
MAT 6932 - Number Theory Seminar

Jay Pantone
University of Florida

Last Edited: August 19, 2012



2



Contents

1 Some Basic Theorems 1
1.1 Roots of Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Some Theorems of Cantor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Decimal Representations 4
2.1 Decimal Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Decimal Expansions and a Criterion for Irrationality . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Decimal Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Irrationality of π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Irrationality of π2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Irrationality of the Trig Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Irrationality of the Hyperbolic Trig Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Engel Series Expansions 17
3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Some Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Cantor Product Representation 22
4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Some Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Evaluation of a Special Cantor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Connection With Engel Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Sylvester Series 28
5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Some Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 An Irrationality Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Continued Fractions 34
6.1 General Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Convergence of General Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Continued Fractions for e and π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 Conversion of Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5 Bessel Functions: Their Quotients and Their Irrationals . . . . . . . . . . . . . . . . . . . . 43
6.6 Some Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.7 Simple Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.8 Finite Continued Fraction Expansion of Rationals . . . . . . . . . . . . . . . . . . . . . . . . 55
6.9 Minkowiski Question Mark Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.10 Continued Fraction for e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.11 Irrational Numbers and Continued Fraction Convergence . . . . . . . . . . . . . . . . . . . . 59

7 Best Approximations 62
7.1 Definition and Some Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 A Procedure to Generate Best Approximations . . . . . . . . . . . . . . . . . . . . . . . . . 67

i



ii CONTENTS

7.3 Connection with Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Equivalence of Real Numbers 70
8.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.2 Connection with Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.3 The Markov Constant of a Real Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9 Farey Fractions 80

10 Transcendental Numbers 85
10.1 Khintchin’s Metric Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.2 The First Transcendental Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

11 Irrationality Type and Measure 88
11.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
11.2 The Thue-Siegel-Roth-Dyson Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.3 Methods for Obtaining Irrationality Type and Measure . . . . . . . . . . . . . . . . . . . . . 91
11.4 ζ(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.5 ζ(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.6 Transcendence of e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
11.7 Transcendence of π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.8 ζ(2π) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

12 The Transcendence Theorems of Lindemann and Weierstrass 123

13 The Gelfond-Schneider Theorem 128

14 Transcendence Degree and Transcendental Functions 133
14.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
14.2 Schanuel’s Conjecture and its Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
14.3 Transcendental Functions and their Exceptional Sets . . . . . . . . . . . . . . . . . . . . . . 135

15 Uniform Distribution 138
15.1 Basic Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
15.2 An Application of Kronecker’s Theorem to Geometry . . . . . . . . . . . . . . . . . . . . . . 142
15.3 Simultaneous Approximation of Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 144
15.4 Kronecker’s Theorem in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
15.5 Uniform Distribution Modulo 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
15.6 The Weyl Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
15.7 Similar results on Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
15.8 Uniform Distribution of Sequences Using Weyl’s Criterion . . . . . . . . . . . . . . . . . . . 163
15.9 A Theorem of van der Corput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
15.10 Successive Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
15.11 Metric Theorems on Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

16 Diophantine Approximations and Transcendence 175
16.1 Koksma’s General Metric Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
16.2 The Pisot-Vijayaraghavan Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
16.3 Normal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
16.4 Uniform Distribution of Integer Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
16.5 Connection Between Uniform Distribution Mod 1 of Reals and Uniform Distribution Mod m of Integer Sequences
16.6 An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A Frank Patane: Irrationality Measure 196

B Todd Molnar: Periodic Continued Fractions 198



CONTENTS iii

C Duc Huynh: Ford’s Theorem 200

D Jay Pantone: History of π 203

E Meng Liu: Certain Trigonometric Values 220

F Ying Guo: Transcendence of
∞∑

n=0

α2n 223

G Ali Uncu: Ramanujan Sums 226

H Hongyan Hou: Bernoulli Coefficients 230

I Frank Patane: Bernoulli Polynomials 233

J Todd Molnar: The Sathe/Selberg-Delange Theorem 237

Index 242



iv CONTENTS



Chapter 1

Some Basic Theorems

1.1 Roots of Integers

Theorem 1: (Euclid)
√
2 is irrational.

Proof: Suppose toward a contradiction that
√
2 is rational. Then,

√
2 =

p

q
for some p, q ∈ Z with

gcd(p, q) = 1. Now,

√
2 =

p

q
=⇒ 2 =

p2

q2

=⇒ 2q2 = p2

=⇒ p2 is even

=⇒ p is even

=⇒ p2 = 4r2 = 2q2, for some r ∈ Z

=⇒ 2r2 = q2

=⇒ q2 is even

=⇒ q is even

=⇒ gcd(p, q) 6= 1.

We have reached a contradiction. Thus
√
2 is not rational. �.

Theorem 2: If n ∈ Z and n is not a perfect kth power for some k ∈ Z+, then k
√
n is irrational.

Proof: Suppose that k
√
n =

a

b
, for some a, b ∈ Z. Define νp(m) := the largest power of a prime p that

divides m. So, nbk = ak. Now now that for all primes p, we have νp(a
k) | k. Similarly, νp(b

k) | k.
Hence νp(n) | k. Now, since all primes p divide n a multiple of k times, we have that n is a perfect kth

power. Thus we have proved the contrapositive. �

Corollary: If n, k ∈ Z+, then either k
√
n ∈ Z or k

√
n is irrational.
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2 CHAPTER 1. SOME BASIC THEOREMS

Theorem 3: (Rational Root Theorem) If P (x) ∈ Z[x] is written as P (x) = a0 + a1x + · · · + anx
n, and if

P
(
p
q

)
= 0, for p

q ∈ Q with gcd(p, q) = 1, then q | an and p | a0.

