

F←0 (t) ≤ lim inf
n→∞

F←n (t).

To see the reverse inequality, let t′ > t. Then, there exists y ∈ C(F0) such that

F←0 (t′) < y < F←0 (t′) + ε.

This implies that

F0(y) ≥ t′ > t.

Since y ∈ C(F0), we have that Fn(y) → F (y). So, for sufficiently large n, Fn(y) ≥ y, which implies
that y ≤ F←n (t). So,

F←0 (t′) + ε > y ≥ F←n (t).

Thus,

lim sup
n→∞

F←n (t) ≤ F←0 (t′)

and so

lim sup
n→∞

F←n (t) ≤ F←0 (t). �

Baby Skorohod Theorem: Suppose {Xn}n≥1 are random variables defined on (Ω,F ,P) such that
Xn ⇒ X0. Then, there exist random variables {X#

n }n≥0 defined on ([0, 1],B([0, 1]), λ) such that for each
n ≥ 0,

Xn
d
= X#

n

and X#
n

a.s.−−−−→ X#
0 .

Proof: Define U ∼ Unif([0, 1]) and X#
n = F←n (U). Note that X#

n : [0, 1]→ R. Then,

Pλ
{
X#
n ≤ y

}
= λ {t ∈ [0, 1] : F←n (t) ≤ y}
= λ {t ∈ [0, 1] : t ≤ Fn(y)}
= Fn(y),

i.e, X#
n

d
= X0.

Now,

λ
{
t ∈ [0, 1] : X#

n (t) 6→ X#
0 (t)

}
= λ

{
t ∈ [0, 1] : F←n (t) 6→ F#

0 (t)
}

= λ {t ∈ [0, 1] : F←0 (t) is not continuous at t}
= 0,

since the set of discontinuities is either empty or countable. �

Continuous Mapping Theorem: Suppose Xn ⇒ X0. Let g : R→ R be such that

P {X0 ∈ Disc(g)} = 0

(recall that Disc(g) is the discontinuity set of the function g). Then, g(Xn) ⇒ g(X0), and furthermore, if g
is bounded, then

E [g(Xn)]→ E [g(X0)] .
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Proof: By Skorohod, there exists a sequence {X#
n } such that X#

n
d
= Xn, defined on [0, 1] such that

X#
n

a.s.−−−−→ X#
0 .

If X#
0 ∈ C(g), then X#

n → X#
0 implies g

(
X#
n

) a.s.−−−−→ g
(
X#

0

)
. So,

g
(
X$
n

)
==⇒ g

(
X#

0

)

g(Xn)

d
wwww

===⇒ g(X0)

d
wwww . �

Delta Method: Suppose
√
n

( 1
nSn − µ

σ

)
⇒ Z.

Then, if g has a nonzero derivative at µ, we have

√
n

(
g
(

1
nSn

)
− g(µ)

σg′(µ)

)
⇒ Z.

Proof: Define

Z#
n

d
=
√
n

( 1
nSn − µ

σ

)
︸ ︷︷ ︸

= Zn

,

where Z#
n is defined on ([0, 1],B([0, 1]), λ). Then, Z#

n
a.s.−−−−→ Z#. Well,

√
n

(
g
(

1
nSn

)
− g(µ)

σ

)
d
=
√
n

g
(
µ+

σZ#
n√
n

)
− g(µ)

σg′(µ)



=
√
n

g
(
µ+

σZ#
n√
n

)
− g(µ)

σZ#
n√
n




Z#
n√
n

g′(µ)


a.s.−−−−→ Z#

d
= Z.

Section 8.4 - Portmanteau Theorem

Portmanteau Theorem: Let {Fn} be a sequence of proper cdfs. Then, the following are equivalent.

(1) Fn ⇒ F0

(2)

∫
fdFn →

∫
fdF0. Equivalently, if Xn is a random variable with distribution Fn, then for f bounded

and continuous,
E [f(Xn)]→ E [f(X0)] .

(3) If A ∈ B(R), and F (∂(A)) = 0, then Fn(A)→ F0(A).

Proof:

(1) =⇒ (2): Apply the Continuous Mapping Theorem. �
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(2) =⇒ (1): Let a, b ∈ C(F0). We want to show that Fn((a, b])→ F0((a, b]). Consider {gk(x)} defined
by the picture below.

gk(x)

x

1

a− 1
k
a b b+ 1

k

Note that the gk’ are continuous, bounded, and that

lim
k→∞

gk(x) = 1[a,b].

Well,

Fn((a, b]) =

∫
R

1(a,b](x)dFn(x)

≤
∫
R
gk(x)dFn(x)

n→∞−−−−−→
∫
R
gndF0(x). (by assumption)

Note that gk(x) ≤ 1 and gk(x) % 1[a,b]. Thus,∫
R
gndF0(x)

k→∞−−−−−→
∫
R

1[a,b]dF0(x)

= F0([a, b]).

Also,
lim sup
n→∞

Fn((a, b]) ≤ F0([a, b]) = F0[(a, b]]

since a ∈ C(F0). To show that

lim inf
n→∞

Fn((a, b]) ≥ F0(a, b])

we need to pick hk(x) as follows.

gk(x)

x

1

a a+ 1
k b− 1

k
b

The rest of the argument is analogous. �

Example: Define {Xn}∞n=1 such that Xn ∈
{
i

n

}n
i=i

and for each i,

P
{
Xn =

i

n

}
=

1

n
.

Show that Xn ⇒ X, where X ∼ Unif([0, 1]).
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Proof: Note that F (x) = x for all x ∈ [0, 1]. Use the Portmanteau Theorem. Let f be bounded
and continuous on [0, 1]. Then,

E [f(Xn)] =

n∑
i=1

f

(
1

n

)
1

n
.

By Riemann Approximation, this converges to

∫ 1

0

f(x)dx (note dx = dF (x)) which equals E [f(x)].

So,

|E [f(Xn)]− E [f(X)]| =

∣∣∣∣∣
n∑
i=1

∫ i
n

i−1
n

(
f(x)− f

(
i

n

))
dx

∣∣∣∣∣
≤

n∑
i=1

∫ i
n

i−1
n

∣∣∣∣f(x)− f
(
i

n

)∣∣∣∣ dx.
Since f is continuous on [0, 1], it must also be uniformly continuous on this interval. So, let ε > 0 be
give Then, there exists δf > 0 such that for all x and y with |x−y| < δf , we must have |f(x)−f(y)| < ε.
Now, for ε > 0, choose nf large enough such that

1

nf
< δf .

Then for n > nf ,

n∑
i=1

∫ i
n

i−1
n

∣∣∣∣f(x)− f
(
i

n

)∣∣∣∣ dx ≤ n∑
i=1

∫ i
n

i−1
n

εdx

= ε. �

Section 8.5 - More Relations Among Modes of Convergence

Proposition 8.5.1: Let {Xn}n≥1 and X be random variables on (Ω,F ,P).

(i) If Xn
a.s.−−−−→ X then Xn

P−−→ X.

(ii) If Xn
P−−→ X then Xn ⇒ X.

Both converses are false.

Section 8.6 - New Convergences From Old

Theorem 8.6.1:

(a) If Xn ⇒ X and Xn − Yn
P−−→ 0, then Yn ⇒ X.

(b) Equivalently, if Xn ⇒ X and ξn
P−−→ 0, then Xn + ξn ⇒ X.
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Chapter 9 - Characteristic Functions
and the Central Limit Theorem

Section 9.1 - Review of Moment Generating Functions and the
Central Limit Theorem

Remark: The fundamental technical issue in studying the distribution of sums of random variables is the
following. Suppose X1 and X2 are independent with cdfs F1 and F2. Then,

P {X1 +X2 ≤ t} =
x

x+y≤t

(F1 × F2)(dx, dy)

=

∫ ∞
−∞

(∫ t−y

−∞
F1(dx)

)
F2(dy) (by Fubini’s Theorem)

=

∫ ∞
−∞

F1(t− y)F2(dy)

=: (F1 ∗ F2)(t).

Definition: The characteristic function of X is:

φx(t) = E
[
eitX

]
=

∫
R
eitxF (dx)

=

∫
R
eitxf(x)dx

=: f̂(t).