Proof: Let P (pq ) = a0 + a1
p
q + · · ·+ an

pn

qn . Then,

−a0qn = a1q
n−1p+ · · ·+ anp

n. (3.1)

Now observe that the right-hand side of (3.1) is a multiple of p, and thus so is the left-hand side. Since
gcd(p, q) = 1, we have p | a0. Similarly, since q | LHS(3.1) and q divides all terms but anp

n in the
right-hand side of (3.1), we must have q | anpn. Since gcd(p, q) = 1, it follows that q | an. �

Corollary: If P (x) ∈ Z[z] is monic, then the rational roots, if any, are integers which divide a0 = P (0).

Example: P (x) = x2 − 2. By the Rational Root Theorem, there are no integer roots (we only need to
test ±1,±2). So, the two roots must be irrational, and thus

√
2 is irrational.

Exercise: Show that
√
2 +

√
3 is irrational.

Archimedean Property: If α, β are positive reals, then there exists n ∈ N+ such that nα < β.

Theorem 4: Between any two real numbers, there exists both a rational and an irrational number.

Proof: Without loss of generality, let 0 < α < β. Then, β − α > 0. So, there exists n ∈ Z+ such that
n(β − α) > 1. Now, nβ > nα+ 1. Since nβ and nα differ by more than 1, there is an integer m such
that nα < m < nβ. Thus, α < m

n < β.

To find an irrational number between α and β, find n such that n(β−α) >
√
2 and proceed similarly. �

Corollary: Between any two rationals there exists an irrational. Between any two irrationals there exists a
rational.
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1.2 Some Theorems of Cantor

Theorem A: (Cantor) The set of rationals Q is countable.

Proof: First list the rationals in [0, 1] is lexicographical order by denominator then numerator:

0

1
,
1

1
,
1

2
,
1

3
,
2

3
,
1

4
,
3

4
, . . . .

To get all of Q, take each fraction in the list, and follow it by its negative, its reciprocal, and its
negative reciprocal:

0

1
,
1

1
, −1

1
,
1

2
, −1

2
,
2

1
, −2

1
,
1

3
, −1

3
,
3

1
, −3

1
, . . . .

This is all of Q, enumerated on the integers. Thus Q is countable. �

Theorem B: (Cantor) R is uncountable.

Theorem C: (Cantor) The set R rQ of irrationals is uncountable.

Remark: Just because two things have the same cardinality doesn’t mean it’s easy to find a bijection
between them. For example, consider the sets [0, 1] and (0, 1). To find a bijection between these two sets,
pick a countably infinite set X := {0, 1, x1, x2, . . .} ⊂ [0, 1]. Then, let

ϕ(r) :=





r, r 6∈ X
x1, r = 0
x2, r = 1

xi+2, r = xi

.



Chapter 2

Decimal Representations

2.1 Decimal Representations

Definition: A decimal representation is a series

∞∑

i=1

ai
10i

,

where ai satisfies 0 ≤ ai ≤ 9 and for infinitely many ai, we have ai < 9 (this prevents duplicate series such
as .6729999 . . . = .673).

Remark: Note that:

0 ≤
∞∑

i=1

ai
10i

<

∞∑

i=1

9

10i
= 1.

Theorem 5:

(i) Every decimal representation converges to a real number α ∈ [0, 1).

(ii) Every real α ∈ [0, 1) admits a decimal representation.

(iii) The decimal representation in (ii) is unique.

Proof: We’ve already shown part (i). Next, denote [x] := the greatest integer ≤ x and {x} :=
x− [x] ∈ [0, 1).

Uniqueness:

Let α = .a1a2a3 . . .. So, 10α = a1 + .a2a3 . . . and thus a1 = [10α] and α1 := .a2a3 . . . = {10α}.
So, a1 and α1 are uniquely determined. Iterating, we see that all ai are uniquely defined by

ai+1 = [10αi]
αi+1 = {10αi} . (5.1)

Existence

Given an α, define ai as in (5.1) with α =: α0. Clearly 0 ≤ ai ≤ 9, since 0 ≤ αi < 1.
So 0 ≤ 10αi < 10. Now we claim α = .a1a2 . . ., and we use induction. Note that

α− .a1 = α− a1
10

=
10α− α1

10
.

4



2.1. DECIMAL REPRESENTATIONS 5

Now we claim that α− .a1a2 . . . an =
{10an−1}

10n
. To see this, observe that

α− .a1a2 . . . an = α−
(a1
10

+ · · ·+ an−1

10n−1

)
− an

10n
.

By the Induction Hypothesis, this equals

{10αi−2}
10n−1

− an
10n

=
10αn−1 − [10αn−1]

10n
=

{10αn−1}
10n

. �

Now, by letting n→ ∞, we get existence.

Why do we still have that infinitely many ai < 9? If ai = 9 for all i > N , then αi for i > N is

αi =
9

10
+

9

102
+ · · · = 1.

But αi = {10αi−1} < 1, so this is impossible.

This completes the proof. �
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2.2 Decimal Expansions and a Criterion for Irrationality

Definition: A decimal expansion .a1a2 · · · is periodic if there exist m,n ∈ Z such that at+n = at for all
t > m. The smallest such m is called the pre-period. The smallest such n is called the period.

We use the notation .a1a2 · · · amam+1 · · ·am+n.

Definition: A decimal expansion is purely periodic if m = 0.

Theorem 6: Let α ∈ R. Then, α ∈ Q if and only if its decimal expansion is periodic.

Proof: (⇐=) First consider a purely periodic expansion β = .c1c2 · · · cn. Note that 10nβ = N + β for
some N ∈ N. Thus, (10n−1)β ∈ N and so β = N

10n−1 ∈ Q. Next consider α := .a1a2 · · · amam+1 · · ·an.
Then, 10mα = N + β for some N ∈ N and purely period decimal expansion β. Since β ∈ Q by above,
we have that α = N+β

10m ∈ Q. �

(=⇒) If α = a
b , with gcd(a, b) = 1, consider the infinite sequence α, {10α}, {102α}, . . .. The values

taken by the sequence are in the set {0, 1b , 2b , . . . , b−1
b }. By the pigeon-hole principal, we get that

{10sα} = {10s+rα}, for some s, r ∈ N. Now,

{10sα} = {10s+rα}
10sα− [10sα] = 10s+rα− [10s+rα]

[10s+rα]− [10sα] = 10s(10r − 1)α

Let N := [10s+rα] − [10sα] ∈ N. Let N ′ ∈ Z be such that
N

10r − 1
= N ′ +

N1

10r − 1
, where 0 ≤ N1 <

10r − 1.