Recall: The moment generating function is

MX(t) = E
[
etX
]
.

(For negative values of t, this it the Laplace Transform.) The problem with this is that the moment generating
function doesn’t always (or even typically) exist. On the other hand,

|φx(t)| =
∣∣E [eitX]∣∣

= E
[∣∣eitX ∣∣]

= 1.

76
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Remark: Always remember that eitX = cos(tX) + i sin(tX).

Remark: Why is E
[
etX
]

called a moment generating function? The answer comes from the taylor expansion.

etX = 1 + tX +
t2X2

2
+
t3X3

3!
+ · · ·

E
[
etX
]

= 1 + tE [X] +
t2

2
E
[
X2
]

+
t3

3!
E
[
X3
]

+ · · ·

MX(0) = 1

M ′X(t) = E [X] + tE
[
X2
]

+
t2

2
E
[
X2
]

+ · · ·

M ′X(0) = E [X] .

In general,

dn

dtn
MX(0) = E [Xn]

and

dn

dtn
φX(0) = unE [Xn] .

Example: Let Z ∼ Norm(0, 1). Then,

φz(t) = E
[
eitZ

]
=

∞∑
n=0

(it)n

n!
E [Zn]

=

∞∑
k=0

(
(it)2k

(2k)!
· (2k)!

k! · 2k

)

=

∞∑
k=0

(
(−1)k

(
t2

2

)k
· 1

k!

)
= e−t

2/2.

(Baby) Central Limit Theorem: Let {Xn}∞n=1 be iid random variables with finite moments. Without
loss of generality, E [Xn] = 0 and E

[
X2
n

]
= 1. Define

Sn =

n∑
i=1

Xi.

We claim that

Sn√
n
⇒ N

where N ∼ Norm(0, 1).
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Section 9.3 - Expansion of eix

Method: We compute that

φn−αSn(t) = E

[
exp

(
it

(
1

nα

) n∑
i=1

Xi

)]

= E

[
exp

(
i

(
t

nα

) n∑
i=1

Xi

)]

= E

[
N∏
i=1

exp

(
i

(
t

nα

)
Xi

)]

=

n∏
i=1

E
[
exp

(
i

(
t

nα

)
Xi

)]
(by independence)

=

(
E
[
exp i

(
t

nα

)
X1

])n
= φX1

(
t

nα

)n
.

Expanding,

(
E
[
exp

(
i

(
t

nα

)
X1

)])n
=

(
1 +

it

nα
E [X1]− t2

2n2α
E
[
X2

1

]
− it3

3!n3α
E
[
X3

1

]
+ · · ·

)n
=

(
1− t2

2n2α
+ o

(
1

n3α

))n
=

(
1− t2

2n
+ o

(
1

n3/2

))n
(if α =

1

2
)

n→∞−−−−−→ e−t
2/2.

Section 9.5 - Two Big Theorems: Uniqueness and Continuity

Remark: We now illustrate the above ideas as presented in Probability: Theory & Examples by Rick Durrett.

Notation: F (x) = P {X ≤ x}. The associated probability measure will be denoted µ(dx), so that

F (x) =

∫ x

−∞
µ(dx).

If F has a density, then

F (x) =

∫ x

−∞
f(x)dx.
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Uniqueness of chfs: We look at the Inversion Formula: Let

φ(x) = E
[
eitX

]
=

∫
R
eitxµ(dx).

If a < b, then

lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t)dt exists

and equals µ((a, b)) +
1

2
µ({a, b}).

Proof:

Derivation:

Define

IT : =

∫ T

−T

e−ita − e−itb

it
φ(t)dt

=

∫ T

−T

∫
R

e−ita − e−itb

it
eitxµ(dx)dt

=

∫
R

∫ T

−T

e−ita − e−itb

it
eitxdtµ(dx)

=

∫
R

[∫ T

−T

sin(t(x− a))

t
dt−

∫ T

−T

sin(t(x− b))
t

dt

]
µ(dx)

Thoughts / Inspiration:∣∣∣∣e−ita − e−itbit

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

e−itydy

∣∣∣∣∣ ≤ b−a.

Use eix = cos(x) + i sin(x) and note
that the cos(x) terms cancel.

=

∫
R
(R(x− a, T )−R(x− b, T ))µ(dx)

=

∫
R
(2 sgn(x− a)S(T |x− a|)− 2 sgn(x− b)S(T |x− b|))µ(dx).

Define

R(θ, T ) =

∫ T

−T

sin(θt)

t
dt

S(T ) =

∫ T

0

sin(x)

x
dx.

Note if θ > 0, then

R(θ, T ) = 2S(Tθ)

and if θ < 0, then

R(θ, T ) = −R(|θ|, T ).

Hence,

R(θ, T ) = 2 sgn(θ)S(T |θ|).

Note lim
T→∞

∫ T

0

sin(x)

x
dx =

π

2
. So,

lim
T→∞

(R(x− a, T )−R(x− b, T )) =

 2π, x ∈ (a, b)
π, x ∈ {a, b}
0, x ∈ (−∞, a) ∪ (b,∞)

.
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Since R(θ, T ) ≤ 2 sup
y∈R

S(y) <∞, by BCLT,

IT
2π
→ µ((a, b)) +

1

2
µ({a, b}). �

Theorem: If

∫
|φ(t)|dt <∞, then µ has a density

f(y) =
1

2π

∫
R
e−ityφ(t)dt.

The key formula is

µ((x, x+ h)) =
1

2π

∫
R

e−itx − e−it(x+h)

it
φ(t)dt

=
1

2π

∫
R

∫ x+h

x

e−itydyφ(t)dt

=

∫ x+h

x

1

2π

∫
R
e−ityφ(t)dtdy.

Continuity Theorem: Suppose {µn}n≥1 is a sequence of probability measures with chfs {φ(n)}n≥1.

(i) If µn ⇒ µ, then φn(t)→ φ(t) for all t.

(ii) If φn(t)→ φ(t) for all t and for some φ which is continuous at 0, then the sequence of measures {µn}n≥1

is “tight” (see below), and µn ⇒ µ.

Example: Note that

φ(0) = E
[
ei·0·x

]
= 1.

However, for example, let µn be the probability measure for a sequence of Gaussian random variables with
mean 0 and variance n. Now, the density is

1

n
√

2π
e−x

2/(2n2)

and the chf is

φn(t) = e−n
2t/2.

Well, pointwise,

φ(t) := lim
n→∞

φn(t) =

{
1, t = 0
0, t 6= 0

.

So, in this example, φ(t) is not continuous at t = 0.

Theorem: (Helly’s Selection Theorem) Suppose Fn is a sequence of distribution functions. Then, there
exists a subsequence Fnk and a right continuous function F such that

lim
k→∞

Fnk(y) = F (y)

for all y ∈ C(F ).

Remark: F may not be a distribution function. For example, suppose a + b + c = 1 for a, b, c > 0
and define

Fn(x) = a1{X≥n} + b1{X≥−n} + cG(x)
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where G(x) is some distribution function. We have

Fn(x)→ b+ cG(x)

F (x)

but
lim

x→−∞
F (x) = b > 0

and
lim
x→∞

F (x) = b+ c < 1.

Proof: Let {qi} be an enumeration of the rationals. Note that for any k, {Fm(qk)}m≥1 ⊆ [0, 1].
Therefore, there exists a subsequence mk ⊆ mk−1 such that Fmk(i)(qk) converges to some limit point,
which we denote G(qk).

Now define Fnk := Fmk(k). We claim that Fnk(q)→ G(q) for all q. Note that

F (x) = inf
q>x
q∈Q

G(q).

It remains to show that Fn(x)→ F (x) for all x ∈ C(F ). Let

r1 < r2 < x < s

for r1, r2, s ∈ Q. Then,

F (x)− ε < F (r1) ≤ F (r2) < F (x) ≤ F (s) ≤ F (x+ ε).

Also
Fnk(r2)→ G(r2) > F (r1)

and
Fnk(s)→ G(s) ≤ F (s).

Hence
Fn(x)→ F (x). �

Definition: A sequence of probability measures {µn}n≥1 is tight if for all ε > 0, there exists a finite interval
(a, b) such that

µn((a, b]) > 1− ε
for all n sufficiently large.

Theorem: Every subsequential limit is the distribution function of a probability measure if and only if the
sequence {Fn}n≥1 is tight, i.e., for all ε, there exists M such that

lim sup
n→∞

(1− Fn(M))− Fn(−M) ≤ ε.

Proof:

(⇐=) Assume {Fn} is tight and Fnk → F weakly. Let r, s ∈ C(F ) such that

r < −M < M < s.

Since Fnk(r)→ F (r) and Fnk(s)→ F (s), we have that

1− F (s) + F (r) = lim
k→∞

(1− Fnk(s) + Fnk(r))

≤ lim sup
k→∞

(1− Fnk(s) + Fnk(r))

≤ ε. �
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(=⇒) (by contradiction) Suppose Fn is not tight. Then, there exists nk such that

1− Fnk(k) + Fnk(−k) ≥ ε.

But, by Helly’s Selection Theorem, there exists nkj such that Fnj ⇒ F for some F . So,

1− F (s) + F (r) = lim
j→∞

(1− Fnkj (s) + Fnkj (r))

≥ lim inf
j→∞

(1− Fnkj (kj) + Fnkj (−kj))

≥ ε.

Hence, F is not a distribution function. �

Remark: We now prove the Continuity Theorem that we stated above.

Continuity Theorem: Suppose {µn}n≥1 is a sequence of probability measures with chfs {φ(n)}n≥1.

(i) If µn ⇒ µ, then φn(t)→ φ(t) for all t.

(ii) If φn(t)→ φ(t) for all t and for some φ which is continuous at 0, then the sequence of measures {µn}n≥1

is “tight” (see below), and µn ⇒ µ.

Proof: Proving (i) is easy, using the Continuous Mapping Theorem. Note that eiθ is bounded
and continuous. Hence, for all t,

E
[
eitXn

]
- E

[
eitX

]

φn(t)

wwww
- φ(t).

wwww .

To prove (ii), we’ll first prove tightness by means of the estimate

µn

{
x | |x| > 2

u

}
≤ 1

u

∫ u

−u
(1− φn(t))dt ≤ 2ε

for sufficiently large n.

Note that

1

u

∫ u

−u
(1− eitx)dt = 2− 1

u

∫ u

−u
(cos(tx) + i sin(tx))dt

= 2− 1

u

[
sin(tx)

x

]t=u
t=−u

= 2− 2
sin(ux)

x
.

Now, integrate both sides with respect to µn(dx). Then,

1

u

∫ u

−u
(1− φn(t))dt = 2− 2

∫
R

sin(ux)

ux
µn(dx).

We can consider two estimates for the integral, for two different regions. On the interval

(
− 2

u
,

2

u

)
,

we have that

1− sin(ux)

ux
≥ 0.
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On the remaining region

(
−∞,− 2

u

)
∪
(

2

u
,∞
)

,

∣∣∣∣ sin(ux)

ux

∣∣∣∣ ≤ 1

|ux|
.

Hence,

1

u

∫ u

−u
(1− φn(t))dt = 2− 2

∫
R

sin(ux)

ux
µn(dx)

= 2

∫
R

(
1− sin(ux)

ux

)
µn(dx)

≥
∫
{x:|x|> 2

u}

(
1− 1

|ux|

)
µn(dx)

≥ 2

∫
{x:|x|> 2

u}

1

2
µn(dx)

= µn

{
x : |x| > 2

u

}
.

Recall the assumption that φ(t) is continuous at t = 0. Also note that

φ(0) = E
[
ei(0)X

]
= 1.

So, there exists δ > 0 such that for all t ∈ [−δ, δ], we have

|1− φ(t)| < ε

2
.

Pick u such that 0 < u < min
(
δ,
ε

2

)
. Then,∣∣∣∣ 1u
∫ u

−u
(1− φ(t))dt

∣∣∣∣ ≤ 1

u

∫ u

−u

ε

2
dt = ε.

Now, since φn(t)→ φ(t) for all t, this implies by the Dominated Convergence Theorem that

1

u

∫ u

−u
(1− φn(t))dt→ 1

u

∫ u

−u
(1− φ(t))dt.

Therefore, for sufficiently large n, we have that∣∣∣∣ 1u
∫ u

−u
(1− φn(t)) dt

∣∣∣∣ ≤ 2ε.

Therefore, {µn} is tight.

Fact: by (i), if a subsequence {µnk} is convergent, then it must converge to µ. Also, by tightness,
every subsequence contains a further subsequence that converges (which, by (i), converges to µ).

We claim that this implies that µn ⇒ µ.

Lemma: Let yn be a sequence of elements in a topological space. If every subsequence ynk has a
further subsequence ynkj such that ynkj → y, then yn → y.

Proof: Suppose not to the contrary that yn 6→ y. Then, there exists an open set G containing y
and a subsequence ynm such that ynm 6∈ G for all nm. But, by hypothesis, there exists a further
subsequence ynm` → y. This is a contradiction, since this would require ynm` to eventually visit
G for all but finitely many `. �
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Remark: The smoothness of φ at 0 is related to the decay of µ at ±∞.

Example: If

∫
|x|nµ(dx) <∞, then the chf φ of µ has derivatives of order n given by

φ(n)(t) =

∫
(ix)neitxµ(dx).

This implies that if X has n finite moments, then

φ(t) =

n∑
k=0

E
[
(itX)k

]
k!

+ o(tn)

where f ∼ o(tn) if lim
t→0

f(t)

tn
= 0.

To be precise, one can show that∣∣∣∣∣eix −
n∑
k=0

(ix)k

k!

∣∣∣∣∣ ≤ min

(
|x|n+1

(n+ 1)!
,

2|x|n

n!

)
.

For small values of x, the first term in the minimum is small. For large values of x, the second term in the
minimum is small. Hence,∣∣∣∣∣E [eitX]−

n∑
k=0

E
[
(itX)k

]
k!

∣∣∣∣∣ ≤ E

[∣∣∣∣∣eitX −
n∑
k=0

(itX)k

k!

∣∣∣∣∣
]

≤ tnE
[
min

(
t|X|n+1

(n+ 1)!
,

2|X|n

n!

)]
.

Note that this is o(tn) because

lim
t→0

E
[
min

(
t|X|n+1

(n+ 1)!
,

2|X|n

n!

)]
= 0,

since for any fixed t,

E
[
min

(
t|X|n+1

(n+ 1)!
,

2|X|n

n!

)]
=

∫
|x|<x̂

t|X|n+1

(n+ 1)!
µ(dx) +

∫ ∞
x>x̂

2|X|n

n!
µ(dx),

where

x̂ :=
2(n+ 1)

t
.

So, as t→ 0, we see that |x̂| → ∞. Hence, the integrands are converging to the first term of the minimum.

Corollary: Suppose E[X] = µ and E[X2] = σ2 <∞. Then, φ(t) = 1 + itµ− t2σ2

2
+ o(t2).

Remark: We’ve shown that if we have n moments, then φ(n) exists. However, φ′(0) may exist even if
E [|X|] =∞. Despite this, we have the following proposition.

Proposition: Suppose that lim sup
h%0

φ(h)− 2φ(0) + φ(−h)

h2
> −∞. Then, E

[
|X|2

]
<∞.

Proof: Firstly,

eihx − 2 + e−ihx

h2
=

(
eihx/2 − e−ihx/2

)2
h2

=

−4 sin2

(
hx

2

)
h2

.
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Hence,

∞ > − lim sup
h%0

φ(h)− 2φ(0) + φ(−h)

h2
= lim inf

h→0
4

∫ sin2

(
hx

2

)
h2

µ(dx) ≥
∫
|x|2µ(dx) = E

[
|X|2

]
. �

Central Limit Theorem for iid Sequences: Suppose {Xn}n≥1 is iid with E [Xn] = µ and Var [Xn] =
σ2 ∈ (0,∞). Then,

Sn − nµ
σ
√
n
⇒ Z

where Z ∼ N(0, 1).

Proof: Without loss of generality, suppose µ = 0. (Otherwise, define ∼ Xn = Xn − µ.) Then,

φ(t) = E
[
eitX1

]
= 1− σ2t2

2
+ o(t2).