Now note that
N1

10r − 1
=

N1

10r
+

N1

102r
+

N1

103r
+ · · · . Write N1 in its decimal form, which is purely

periodic. Then, α = (N ′ +
N1

10r − 1
)
1

10s
is periodic. �

Corollary: α is irrational if and only if its decimal expansion is not periodic.

Example: In particular, α = .101001000100001 . . . is irrational.

Exercise: Let α = a
b be rational with gcd(a, b) = 1. Write b = 2ǫ · 5ν ·M , with gcd(M, 2) = gcd(M, 5) = 1.

Show that the pre-period of the decimal expansion of α equals max(ǫ, ν) and that the period of the decimal
expansion of α equals the order of 10 in Z/MZ.

Cantor used decimal expansion to prove many things, such as a theorem we’ve already mentioned:

Theorem B: R is uncountable.

Proof: It suffices to show that [0, 1) ∈ R is uncountable. Suppose toward a contradiction that [0, 1)
is countable, then enumerate [0, 1) as a sequence {α1, α2, . . .}. Write the decimal expansion of each of
these:

α1 = .a11a12a13 · · ·
α2 = .a21a22a23 · · ·
α3 = .a31a32a33 · · ·
... =

...
. . . .
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Consider β ∈ [0, 1) given by the decimal expansion β = .b1b2 · · · , where bi 6= aii and bi ∈ [0, 8], for
each i (this avoids a decimal expansion ending in all nines). The decimal expansion is unique from
each element in the list above. Therefore, β is not in the enumerated list. This is a contradiction. So
R is uncountable. �

Theorem 7: Let a1, a2, . . . be an infinite sequence of Z with each ai ≥ 2. Then, for all α ∈ R can be uniquely
expressed as

α = c0 +

∞∑

i=1

ci
a1 · · ·ai

, where ci ∈ Z, (7.1)

satisfying 0 ≤ ci ≤ ai − 1, and infinitely many ci satisfy 0 ≤ ci < ai − 1. Note that if all ai = 10, then this is
just the decimal expansion.

Proof: Exercise. Very similar to Theorem 5, with the following identity added:

k∑

i=1

an+i − 1

an+1 · · · an+i
= 1− 1

an+1 · · ·an+k
. (7.2)

The connection between ci and α is:

c0 = [α], c1 = {α}, ci = [aiαi], αi+1 = {aiαi}.

Theorem 8: (Sufficient Condition for Irrationality) Let α, ai, ci be as in Theorem 7. Suppose that

(1) Infinitely many ci > 0.

(2) For all primes p, it is true that p divides infinitely many ai.

Then, α is irrational.

Proof: Suppose α = a
b ∈ Q, with gcd(a, b) = 1. Then, for sufficiently large n, necessarily b | a1 · · ·an

(by assumption (2)). Write

α = c0 +

∞∑

i=1

ci
a1 · · ·ai

(8.1)

and consider α−
(
c0 +

n∑

i=1

ci
a1 · · ·ai

)
. Multiplying through by the product a1 · · · an, we have

(a1 · · ·an)
[
α− (c0 +

n∑

i=1

ci
a1 · · · ai

)

]
=

∞∑

i=1

cn+i
an+1 · · ·an+i

. (8.2)

Suppose

∞∑

i=1

an+i − 1

an+1 · · · an+i
= 1, using (7.2) and letting k → ∞.

Given that infinitely many ci < ai − 1, we have that 0 < RHS(8.2) < 1. But, the left-hand side of
(8.2) is an integer. This is a contradiction. Hence α is irrational. �
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2.3 Decimal Approximations

Fundamental Fact in the Theory of Irrationals:

Every nonzero integer is at least 1 in absolute value.

Remark: Given θ = a
b ∈ Q, consider a rational pq 6= θ. Use the convention that when writing a fraction, we

let the denominator be positive. Then,

0 6=
∣∣∣∣θ −

p

q

∣∣∣∣ =
∣∣∣∣
a

b
− p

q

∣∣∣∣ =
∣∣∣∣
aq − pb

bq

∣∣∣∣ =
|aq − pb|

bq
≥ 1

bq
.

The last step is due to the fact that |aq− pb| is a positive integer greater than 0, and thus it’s at least 1, i.e.,

If 0 6= |qθ − p|, then |qθ − p| ≥ 1

b
. (9.1)

Lemma 1: If θ is rational and p, q ∈ Z, then either qθ − p = 0 or qθ − p is bounded away from zero.

Corollary: If θ ∈ R and there exist pn, qn ∈ Z such that 0 6= qnθ − pn and qnθ − pn → 0 as n→ ∞, then θ
is irrational.

Remark: Q is dense in R, i.e., given any θ ∈ R there exist pn
qn

∈ Q such that pn
qn

→ θ as n → ∞. i.e.,∣∣∣θ − pn
qn

∣∣∣→ 0.

If the stronger condition |qnθ − pn| → 0 holds, then θ is irrational (by contrapositive of Lemma 1).

Application:
√
2 is irrational.

Proof: (Alladi) Observe that 1 <
√
2 < 2. Thus, 0 <

√
2 − 1 < 1. Therefore, 0 6= (

√
2 − 1)n → 0.

Now, expand (
√
2− 1)n by the binomial theorem, and group terms so that (

√
2− 1)n = qn

√
2− pn,

for some pn, qn ∈ Z.