Also,

E
[
e
it Sn
σ
√
n

]
= E

[
e
i t
σ
√
n
X1e

i t
σ
√
n
X2 · · · ei

t
σ
√
n
Xn
]

=

(
1− σ2

2

(
t

σ
√
n

)2

+ o

(
t2

σ2n

))n

=

(
1− t2

2n
+ o

(
1

n

))n
. (since t is fixed)

We now claim that as n→∞, the quantity above converges to e−t
2/2.

Lemma: Suppose that cn → c, where cn, c ∈ C. Then,(
1 +

cn
n

)n
→ ec.

Proof of Lemma: Let {z1, . . . , zn}, {w1, . . . , wn} ⊂ C with modulus ≤ θ ∈ R+. Then,∣∣∣∣∣
n∏
k=1

zk −
n∏
k=1

wk

∣∣∣∣∣ ≤ θn−1
n∑
k=1

|zk − wk| .

(The proof of this fact follows by induction.) Let

zk =
(

1 +
cn
n

)
and let

wk = ecn/n.

Pick γ > |c| so that for sufficiently large n, we have |cn| < γ and
∣∣∣cn
n

∣∣∣ < 1. So,

∣∣∣(1 +
cn
n

)n
− ecn

∣∣∣ ≤ (1 +
γ

n

)n−1 n∑
k=1

∣∣∣1 +
cn
n
− ecn/n

∣∣∣
≤
(

1 +
γ

n

)n−1

n
(cn
n

)2

≤ eγ
(
γ2

2n

)
→ 0. �

Now, the theorem follows immediately if we set cn = − t
2

2n
. �
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Section 9.8 - The Lindeberg-Feller CLT

Lindeberg-Feller Theorem: For every n, let {Xn,k} for 1 ≤ k ≤ n be independent random variables with
E [Xn,k] = 0. Suppose that

(i)

n∑
k=1

E
[
X2
n,k

]
→ σ2 > 0, and

(ii) For all ε > 0,

lim
n→∞

n∑
k=1

E
[
|Xn,k|2 1{|Xn,k|≥ε}

]
= 0.

Then,

Sn :=

n∑
k=1

Xn,k ⇒ N(0, σ2).

Historically, this was phrased: “The sum of a large number of small independent erros is approximately
normal.”

Proof: By the continuity theorem, it suffices to show that

n∏
k=1

φn,k(t) = exp

(
−t2σ2

2

)
.

Observe that∣∣∣∣φn,k(t)−
(

1− −t
2σ2

2

)∣∣∣∣ =

∣∣∣∣∣∣E [eitXn,k]−
1−

−t2E
[
X2
n,k

]
1

∣∣∣∣∣∣
≤

∣∣∣∣∣E [eitXn,k]−
(

1− E

[
−t2X2

n,k

2

])∣∣∣∣∣ (Jensen’s Inequality)

≤ E

[
min

(
|tXn,k|3

3!
,

2 |tXn,k|2

2!

)]

≤ E

[
|t|3 |Xn,k|3

6
1{|Xn,k|<ε} + |t|2 |Xn,k|2 1{|Xn,k|≥ε}

]

≤ |t|
3ε

6
E
[
|Xn,k|2 1{|Xn,k|<ε}

]
+ t2E

[
|Xn,k|2 1{|Xn,k|≥ε}

]
→ 0.

Therefore,

φn,k(t)
n→∞−−−−−→ 1−

t2σ2
n,k

2
.

Earlier, we showed that if {zn} and {wn} have modulus ≤ θ, then∣∣∣∣∣
n∏
k=1

zk −
n∏
k=1

wk

∣∣∣∣∣ ≤ θn−1
n∑
k=1

|zk − wk| .

Choose zn,k := φn,k(t) and wn,k := 1−
t2σ2

n,k

2
. We can then show (after some work) that∣∣∣∣∣

n∏
k=1

φn,k(t)−
n∏
k=1

(
1−

t2σ2
n,k

2

)∣∣∣∣∣→ 0.
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Exercise: If max
1≤k≤n

cn,k → 0 and

n∑
k=1

cn,k → λ, then

n∏
k=1

(1 + cn,k)→ eλ.

So, using the exercise, take cn,k := −
t2σ2

n,k

2
. This completes the theorem. �

Theorem: Without the hypothesis that the random variables are identically distributed, suppose E [Xk] = 0
and E

[
X2
k

]
= σ2, and suppose that there exists δ > 0 such that E

[
X2+δ
k

]
≤ c. Then,

Sn√
n
⇒ N(0, σ2).

Converse of Three Series Theorem: Let {Xk} be independent and define

X̃k := Xk1{|Xk|≤c}.

Then,

(i)

∞∑
k=1

P {|Xk| > c} <∞,

(ii)

∞∑
k=1

E
[
X̃k

]
converges,

(iii)

∞∑
k=1

Var
(
X̃k

)
converges.

Suppose (i) fails. Then, since

∞∑
k=1

P {|Xk| > c} =∞, we have that

P {|Xk| > c infinitely often} = 1.

Hence,

∞∑
k=1

Xk cannot converge, a contradiction.

Suppose (iii) fails but (i) holds. [See book.]



Chapter 10

Chapter 10 - Martingales

Section 10.1 - The Radon-Nikodym Theorem

Definition: A Martingale prcoess is fair game, i.e., it has the property

E [Xn | Fm] = Xm,

where Fm is everything that has happened as of time m ≤ n.

Example: Let X,Y be the outcomes of two independent fair dice. Define S := X+Y and M := min(X,Y ).
Then,

P {S = 5 | X = 2} =
P {S = 5 ∧X = 2}

P {X = 2}

=
P {Y = 3 ∧X = 2}

P {X = 2}

=
1
36
1
6

=
1

6
.

We can also calculate that, for example,

P {M = 5 | X = 2} = 0.

Consider the conditional expectations E [S | X] and E [M | X]. We compute the intermediate step:

E [S | X = 1] =

∞∑
x=0

k · P {S = k | X = 1}

=

7∑
k=2

k · P {Y = k − 1 ∧X = 1}
P {X = 1}

=

6∑
i=1

(i+ 1) · P {Y = i ∧X = 1}
P {X = 1}

= E [Y ] + 1.

In general, for k ∈ [6],
E [S | X = k] = E[Y ] + k

and so we say
E [S | X] = E[Y ] +X.

88
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Similarly, for E [M | X],

E [M | X = 1] = 1

E [M | X = 2] = 1 · P {Y = 1}+ 2 · P {Y ∈ {2, 3, 4, 5, 6}} =
11

6

E [M | X = 3] = 1 · P {Y = 1}+ 2 · P {Y = 2}+ 3 · P {Y ∈ {3, 4, 5, 6}} =
15

6

E [M | X = 4] =
18

6

E [M | X = 5] =
20

6

E [M | X = 6] =
21

6
.

So,

E [M | X] =



1, with probability 1/6

11

6
, with probability 1/6

15

6
, with probability 1/6

18

6
, with probability 1/6

20

6
, with probability 1/6

21

6
, with probability 1/6

.

Thus,

E [E [M | X]] =

∫
E [M | X] dPx =

91

36
.

We can also calculate that

E [M ] =
91

36
.

In general, if G ⊆ F , then for all A ∈ G, ∫
A

MdP =

∫
A

E [M | G] dP.

Example: Let T1, T2 ∼ Exp(λ) be iid. Set S = T1 + T2 and M = min(T1, T2). Then, P {T1 ≤ t} = 1− e−λt
and the density is f(t) = λe−λt. Then, we have the conditional probability “formula”

P {S ≤ t | T1 = t1} “ = ”
P {S ≤ t ∧ T = t1}

P {T = t1}
.

Remember that

P {T1 ∈ [t, t+ ∆]} =

∫ t+∆

t

f(s)ds.

So,

P {S ∈ I | T ∈ I1} =
P {S ∈ I ∧ T1 ∈ I1}

P {T1 ∈ I1}

=
P {T2 ∈ I r I1 ∧ T1 ∈ I1}

P {T1 ∈ I1}
.
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Remark: To construct conditional expectation, we need the notion of a Radon-Nikodym derivative.