Now, as n→ ∞, we have that qn
√
2− pn → 0. Thus

√
2 is irrational by the above Corollary. �

Remark: Despite the above theorem, truncations of a decimal expansion are not usually strong enough to
yield irrationality.

Application: (Euler) e is irrational.

Proof: We know that e =

∞∑

m=0

1

m!
. Consider pn

qn
=

n∑

m=0

1

m!
. Then, 0 < e− pn

qn
=

∞∑

m=n+1

1

m!
.

Next, note that qn = n!, so

0 < |qne− pn| = n! ·
∞∑

m=n+1

1

m!
=

1

(n+ 1)
+

1

(n+ 1)(n+ 2)
+ · · · < 2

n+ 1

n→∞−−−−→ 0. �
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Remark: This proof works for the following reasons:

(1) The defining series for e is positive-termed, so each tail is non-zero.

(2) qn | qn+1.

Modifying the problem even a little bit ruins it. For example, Erdös asked:

Is the number

∞∑

m=0

1

m! + 1
irrational?

This is still unknown.

Remark: The corollary above gives us a sufficient condition. Is it also a necessary condition? Yes, and we
prove this below.

Notation: We define ||x|| := the distance from x to the nearest integer.

Theorem 10: (Dirichlet) Let θ be irrational, and let Q > 1 be an integer. Then, there exists q ∈ Z satisfying

0 < q ≤ Q and ||qθ|| < 1

Q
.

Proof: Divide [0, 1) into Q subintervals: [0, 1
Q ), [

1
Q ,

2
Q ), . . . , [

Q−1
Q , 1). Consider the following Q + 1

numbers: {mθ}m=0,1,...,Q. By the Pigeon Hole Principle, there exists an interval above such that
two {mθ} are in it, i.e., there exist m,n with m 6= n and m < n such that

|{mθ} − {nθ}| < 1

Q
.

Note that {mθ − nθ} = mθ − [mθ]− nθ + [nθ]. Let q := n−m and p := [nθ]− [mθ]. We then have:

0 6= [qθ − p] <
1

Q
≤ 1

2
,

i.e., ‖qθ‖ < 1
Q . �

Remark: We have proved the necessary condition, but we can find an even stronger result. Since θ is
irrational, ‖qθ‖ 6= 0. Thus as q → ∞, there are infinitely many pairs (q, p) are generated. Consider this
sequence (pn, qn).

Now, 0 < |qnθ − pn| < 1
Q . So,

∣∣∣θ − pn
qn

∣∣∣ < 1
qnQ

< 1
q2n

(since q ≤ Q). This yields the following theorems.

Theorem 11: θ ∈ R is irrational if and only if there exist infinitely many (pn, qn) pairs such that
0 6= |qnθ − pn| → 0.

Theorem 12: If θ is irrational, then there exist pn, qn ∈ Z for all n ∈ N such that

0 6=
∣∣∣∣θ −

pn
qn

∣∣∣∣ <
1

q2n
. (12.1)

Definition: The pn, qn satisfying (12.1) will be called a strong approximation.
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Note: The tails (truncations) of the series for e, while good enough to prove irrationality, are not the strong
approximations guaranteed to us by Dirichlet in Theorem 12.

Remark: On the other hand, if we write (
√
2− 1)n as qn

√
2− pn, then these qn < (

√
2 + 1)n.

Proof: Exercise. Work with the binomial theorem, and calculate the qn’s.

Remark: Observe that
√
2− 1 = 1√

2+1
. So, qn

√
2− pn = (

√
2− 1)n = 1

(
√
2+1)n

< 1
qn

(with the last step by

the above remark). Thus
√
2− pn

qn
< 1

q2n
, and so these are our strong approximations.
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2.4 Irrationality of π

Theorem 13: π is irrational.

Proof: First we state a lemma.

Lemma 2: Let p(x) be a polynomial, and define

F (x) := p(x)− p′′(x) + p(4)(x)− p(6)(x) + · · · . (13.1)

Then,
(F ′(x) sin(x) − F (x) cos(x))′ = p(x) sin(x). (13.2)

Proof: Exercise.

Now, suppose π ∈ Q. Write π as a
b , with gcd(a, b) = 1. Consider

In :=
1

n!

∫ π

0

sin(x)xn(a− bx)ndx. (13.3)

Let Pn(x) :=
1
n!x

n(a− bx)n, so that In =
∫ π
0
Pn(x) sin(x)dx. Now, by Lemma 2, we have that

In =

∫ π

0

Pn(x) sin(x)dx = [F ′(x) sin(x) − F (x) cos(x)]|π0 = F (0) + F (π).

Well, xn(a − bx)n ∈ Z[x]. Derivatives up to the (n − 1)st will still have x factors, so Pi(0) = 0, and
nth derivatives and after will be divisible by n! so that Pi(0) ∈ Z. Thus we have that F (0) ∈ Z.

Observe that

P (x) =
bn

n!
xn
(a
b
− x
)n

= P
(a
b
− x
)
.

Recall that π = a
b . So, P (π) = P (ab − π) = P (0). Thus by the above argument for F (0), we have that

F (π) ∈ Z. Thus, In = F (0) + F (π) ∈ Z.

Note that the integrand above is strictly positive, since sin(x), x, (a − bx) are all at least zero for the
whole range and at some point strictly bigger than zero. Thus In > 0.

But also, In <
cn

n! → 0 as n→ ∞, where c = max
x∈[0, ab ]

(x(a− bx)). So, In < 1 eventually as n→ ∞. This

contradicts the above facts that In ∈ Z and In > 0. Therefore, π is irrational. �
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2.5 Irrationality of π2

Theorem 14: π2 is irrational.

Proof: (Beukers) First we prove a lemma.

Lemma 3: For integers m ≥ 0, let sm :=

∫ 1

0

tm sin(πt)dt and cm :=

∫ 1

0

tm cos(πt). Then,

there exist polynomials Pm(x) and Qm(x) with integer coefficients such that

sm =
1

π
Pm

(
1

π2

)
,

cm = Qm

(
1

π2

)
, and

degPm =
[m
2

]
, degQm =

[
m+ 1

2

]
.

Proof: The starting values of are:

s0 =
2

π
, s1 =

1

π

c0 = 0, c1 = − 2

π2





(14.1)

We have the reduction formulas:

sm =

∫ 1

0

tm sin(πt)dt =
−tm cos(πt)

π

∣∣∣∣
1

0

+
m

π

∫ 1

0

tm−1 cos(πt)dt =
1

π
+
m

π
cm−1 (14.2)

cm = −m
π
sm−1 (14.3)

s0 =
2

π
, s1 =

1

π
, s2 =

1

π
− 4

π3
, s3 =

1

π
− 6

π3

c0 = 0, c1 = − 2

π2
, c2 = − 2

π2
, c3 = − 3

π2
+

12

π4

Complete the proof by induction on m.

Define the nth Legendre polynomial by

Pn(x) =
1

n!
· d

n

dxn
(xn(1− x)n). (14.5)

Note that Pn(x) ∈ Z[x] and has degree n. Consider

In =

∫ 1

1

P2n(t) sin(πt)dt. (14.6)

We use integration by parts by integrating the polynomial part and differentiating the trigonometric
part. Note that at every stage in the integration by parts, there is x and 1− x as factors, so values at
0 and 1 vanish. Thus, after n integrations by parts, we arrive at the following:

In =
(−1)nπ2n

(2n)!

∫ 1

0

(sin(πt))t2n(1 − t)2ndt. (14.7)
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Note that in (14.7), the integrand is strictly positive. So In is nonzero. Also,

|In| <
(π
4

)2n
· 1

(2n)!
−→ 0 (quite rapidly). (14.8)

By Lemma 3,

In =
1

π
Q∗
n

(
1

π2

)
. (14.9)

If π2 = p
q ∈ Q, then since In 6= 0, we have Q∗

n

(
1

π2

)
6= 0. But then

|Q∗
n

(
1

π2

)
| = |Q∗

n

(
q

p

)
| ≥ 1

pn
by the Fundamental Fact.

So,

|In| ≥
1

πpn
. (14.10)

Now, notice that (14.8) and (14.10) are incompatible. Hence π2 is irrational. �

Corollary: π is irrational.

Remark: Proving the irrationality of π2 is stronger than proving the irrationality of π. We will see that to
obtain irrationality measures for π, it is better to approach π directly and not through π2.

Remark: The proof of Theorem 13 (the irrationality of π) was following the method of Hermite in “Sur
la fonction exponentielle” (1873).
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2.6 Irrationality of the Trig Functions

Theorem 15: If θ 6= 0 is rational, then cos θ is irrational.

Proof: (Niven) Since cos θ = cos(−θ), we concentrate on
π

2
>
[
θ =

a

b

]
> 0, with gcd(a, b) = 1.

Consider

P (x) :=
xp−1(a− bx)2p(2a− bx)p−1

(p− 1)!
, (15.1)

where p is a prime sufficiently large to be chosen later.

We rewrite P (x) as

P (x) =
(θ − x)2p

(
θ2 − (θ − x)2

)p−1
b3p−1

(p− 1)!
(15.2)

using completing the square. Note that

0 < P (x) <
θ2pθ2p−2b3p−1

(p− 1)!
−→ 0 (15.3)

as p→ ∞, for 0 < x < a
b = θ.

As in Theorem 13, set

F (x) = P (x)− P ′′(x) + P (4)(x) − P (6)(x) + · · · . (15.4)

Therefore, by an earlier Lemma, I :=

∫ θ

0

P (x) sin(x)dx = [F ′(x) sin(x) − F (x) cos(x)]|θ0. Evaluating,

I = F ′(θ) sin(θ)− F (θ) cos(θ) + F (0). (15.5)

Notice that from (15.2) we see that P may be viewed as a function in (θ − x)2. Consequently, since

F ′(x) = P ′(x) − P ′′′(x) + P (5)(x)− · · · , (15.6)

we have that
F ′(θ) = 0. (15.7)

Thus F ′(θ) sin(θ) = 0.

Next, from the definition of P in (15.1), we have the following (15.8):

P (j)(0) = 0, if j ≤ p− 1.

P (j)(0) ≡ 0 mod p, if j > p− 1.
P (p−1)(0) = a2p(2a)p−1



 (15.8)

So, if p > 1, then by (15.8), we have F (0) 6≡ 0 mod p, and F (0) ∈ Z.

Let
q := F (0). (15.9)

Finally, we note that

P (θ − x) =
x2p

(
θ2 − x2

)p−1
b3p−1

(p− 1)!
=
x2p(a2 − b2x2)p−1bp−1

(p− 1)!
. (15.10)

Thus, P (j)(θ − x) ≡ 0 mod p, for all p. Therefore, F (θ) ≡ 0 mod p. Let m be such that

F (θ) = mp. (15.11)
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Thus,
I = −mp cos(θ) + q. (15.12)

Remember that q 6= 0 is an integer. So |q| ≥ 1. (If −mp cos(θ) = 0, then we have a contradiction since
I → 0 and q ∈ Z. Thus −mp cos(θ) 6= 0.)

Recall that I → 0 as p→ ∞ and I 6= 0 (since I > 0 because it has positive integrand due to the range
restriction of θ).

Thus −mp cos(θ) 6= 0. Consequently, if cos(θ) is rational, then we have an integral linear combination
of cos(θ) and 1 that is non-zero and goes to zero. If cos(θ) is rational, this violates Dirichlet’s
Criterion. Thus cos(θ) is irrational. �

Corollary 6: If θ 6= 0 is rational, then sin θ is irrational.