Definition: Let (Ω,F) be a measure space and suppose µ and ν are two positive bounded measures on
(Ω,F). We say that ν is absolutely continuous with respect to µ, denotes ν � µ if

[µ(A) = 0] =⇒ [ν(A) = 0].

Example: The binomial distribution ν (with n trials an success probability p) is not absolutely continuous
with respect to the Gaussian distribution, since µ(1) = 0, while ν(1) = np(1− p)n−1 > 0.

Example: On the other hand, if λ is the Lebesgue measure on [0, 1], then λ � µ, but µ 6� λ, because, for
example, λ((−1, 0)) = 0 but µ((−1, 0)) > 0.

Remark: Any two Gaussian measures are mutually absolutely continuous in finite dimensions, but it is
possible for them to be mutually singular in infinite dimension.

Definition: We say that ν concentrates on A ∈ F if ν(AC) = 0. We say that ν and µ are mutually singular,
denotes µ ⊥ ν , if there exist events A,B ∈ F such that A ∩ B = ∅, and ν concentrates on A, while µ
concentrates on B.

Theorem 10.1.1: (Lebesgue Decomposition Theorem) Suppose that µ and ν are positive, bounded measures
on (Ω,F).

(a) There exists a unique pair of positive bounded measures λa and λs on F such that

λ = λa + λs

and λa � µ, while λs ⊥ µ. Furthermore λa ⊥ λs.

(b) There exists a nonnegative F-measurable function X with∫
Xdµ <∞

such that

λa(E) =

∫
E

Xdµ

for all E ∈ F , and X is unique up to sets of µ-measure 0.

Radon-Nikodym Theorem Let (Ω,F ,P) be a probability space. Suppose ν is a positive bounded measure,
and ν � P. Then, there exists an integrable random variable X ∈ F such that

ν(E) =

∫
E

XdP

for all E ∈ F . X is P-almost-surely unique, and is written

X =
dν

dP
,

or

dν = XdP.
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Sketch of Proof: Consider the following proposition.

Proposition: Let H be a Hilbert space with inner product (·, ·). If L : H → R is a lienar functional
on H, then there exists a unique y ∈ H such that L(x) = (x, y).

Proof: If L(x) = 0, then y = 0, and the proof is complete. Otherwise, without loss of generality,
suppose H is real and define

M := x ∈ H : L(x) = 0.

Since L is linear, M is a subspace. Since L is continuous, M is closed. Since L 6≡ 0, M 6= H.

Therefore, for all z′ 6∈M , by the Projection Theorem we have that there exists z1 ∈M and
z2 ∈M⊥ such that

z′ = z1 + z2.

Hence M⊥ is nontrivial.

For some z 6∈M , define

y :=
L(z)

(z, z)
z.

It follows that

L(y) =
L(z)

(z, z)
L(z).

Meanwhile,

(y, y) =
L(z)2

(z, z)2
(z, z) =

L(z)2

(z, z)
= L(y).

Define x1 and x2 such that

x =

(
x− L(x)

(y, y)
y

)
︸ ︷︷ ︸

=: x1

+

(
L(x)

(y, y)
y

)
︸ ︷︷ ︸

=: x2

.

Now,

L(x1) = L(x)− L(x)

(y, y)
(y, y) = 0,

L(x2) = L(x)
L(y)

(y, y)
= L(x),

(x, y) = (x1, y) + (x2, y) = 0 + (x2, y) =
L(x)(y, y)

(y, y)
= L(x).

Uniqueness can alao be shown. �

Lemma: (Integral Comparison) Consider (Ω,F ,P) with G ⊆ F a σ-subfield. Suppose X,Y ∈ G are
integrable. Then, X = Y almost surely if and only if∫

A

XdP =

∫
A

Y dP

for all A ∈ G.

Proof: Supose ν � P and define

Q(A) :=
ν(A)

ν(P)
.
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Then, Q is a probability measure and Q� P. Set

P∗ =
1

2
(P + Q) .

Define H := L2(P∗), i.e., H contains all X ∈ F such that∫
Ω

X2dP∗ <∞.

Consider the inner product

(Y1, Y1) :=

∫
Ω

Y1Y2dP∗.

Note by Cauchy-Schwarz that∫
Ω

Y1Y2dP∗ ≤
(∫

Ω

Y 2
1 dP∗

)1/2(∫
Ω

Y 2
2 dP∗

)1/2

<∞.

Define for Y ∈ L2 (P ∗),

L (Y ∗) :=

∫
Ω

Y dQ.

By the previous Proposition, there exists Z ∈ L2 (P∗) such that

L(Y ) = (Y,Z) =

∫
Ω

Y ZdP∗ =
1

2

∫
Ω

Y ZdP +
1

2

∫
Ω

Y ZdQ.

By the definition of Z,
1

2

∫
Ω

Y ZdP =

∫
Ω

Y dQ.

So, ∫
Ω

Y

(
1− Z

2

)
dQ =

∫
Ω

Y Z

2
dP.

Let A ∈ F , and define Y = IA. Then,∫
A

(
1− Z

2

)
dQ =

∫
A

Z

2
dP.

Thus, ∫
A

Y dQ = Q(A) =

∫
A

ZdP∗.

Next (see book for details),

Y =

(
Z

2

)n
1A

and so

Q(A) =

∫
A

Z

2− Z
dP.

Corollary: Suppose Q and P are probability measures on (Ω,F), and suppose that Q � P. Let G ⊆ F be
a σ-subfield, and let Q

∣∣
G and P

∣∣
G be restrictions of Q and P to G. Then, in the space (Ω,G),

Q
∣∣
G � P

∣∣
G

and
dQ
∣∣
G

dP
∣∣
G

is G-measurable.
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Remark: This relates to conditional expectation in the following way. Let X ∈ L1. Define

ν(A) :=

∫
A

XdP

for all A ∈ F . Then, ν is finite and ν � P. We want it to be true that∫
G

XdP =

∫
G

E [X | G] dP

for all G ∈ G, so

E [X | G] =
dν
∣∣
G

dP
∣∣
G
,

which exists by the Radon-Nikodym Theorem.

Sections 10.2 / 10.3 - Definition / Properties of Conditional
Expectation

Definition: Conditional Probability is defined as follows, on the probability space (Ω,F ,P) and σ-subfield
G.

P {A | G} = E [1A | G] .

(a) P {A | G} is G-measurable and integrable.

(b)

∫
G

P {A | G} dP = P {A ∩ G}.

Properties: (for more details, read Section 10.3 of the textbook)

(i) Linearity

(ii) If X ∈ G and X ∈ L1, then E [X | G] = X almost surely.

(iii) E [X | {∅,Ω}] = E [X].

(iv) Monotonicity

(v) Modulus Inequality:
E [X | G] ≤ E [|X| | G] .

(vi) Monotone Convergence Theorem

(vii) Fatou’s Lemma

(viii) Dominated Convergence Theorem

(ix) Product Rule: Suppose X and Y are random variables such that X,XY ∈ L1. If Y ∈ G, then

E [XY | G] = Y E [X | G] almost surely.

Let A ∈ G. Suppose we know that for any A ∈ G, we have∫
A

Y E [X | G] dP =

∫
A

XY dP. (F)

Then, ∫
A

Y E [X | G] dP =

∫
A

XY dP =

∫
A

E [XY | G] dP.
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Now, assume Y = 1∆, where ∆ ∈ G. Then, A ∩∆ ∈ G, and∫
A

Y E [X | G] dP =

∫
A∩∆

E [X | G] dP (by the definition of Y )

=

∫
A∩∆

XdP (by conditional expectation)

=

∫
A

XY dP.

This shows that (∗) holds for simple random variables.

Next, suppose that

Y =

k∑
i=1

ci1∆i

holds by linearity. The, suppose that X and Y are nonnegative. Then, there exists a sequence of simple
random variables Yn such that Yn 1 Y . Use Monotone Convergence. (The proof in the general case
follows the typical line of reasoning.)

(x) Smoothing: Suppose G1 ⊆ G2 ⊆ F . Then, if X ∈ L1¡ we have

E [E [X | G2] | G1] = E [X | G1] = E [E [X | G1] | G2] .

Colloquially, the smaller σ-field always wins. In particular,

E [E [X | G1]] = E [X] .

Proof: Take A ∈ G1. Then, E [X | G1] is G1-measurable, and∫
A

E [E [X | G2] | G1] dP =

∫
A

E [X | G2] dP (by definition)

=

∫
A

XdP (since A ⊆ G1 ⊆ G2)

=

∫
A

E [X | G1] dP. � (by definition)

Theorem: Suppose E
[
X2
]
< ∞. Then, E [X | G] is the random variable Y ∈ G that minimizes the mean-

squared error E
[
(X − Y )2

]
.

Proof: Let Z ∈ L2(G), where

L2(G) = {Y ∈ G | E
[
Y 2
]
<∞}.

Then, by the Product Rule,

ZE [X | G] = E [ZX | G] .

Note that E [|ZX|] <∞ by Cauchy-Schwarz. Taking expectations,

E [ZE [X | G]] = E [E [ZX | G]] = E [ZX] .

Thus,

E [Z (X − E [X | G])] = 0

for all Z ∈ L2(G). Now suppose that Y ∈ L2(G) and define

Z = Y − E [X | G] .
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Thus,

E
[
(X − Y )2

]
= E

[
(X − (Z + E [X | G]))

2
]

= E
[
((X − E [X | G])− Z)

2
]

= E
[
(X − E [X | G])

2
]
− 2E [Z (X − E [X | G])]︸ ︷︷ ︸

= 0

+E
[
Z2
]
.

This quantity is minimized when E
[
Z2
]

= 0. �

Sections 10.4 / 10.5 - Martingales and Examples

Common Betting Scheme: Double-down until you win. We now express this formally.

Let {Xi}∞i=1 be the outcomes of a fair game, taking values in {−1, 1} with probability 1
2 .

Let {Bi}∞i=1 be the bets placed on each game.

Let {Si}∞i=1 be the running total money in hand, so that

Sn = S0 +

n∑
i=1

BiXi.

Define S0 = 0 (thus assuming we can go into debt).

Define τ := min{i : Xi = 1}. We set B1 := 1 and we have the recurrence

Bi =

{
2i−1, τ > i− 1

0, otherwise
.

By definition,
Sτ = 1.

In this construction, we’ve made the following assumptions:

- The Xi are iid.

- The Bi are finite (possibly unbounded) and are based entirely on past events, i.e., Bi ∈ σ(X1, . . . , Xi−1).

- The Si are finite (possibly unbounded) and are based entirely on past events.

Let (Ω,F ,P) be a probability space. {Xi}∞i=1 are integrable F-measurable random variables. The sequence
of σ-fields

Fi := σ(X1, X2, . . . , Xi)

satisfies the condition
F1 ⊆ F2 ⊆ · · · ⊆ F .

Any such sequence of σ-subfields is called a filtration. A sequence of random variables {Bi}∞i=1 that satisfies
Bi ∈ Fi is called adapted to the filtration {Fi} (in our construction, we need to shift an index by 1).

Definition: Let {Mi}∞i=1 be a sequence of random variables satisfying:

(1) E [|Mi|] <∞, for all i.

(2) {Mi}∞i=1 is adapted to some filtration {Fi}∞i=1.

(3) E [Mi+1 | Fi] = Mi.
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We call {Mi}∞i=1 a martingale with respect to the filtration {Fi}∞i=1.

Exercise:Let Xi ∈ {−1, 1} with P {Xi = 1} =
1

2
and Xi iid. Let Bi ∈ Fi−1. Let

Sn = S0 +

n∑
i=1

BiXi.

Then, {Sn}∞n=1 is a martingale with respect to Fn.

Observation: Let N be an integer. Suppose M1 = m is given. Then,

E [MN ] = m.

(If the game is fair, your balance shouldn’t change.) This can be shown formally using the Smoothing
Property:

E [MN ] = E [E [MN | FN−1]] = E [MN−1] = · · · = E [M1] = m.

Exercise: If k < n, then E [Mn | Fk] = Mk.

Remark: We’ve found an apparent contradiction. By the previous logic,

E [Sτ ] = E [S0] = 0,

but we computed that
Sτ = 1.

Optional Sampling Theorem: If τ is a certain kind of random time (called a stopping time) and we have
a martingale (Mn,Fn) which is “nice” (for now, this means bounded), then

E [Mi] = E [M1] .

Definition: From here on out, we use the definitions:

Martingale: E [Xn | Fk] = Xk, ∀k ≤ n.
Supermartingale: E [Xn | Fk] ≤ Xk, ∀k ≤ n.

Submartingale: E [Xn | Fk] ≥ Xk, ∀k ≤ n.

Sections 10.6 / 10.7 / 10.8 - Theorems on Martingales

Theorem: If (Xn,Fn) is a martingale and φ is a convex function with E [|φ(Xn)|] <∞ for all n ∈ N, then
(φ(Xn),Fn) is a submartingale.

Proof: By Jensen’s Inequality,

E [φ(Xn+1) | Fn] ≥ (E [Xn+1 | Fn]) = φ(Xn). �

Corollary: If p ≥ 1 and (Xn,Fn) is a martingale with E [|Xn|p] <∞, then (Xp
n,Fn) is a submartingale.

Theorem: If (Xn,Fn) is a submartingale and φ is an increasing convex function with E [φ(Xn)] <∞ for all
n ∈ N, then (φ(Xn),Fn) is a submartingale.



SECTIONS 10.6 / 10.7 / 10.8 - THEOREMS ON MARTINGALES 97

Exercise: Find a submartingale Xn such that X2
n is a submartingale.

Solution: Define Xn := − 1

n
. This is an increasing sequence. However, X2

n =
1

n2
is decreasing.

Corollary:

(a) If (Xn,Fn) is a submartingale, then (Xn − a)+ is a submartingale.

Xn

n

a

×

×

×

×

× ×

×

×

×

(b) If (Xn,Fn) is a supermartingale, then Xn ∧ a is a supermartingale.

Xn

n

a

×

×

×

×

×
×

×

×

×

Definition: Define

(H ·X)n :=

n∑
k=1

Hn(Xk −Xk−1).

If (Xn,Fn) is a supermartingale and Hn is Fn-predictable (i.e., Hn ∈ Fn−1) and Hn is nonnegative and
bounded, then ((H ·X)n,Fn) is a supermartingale.

Remark: Observe that

E [(H ·X)n+1 | Fn] = E [(H ·X)n +Hn+1(Xn+1 −Xn) | Fn]

= E [(H ·X)n | Fn] + E [Hn+1(Xn+1 −Xn) | Fn]

= (H ·X)n +Hn (E [Xn+1 −Xn]) .

Now, Hn+1 ≥ 0 by hypothesis, and so

E [Xn+1 −Xn | Fn] ≤ 0.

Thus
E [(H ·X)n+1 | Fn] ≤ (H ·X)n. �
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Corollary: If (Xn,Fn) is a martingale, and Hn is nonnegative, bounded, and Fn predictable, then
((H ·X)n,Fn) is a martingale.

Definition: We say that a random variable τ is a stopping time of {Fn}n≥1 if {τ = n} ∈ Fn.

Example: Define F := min{n : Xn ≥ 10} and L := max{n : Xn ≥ 10}, with Fn = σ(X1, X2, . . .). Then, F
is a stopping time of Fn and L is not.

The Upcrossing Lemma: Let (Xn,Fn) be a submartingale. Define a sequence of upcrossings {Un} on an
interval (a, b) to be

Un := sup{k : N2k ≤ n}

where {Nk} is defined by this picture:

a

b

N1 N2 N3 N4

×
×

×
××
×
×
×

×
×

stuff

×
×

×
××
×
×
×

×
×

H K H

Then,

(b− a)E [Un] ≤ E
[
(Xn − a)+

]
E
[
(X0 − a)+

]
where

X+
n := max(Xn, 0).

Proof: Define Yn := a+ (Xn − a)+. Yn is a submartingale. Now define

(H · Y )n :=
n∑
k=1

Hk(Yk − Yk−1)

where Hn = 1{n∈(Nodd,Neven)}. Note

(b− a)Un ≤ (H · Y )n.

Define Kn := 1−Hn . Then,

Yn − Y0 = (H · Y )n + (K · y)n.

Now, because (K · Y )n is also a submartingale,

E [(K · Y )n] ≥ E [(K · Y )0] = 0.