Proof: We use the identity cos 2θ = 1 − 2 sin2 θ to deduce that if sin θ is rational, then so is cos 2θ,
but cos 2θ is not rational if θ 6= 0. �

Corollary 7: If θ 6= 0 is rational, then tan θ is irrational.

We use the identity cos 2θ =
1− tan2 θ

1 + tan2 θ
to deduce that if tan θ is rational, then so is cos 2θ, but cos 2θ

is not rational if θ 6= 0. �

Corollary 8: As above, sec θ, csc θ, and cot θ are all irrational if θ 6= 0 and θ ∈ Q.

Remark: No one currently knows how to deduce the irrationality of all the trig functions at non-zero rational
arguments by starting with the irrationality of sin θ or tan θ for θ ∈ Q, θ 6= 0.

Remark: The identity cos 2θ = 1 − 2 sin2 θ, along with Theorem 15 actually yields the irrationality of
sin2 θ for non-zero rational θ. Likewise for tan2 θ. This in turn yields the irrationality of cos2 θ for non-zero
rational θ by the identity sin2 θ + cos2 θ = 1.

Remark: Our method of proof of Theorem 15 was an extension / strengthening of the method used to
prove the irrationality of π. Indeed, the irrationality of π follows from Theorem 15, because cos(π) = −1
is rational, thus π is not rational.
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2.7 Irrationality of the Hyperbolic Trig Functions

Theorem 16: If θ ∈ Q is non-zero, then cosh θ is irrational.

Proof: Since cosh θ is an even function, we focus on θ > 0. Let θ = a
b , for some a, b ∈ Z, with

gcd(a, b) = 1. As earlier, let P (x) :=
xp−1(a− bx)2p(2a− bx)p−1

(p− 1)!
, where p is a large prime to be

chosen later. Now, define F (x) := P (x) + P ′′(x) + P (4)(x) + P (6) + · · · . Observe that

[F (x) cosh(x)− F ′(x) sinh(x)]′ = F ′(x) cosh(x) + F (x) sinh(x) − F ′′(x) sinh(x)− F ′(x) cosh(x)

= (F (x) − F ′′(x)) sinh(x). (16.1)

and we see through telescoping that

(F (x)− F ′′(x)) sinh(x) = P (x) sinh(x). (16.2)

Therefore,

I :=

∫ θ

0

P (x) sinh(x)dx = F (x) cosh(x)− F ′(x) sinh(x)|θ0 = F (θ) cosh θ − F ′(θ) sinh θ − F (0). (16.3)

As before, P (x) > 0 for 0 < x < a
b = θ. Also, sinhx > 0 for x > 0. Hence the integrand in (16.3) is

strictly positive. Thus I > 0. As before, F ′(θ) = 0, and F (0) and F (θ) are integers. (See Theorem
14.)

Suppose that cosh θ is rational. Let cosh θ = cosh a
b = ℓ

k , for ℓ, k ∈ Z. Now,

I =
ℓ

k
F (θ)− F (0). (16.4)

We know by earlier arguments that F (0) 6= 0 if we choose p to be large enough. Note that 0 < I <

θ · e
θ − e−θ

2
· θ

4p−2b3p−1

(p− 1)!
−→ 0 (That value is the max value of the integrand (max value of sinhx

times the max value of P (x)) multiplied by the width of integration.)

So, from (16.4), we see that ℓ
lF (θ) 6= 0. Rewrite (16.4) as kI = ℓF (θ) − kF (0). Thus kI ∈ Z. But,

by choosing p large enough, we can make kI < 1. Since kI > 0, this is a contradiction. Hence
cosh θ = cosh a

b is irrational. �

Corollary 9: If θ is a nonzero rational, then sinh θ is irrational.

Proof: The identity being used is 1 + 2 sinh2 θ = cosh 2θ. �

Corollary 10: Similarly, tanh θ is irrational.

Theorem 17: If θ is a nonzero rational, then eθ is irrational.

Theorem 18: If θ 6= 1 is rational, then log(θ) is irrational.

Proof: exp : x 7→ ex is a function that sends Qr {0} to a subset of RrQ, so the inverse function log
maps into Q only from 1 and some of R rQ. Thus log maps from Qr {1} into RrQ. �
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Engel Series Expansions

3.1 Construction

Start with x0 ∈ (0, 1]. Define

u0 :=

[
1

x0

]
+ 1. (19.1)

Note that
1

x0
≥ 1,

so thus [
1

x0

]
≥ 1.

Therefore, u0 ≥ 2, and of course u0 ∈ Z. Also,
1

x0
<

[
1

x0

]
+ 1 = u0. So, u0x0 > 1. Now we define

x1 := u0x0 − 1. (19.2)

Observe from (19.1) that
1

x0
< u0 <

1

x0
+ 1.

Therefore,
0 < u0x0 − 1 = x1 ≤ x0 ≤ 1. (19.3)

Thus x1 ∈ [0, 1) like x0, and x1 ≤ x0. By iterating, we will get an infinite sequence

0 < . . . ≤ x2 ≤ x1 ≤ x0 ≤ 1. (19.4)

Obviously, lim
n→∞

=: ℓ exists, and ℓ ∈ [0, 1]. The question is: when does ℓ = 0 and when is ℓ > 0? The answer

to this question provides a criterion for irrationality.

Iteration Formula:

un =

[
1

xn

]
+ 1, xn+1 = unxn − 1. (19.6)

From (19.4), it follows that 1
xn ≤ 1

xn+1
, and therefore:

2 ≤ u0 ≤ u1 ≤ u2 ≤ . . . is a sequence of integers. (19.7)

17
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Remark: Note from (19.6) that
xn → 0 if and only if un → ∞. (19.8)

Equivalently,

xn → ℓ for ℓ > 0 if and only if un → L ∈ Z+, in which case un = L, for all n ≥ N . (19.9)

Remark: We see from (19.6) that

x0 =
1 + x1
u0

=
1

u0
+
x1
u0

=
1

u0
+

1 + x2
u0u1

=
1

u0
+

1

u0u1
+

x2
u0u1

.