Hence,

E [Yn − Y0] ≥ E [(H · Y )n] ≥ (b− a)E [Un] .
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Martingale Convergence Theorem: If (Xn,Fn) is a submartingale with supn E [X+
n ] < ∞, then as

n→∞, Xn converges almost surely to a random variable X with E [|X|] <∞.

Proof: Since (X − a)+ ≤ X+ + |a|, the Upcrossing Inequality implies that

E [Un] ≤ E [X+
n ] + |a|
b− a

. (∗)

As n → ∞, we have that Un 1 U , which is the total number of upcrossings over [a, b] by the whole
sequence {Xn}n≥1.

A priori, U may be ∞. However, by hypothesis,

sup
n

E [X+
n ] + |a|
b− a

=
supn(E [X+

n ] + |a|
b− a

<∞.

Therefore,

E [U ] <∞

and

P {U <∞} = 1.

This holds for all pairs a, b ∈ Q with a < b.

Now consider the event

ΩNL :=
⋃
a,b∈Q

{
ω : lim inf

n→∞
Xn(ω) < a < b < lim sup

n→∞
Xn(ω)

}
.

(NL stands for “no limit”.) Note that P {ΩNL} = 0, since such a path visits values above some b and
below some a infinitely often, meaning U(ω) =∞, i.e., for all ω ∈ ΩNL, we have U(ω) =∞.

Therefore,

lim inf
n→∞

Xn = lim sup
n→∞

Xn

almost surely, i.e.,

X := lim
n→∞

Xn

exists. It remains to show that E
[∣∣∣ lim
n→∞

Xn

∣∣∣] <∞.

By Fatou’s Lemma, E [X+] ≤ lim inf
n→∞

E
[
X+
n

]
<∞. Hence, X <∞ almost surely.

On the other side,

E
[
X−n
]

= E
[
X+
n

]
− E [Xn]

≤ E
[
X+
n

]
− E [X0] . (since Xn is submartingale)

Hence,

E
[
X−
]
≤ lim inf

n→∞
E
[
X+
n

]
− E [X0]

≤ sup
n

E
[
X+
n

]
− E [X0]

<∞. �

Corollary: If (Xn,Fn) is a supermartingale with Xn ≥ 0, then as n→∞, we have Xn → X almost surely
and E [X] ≤ E [X0].
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Doob’s Decomposition: Any submartingale (Xn,Fn) can be written uniquely as Xn = Mn + An where
(Mn,Fn) is a martingale and An is Fn-predictable with An = 0.

Proof: Define An − An−1 := E [Xn | Fn−1] − Xn−1. Then, Mn := Xn − An. To show that An is
Fn-predictable, observe that

An =

n∑
k=1

E [Xn | Fk−1]−Xk−1

and for each k the summand is Fk−1 ⊆ Fn−1. Thus, An ∈ Fn−1.

Meanwhile,

E [Mn+1 | Fn] = E [Xn+1 −An+1 | Fn]

= E [Xn+1 | Fn]− E [An+1 | Fn]

= (An+1 −An +Xn)−An+1

= Xn −An
= Mn. �

Sections 10.9 - 10.16 - More on Martingales

Definition: Let ξni for i, n ≥ 0 be iid nonnegative integer-valued random variables (a doubly-indexed family).
Define Z0 := 1 and

Zn+1 :=

{
ξn+1
1 + · · ·+ ξn+1

Zn
, Zn > 0

0, otherwise
.

Definition: Let ξni for i, n ≥ 0 be iid nonnegative integer-valued random variables (a doubly-indexed family).
Define Z0 := 1 and

Zn+1 :=

{
ξn+1
1 + · · ·+ ξn+1

Zn
, Zn > 0

0, otherwise
.

We say that the family {Zn} is a branching process.

Theorem:

{
Zn
µn

}
is a martingale. We use

Fn =

n⋃
`=0

{ξ`i}∞i=0.

Proof: We need to show that

E
[
Zn+1

µn+1
| Fn

]
=
Zn
µn

which is equivalent to showing that

E [Zn+1 | Fn] = µZn.

Observe that

Zn+1 =

∞∑
k=0

Zn+11{Zn=k} =

∞∑
k=1

Zn+11{Zn=k}.
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Hence,

E [Zn+1 | Fn] = E

[ ∞∑
k=1

Zn+11{Zn=k} | Fn

]

=

∞∑
k=1

E
[
Zn+11{Zn=k} | Fn

]

=

∞∑
k=1

E
[
1{Zn=k}Zn+1 | Fn

]

=

∞∑
k=1

1{Zn=k}E
[(
ξn+1
1 + · · ·+ ξn+1

k

)
| Fn

]

=

∞∑
k=1

kµ1{Zn=k}

= µZn.

Thus,
Zn
µn

is a martingale. �

Theorem: A nonnegative martingale converges almost surely.

Theorem 3.7 / 3.8: If µ ≤ 1, then lim
n→∞

Zn = 0 almost surely.

Proof: If µ < 1, then
Zn
µn

blows up when Zn 6= 0 (recall Zn is nonnegative-integer-valued). So, if

Zn 6= 0 on a set of positive measure, we must have that
Zn
µn

diverges to infinity, which is a contradiction.

Hence Zn = 0 almost surely, and we’re done.

Now consider the case µ = 1. By the previous theorem, we have Zn → Z∞. Therefore Zn = Z∞ for
all n larger than some sufficiently large Nω. If Zn = k then

Zn+1 = ξn+1
1 + · · ·+ ξn+1

k = k. �

Theorem 3.9: If µ > 1, then

P {Zn > 0, for all n} > 0.

Define φ(s) =
∑
k≥0

pks
k.

(a) Let θm := P {Zm = 0} (the probability of extinction as of generation m). Then,

θm =

∞∑
k=0

pk (θm−1)
k
.

Proof: To see this, we can think about the recursive one-step analysis: We have Z0 = 1 and

P {Zm = 0} =

∞∑
k=0

P {Z1 = k} θkm−1. �



102 CHAPTER 10. CHAPTER 10 - MARTINGALES

(b) Note θm = φ(θm−1). It’s always true that φ′(1) = µ. If µ > 1, then there is a unique ρ < 1 such that
φ(ρ) = ρ.

Proof: φ(0) ≥ 0 and φ(1) = 1. By hypothesis, φ′(1) > 1. Therefore, for sufficiently small ε > 0,

φ(1− ε) < 1− ε.

This implies the existence of at least one fixed point by the Intermediate Value Theorem.

We want to calculate φ′′(θ). We see that

φ′′(θ) =

∞∑
k=2

k(k − 1)pks
k−2.

There exists k > 2 such that pk > 0. φ is convex. Hence there is only 1 fixed point. �

(c) θm → ρ

Proof: We know θ0 = 0 and φ(ρ) = ρ. φ is increasing (when φ(0) < ρ) and so

θn+1 = φ(θn) ≥ θn

and so {θn}n∈N is an increasing sequence. Use Newton’s method (also known as cobwebbing
analysis). �

Remark: We are working toward Doob’s Inequality and the Maximal Inequality. We need some
preliminaries.

Proposition: If (Xn,Fn) is a submartingale and N is a stopping time with

P {N ≤ k} = 1,

then

E [X0] ≤ E [XN ] ≤ E [Xk] .

Example: Let Sk = 1 +

n∑
k=1

ξk, with ξk ∈ {±1}, each with probability 1
2 . Define

N :=

∫
{n : Sn = 0}.

Then, E [S0] = 1, but E [SN ] = 0, because N is an unbounded stopping time, and so the previous
proposition does not hold.

Proof: Recall that if (Xn,Fn) is a submartingale, then so is (Xn∧N ,Fn). So,

(i) E [X0] = E [XN∧0] ≤ E [XN∧k] = E [XN ].

For (ii), define

Hn = 1{N<n} = 1{N≤n−1}

which is predictable. Now, (H ·X)n is a submartingale. �
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Doob’s Inequality: Let (Xn,Fn) be a submartingale. Define X̂n := max
0≤k≤n

X+
k . Let λ > 0 and

A := {X̂n ≥ λ}. Then,
λP {A} ≤ E [Xn1A] ≤ E [Xn+] .

The term on the left is a “path property” and the term on the right is an “endpoint evaluation”.

Proof: Define
N := inf{k : Xn ≥ λ or k = n}.

Since XN ≥ λ on A, we have
λP {A} ≤ E [XN1A] .

On AC , XN = Xn. The second inequality is obvious. �

Example: Let Sn = ξ1 + · · · + ξn, where the ξi are iid with E [ξi] = 0 and E
[
ξ2
i

]
< ∞. Then, defining

Xn := S2
n, we have that (Xn, σ(ξ1, · · · , ξn)) is a submartingale. So, Doob’s Inequality tells us that

P
{

max
1≤k≤n

|Sn| ≥ λ
}
≤ Var(Sn)

λ2
.

Lp Maximum Inequality: Let (Xn,Fn) be a submartingale. Let p > 1. Then,

E
[
X̂p
n

]
≤ p

p− 1
E
[(
X+
n

)p]
.

Proof: Consider X̂n ∧M for some M > 0. Note that when M > λ¡ we have

{X̂n ∧M ≥ λ} = {X̂n ≥ λ}.

So,

E
[
(X̂n ∧M)p

]
=

∫ ∞
0

pλp−1P
{
X̂n ∧M ≥ λ

}
dλ

≤
∫ ∞

0

pλp−1

(
λ−1

∫
Ω

X+
n 1{X̂n∧M≥λ}dP

)
dλ

=

∫
Ω

X+
n

∫ X̂n∧M

0

pλp−2dλdP (by Fubini’s Theorem)

=
p

p− 1

∫
Ω

X+
n

(
X̂n ∧M

)p−1

dP

≤ p

p− 1
E
[(
X+
n

)p]1/p E [(X̂n ∧M
)q(p−1)

]1/q

(by Hölder’s Inequality, with q :=
p

p− 1
)

=
p

p− 1
E
[(
X+
n

)p]1/p E [(X̂n ∧M
)p]1−1/p

≤
(

p

p− 1

)p
E
[(
X+
n

)p]
.

Now let M →∞ and use the Monotone Convergence Theorem. �

Corollary: Define X∗n := max0≤k≤n |Xk|. Then,

E [(X∗n)
p
] ≤

(
p

p− 1

)p
E [|Xn|p] .
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Definition: A family {Xt : t ∈ T} of L1 random variables indexed by T is uniformly integrable, or ui, if

sup
t∈T

E
[
|Xt|1{|Xt|>a}

]
→ 0

as a→∞. In other words, ∫
{|Xt|>a}

|Xt|dP→ 0

as a→∞, uniformly in t ∈ T .

Simple Sufficient Criteria for Uniform Integrability:

(1) If T = {1}, then ∫
{|X1|>a}

|X1|dP→ 0

since X1 ∈ L1.

(2) (Dominated Families) If there exists a dominating random variable Y ∈ L1 such that |Xt| < Y for all t,
then {Xt} is uniformly integrable.

(3) (Finite Families) If Xi ∈ L1 for all i ∈ [n], then {Xi}ni=1 is uniformly integrable.

(4) (More Domination) Suppose that for each t ∈ T , we have Xt ∈ L1 and Yt ∈ L1, and |Xt| ≤ |Yt|. Then,
if {Yt} is uniformly integrable, so is {Xt}.

(5) (Crystal Ball Condition) Let p > 0 and suppose

sup
n

E
[
|Xn|p+δ

]
<∞

for some δ > 0. Then, the family {|Xn|p} is uniformly integrable.

Proof:

sup
n

∫
{|Xn|p>a}

|Xn|pdP = sup
n

∫
∣∣∣∣∣∣
Xn

a1/p

∣∣∣∣∣∣≥1


|Xn|p dP

= sup
n

∫ |Xn|δ

aδ/p


|Xn|p · 1 dP

≤ sup
n

∫
Ω

|Xn|p ·
|Xn|δ

aδ/p
dP.

Now apply the given condition. �

Example: Let Xn be a sequence with E [Xn] = 0 and Var(Xn) = 1 for all n. Then, {Xn} is uniformly
integrable.
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Theorem: If Xn → X in probability (with Xn, X ∈ L1), then the following are equivalent.

(i) {Xn} is uniformly integrable.

(ii) Xn → X in L1.

(iii) E [|Xn|]→ E [|X|].

Proof:

(i) ⇒ (ii) Define

φM (x) :=

 M, x ≥M
x, x ∈ (−M,M)
−M, x ≤ −M

.

Then,
|Xn −X| ≤ |Xn − φM (Xn)|+ |φM (Xn)− φM (X)|+ |φM (X)−X|,

Well,
|Xn − φM (Xn)| = (|Xn| −M)

+ ≤ |Xn|1{|Xn|>M}
and

|X − φM (X)| ≤ |X|1{|X|>M}.
For sufficiently large M ,

E [|Xn − φM (Xn)|] ≤ ε
by uniform integrability, and

E [|X − φM (X)|] ≤ ε

Since X ∈ L1. Since Xn
P−−→ X and since φM is bounded, we have

E [|φM (Xn)− φM (X)|]→ 0

which shows that (i) ⇒ (ii). �

(ii) ⇒ (iii) Observe that |X| is convex. So,

|E [|Xn|]− E [|X|]| ≤ |E [|Xn −X|]| → 0. �

(iii) ⇒ (i) Now define

ψM (x) :=

 0, x ≥M
x, x ∈ [0,M − 1]

linear interpolation, x ∈ (M − 1,M)
.

By the Dominated Convergence Theorem, for M sufficiently large,

E [|X|]− E [ψM (|X|)] ≤ ε

2
.

By the Bounded Convergence Theorem,

E [ψM (|Xn|)]→ E [ψM (|X|)] /

Using (iii), we have that for all n > N sufficiently large,

E
[
|Xn|1{|Xn|≥M}

]
= E [|Xn|]− E [ψM (|Xn|)]

≤ E [|X|]− E [ψM (|X|)] +
ε

2
< ε.

By taking M sufficiently large, we can show that

E
[
|Xn|1{|Xn|>M}

]
< ε

for all n ∈ [N ]. �
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Theorem: For a submartingale (Xn,Fn), the following are equivalent.

(i) {Xn} is uniformly integrable.

(ii) Xn converges almost surely to some X ∈ L1.

(iii) Xn → X in L1.

Lemma: If {Xn} ⊆ L1 and Xn
L1

−−−→ X, then

E [Xn1A]→ E [X1A]

for all A ∈ F .

Proof:

|E [Xn1A]− E [X1A]| ≤ E [|Xn −X|1A]

≤ E [|Xn −X|]
→ 0. �

Lemma: If (Xn,Fn) is a martingale and Xn
L1

−−−→ X, then,

Xn = E [X | Fn] .

Proof: The martingale property implies that if n ≥ k, then

E [Xn | Fk] = Xk.

Now suppose 1A ∈ Fk. Then,

E [Xn1A | Fk] = Xk1A.

Taking expectations,

E [E [Xn1A | Fk]] = E [Xk1A]

and so

E [Xn1A] = E [Xk1A] .

By the previous lemma, [
Xn

L1

−−−→ X

]
=⇒

[
Xn1A

L1

−−−→ X1A

]
.

Thus, for all A ∈ Fk,

E [Xk1A] = E [X1A] ,

i.e., ∫
A

XkdP =

∫
A

XdP.

Recall the definition of conditional expectation: E [X | Fk] is (unique) random variable satisfying∫
A

XdP =

∫
A

E [X | Fk] dP.

Hence,

E [X | Fk] = Xk. �
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Remark: The two results below follow from the previous lemma.

Theorem: Suppose Fn 1 F∞, where F∞ := σ

(⋃
n∈N
Fn

)
. Then, as n→∞, we have

E [X | Fn]→ E [X | F∞] .

Theorem: (Lévy’s 0-1 Law) If Fn 1 F∞ and A ∈ F∞, then

E [1A | Fn]→ 1A.

Optional Stopping Times

Theorem: If L,M are stopping times with L ≤M almost surely and (YM∧n,Fn) is a uniformly integrable
submartingale. Then,

E [YL] ≤ E [YM ]

and
YL ≤ E [YM | FL] .
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