Iterating this, we get that

x0 =
1

u0
+

1

u0u1
+

1

u0u1u2
+ · · ·+ 1

u0u1u2 · · ·un
+

xn+1

u0u1u2 · · ·un
. (19.10)

Letting n→ ∞ in (19.10), we arrive at the next theorem.
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3.2 Some Theorems

Theorem 19-1: Let x0 ∈ (0, 1] and define un by (19.6). Then:

x0 =
1

u0
+

1

u0u1
+

1

u0u1u2
+ · · · . (19.11)

This is called the Engel Series for x0.

Theorem 19-2: The representation of a real number x0 ∈ (0, 1] by an Engel series is unique. That is, if we
write x0 as in (19.11) and if the un satisfy (19.7), then un are given by (19.6).

Proof: We have that the un are increasing, and u0 ≥ 2. From (19.11) we get that

0 < x1 := u0x0 − 1 =
1

u1
+

1

u1u2
+ · · · ≤ 1

u0
+

1

u0u1
+ · · · ≤ x0 ≤ 1.

Therefore:
1

x0
< u0 ≤ 1

x0
+ 1.

But, u0 ∈ Z. Thus,

u0 =

[
1

x0

]
+ 1.

Hence, u0 is uniquely determined.

Iteratively, it can be shown that un is given by (19.6) and thus is uniquely determined. �

Remark: In the Cantor Representation (i.e., the decimal representation but with changing base at each
decimal place - more on this shortly), we set:

x0 =
∑ am

c1c2 · · · cm
,

with the sequence {ci}i∈N specified ahead of time. Then, each x0 determines a unique sequence of “digits”
{am}.
In the Engel Series Representation, the am are specified to be all 1. Then, we have that each x0 determines
a unique sequence {ci}i∈N.

Theorem 20: Let x0 ∈ (0, 1]. Then x0 ∈ Q if and only if in the Engel Series of x0, the sequence {un} is
eventually constant.

Proof: (⇐=) Let un = L, for all n ≥ N . Then,

x0 =
1

u0
+

1

u0u1
+ · · ·+ 1

u0u1 · · ·uN−1
+

1

u0u1 · · ·uN−1

(
1

L
+

1

L2
+

1

L3
+ · · ·

)

=
1

u0
+

1

u0u1
+ · · ·+ 1

u0u1 · · ·uN−1
+

1

u0u1 · · ·uN−1

(
1 +

1

L− 1

)
,

which is clearly rational.

(=⇒) (version 1) Suppose x0 ∈ Q ∩ (0, 1]. Write x0 = A0

B0
, for A0, B0 ∈ Z+. Note that

0 < A0 ≤ B0. (20.1)

Use the division algorithm:
B0 = A0Q0 +R0, with 0 ≤ R0 < A0.
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Now,

x1 = u0x0 − 1

=

([
1

x0

]
+ 1

)
x0 − 1

=

([
B0

A0

]
+ 1

)
A0

B0
− 1

= (Q0 + 1)
A0

B0
− 1

=
Q0A0 +A0 −B0

B0

=
A0 −R0

B0

=
A1

B0
, (20.2)

for some 0 < A1 ≤ A0, with A1 ∈ Z+.

Now, by iteration, we have

xn =
An
B0

, (20.3)

with 0 < · · · ≤ A2 ≤ A1 ≤ A0, with the An decreasing, but staying positive integers.

Thus An = D, for all n ≥ N , and some D ∈ Z+. This implies that ℓ > 0, and so un = L, for all n ≥ N .

(=⇒) (version 2) The contrapositive is the statement that if un → ∞, then x0 is irrational. From
(19.10), we get that

0 < x0 −
n∑

m=0

1

u0u1 · · ·um
=

xn+1

u0u1 · · ·un+1
. (20.7)

Now, un → ∞ ⇐⇒ xn+1 → 0, by (19.6).

Rewrite (20.7) as
0 < qnx0 − pn = xn+1, (20.8)

where

qn = u0 · · ·un,

pn = u0 · · ·un
n∑

m=0

1

u0 · · ·um
,

with qn, pn ∈ Z.

In (20.8), we have xn+1 → 0, therefore by the Dirichlet Criterion, x0 is irrational. �

Application: cosh(
√
2) is irrational.

Proof: First, recall that

cosh(x) = 1 +
x2

2!
+
x4

4!
+ · · · .

Therefore,

cosh(
√
2) =

∞∑

n=0

2n

1 · 3 · 5 · . . . · (2n− 1) · 2 · 4 · . . . · 2n

=

∞∑

n=0

1

1 · 3 · 5 · . . . · (2n− 1) · 1 · 2 · 3 · . . . · n
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i.e., cosh(
√
2) − 2 =

∞∑

m=1

1

u0 · · ·um
is an Engel Series, with um = (m+ 2)(2m+ 3), for m ≥ 0. Hence

cosh(
√
2)− 2 is irrational and so is cosh(

√
2). �

Corollary 14: e
√
2 is irrational.

Proof: cosh(
√
2) =

e
√
2 +

1

e
√
2

2
. �

Exercise: Let Fn = 22
n

+ 1 be the nth Fermat number. Then

∑ 1

Fn
is irrational. (⋆)

Hint: First prove that

∞∑

n=0

1

22n − 1
is irrational using Engel Series, then connect this back to (⋆).
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Cantor Product Representation

4.1 Construction

Construction: Given 2 > α0 > 1, define

q0 =

[
α0

α0 − 1

]
∈ Z

α1 =
α0

1 + 1
q0





(21.1)

Therefore,

q0 ≤ a0
a0 − 1

< q0 + 1. (21.2)

From the second inequality in (21.2), it follows that

1 +
1

α0 − 1
< q0 + 1 ⇐⇒ 1

α0 − 1
< q0 ⇐⇒ 1

q0
< α0 − 1 ⇐⇒ 1 +

1

q0
< α0. (21.3)

From (21.1) and (21.3), we deduce that
1 < α1 < α0.

Now, we can iteratively define:

qn =

[
αn

αn − 1

]
, αn+1 =

αn

1 + 1
qn

, (21.4)

to get a sequence
α0 > α1 > α2 > · · · > 1. (21.5)

As with Engel Series, we have that
lim
n→∞

αn = α ≥ 1 exists.

The natural question is when does this limit equal 1, and when is it strictly greater than 1?

Since the function x
x+1 is decreasing for x > 1, we have that

α0

α0 − 1
<

α1

α1 − 1
<

α2

α2 − 1
< · · · . (21.6)

Therefore,
q0 ≤ q1 ≤ q2 ≤ · · · . (21.7)

22
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Similarly to Engel series, if the q series stabilizes, then the above limit α is strictly greater than 1. From
(21.1) and the first inequality in (21.2), we get the following:

α1 ≤ α0

1 +
α0 − 1

α0

=
α2
0

2α0 − 1
. (21.8)

Therefore,

α1

α1 − 1
≥ α2

0

2α0 − 1
· 1

α2
0

2α0−1 − 1
=

α2
0(2α0 − 1)

(2α0 − 1)(α2
0 − 2α0 − 1)

=

(
α0

α0 − 1

)2

. (21.9)

Hence,

q1 =

[
α1

α1 − 1

]
≥
[

α2
0

(α0 − 1)2

]
≥
[

α0

α0 − 1

]2
= q20 . (21.10)

Thus, the iteration yields
αn+1

αn+1 − 1
≥ α2

n

(αn − 1)2
, (21.11)

and
qn+1 ≥ q2n. (21.12)

Rewrite (21.1) as α0 =
(
1 + 1

q0

)
α1 =

(
1 + 1

q0

)(
1 + 1

q1

)
α2 = . . .. So, we can write

α0 =

n∏

j=0

(
1 +

1

qj

)
· an+1. (21.13)

So, since q0 > 1 by definition, we have that qn → ∞, and so

αn+1 → 1. (21.14)

Therefore, the case where lim
n→∞

αn > 1 is not possible.
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4.2 Some Theorems

Theorem 21-1: Every real number can be written as a product

α0 =

∞∏

n=0

(
1 +

1

qn

)
, (21.15)

where the qn are positive integers satisfying qn+1 ≥ q2n, and q0 > 1.

Theorem 21-2: If a real number α0 > 1 is written as α0 =
∞∏

n=0

(
1 +

1

qn

)
, with qn+1 ≥ q2n, and q0 > 1, then

the qn are uniquely determined.

Proof: Write

α0 =

(
1 +

1

q0

)
α1, (21.16)

with

α1 =

∞∏

n=1

(
1 +

1

qn

)
. (21.17)

Thus, 1 < α1 < α0. Also,

α0 ≤
(
1 +

1

q0

)(
1 +

1

q20

)(
1 +

1

q40

)(
1 +

1

q80

)
· · · .

Also, (
1 +

1

q0

)(
1 +

1

q20

)(
1 +

1

q40

)(
1 +

1

q80

)
· · · = 1

1− 1
q0

=
q0

q0 − 1
. (21.18)

The equality above is due to the analytic identity:

∞∏

k=0

(
1 + x2

k
)
=

1

1− x
.

Now, from (21.18) it follows that

α0 ≤ 1 +
1

q0 − 1
⇐⇒ α0 − 1 ≤ 1

q0 − 1

⇐⇒ q0 − 1 ≤ 1

α0 − 1

⇐⇒ q0 ≤ 1 +
1

α0 − 1
=

α0

α0 − 1
. (21.19)

Also from (21.5), we have that

α0 > 1 +
1

q0
=⇒ α0

α0 − 1
<

1 + 1
q0

1
q0

. (21.20)

So, from (21.19) and (21.20), we get q0 =

[
α0

α0 − 1

]
. Thus q0 is uniquely defined, and by iteration, all

qi are uniquely defined. �
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Theorem 22: If 2 > α > 1 is represented as α =

∞∏

n=0

(
1 +

1

qn

)
with qn+1 ≥ q2n and qn ∈ Z and q0 > 1,

then α ∈ Q if and only if qn+1 = q2n for n sufficiently large.

Proof: (⇐=) Suppose qn+1 = q2n for all n ≥ N . Then,

α0 =

(
1 +

1

q0

)(
1 +

1

q1

)(
1 +

1

q2

)
· · ·
(
1 +

1

qN−1

)
·

∞∏

k=0

(
1 +

1

q2
k

N

)

=

(
1 +

1

q0

)(
1 +

1

q1

)(
1 +

1

q2

)
· · ·
(
1 +

1

qN−1

)
· 1

1− 1
qN

∈ Q. (22.1)

(=⇒) Suppose α0 ∈ Q and α0 given by the product (21.15) with qn satisfying (21.12). Then αn ∈ Q,
with αn defined by:

αn =

∞∏

m=n

(
1 +

1

qm

)
. (22.2)

Write
αn =

an
bn
, (22.3)

with an, bn,∈ Z and gcd(an, bn) = 1. Since

αn+1 ·
(
1 +

1

qn

)
= an, (22.4)

we have that
an
bn

=
an+1

bn+1

(
1 +

1

qn

)
=
an+1(qn + 1)

bn+1qn
⇐⇒ an+1

bn+1
=

anqn
bn(qn + 1)

. (22.5)

Therefore,
anqn = an+1dn

bn(qn + 1) = bn+1dn
, dn ∈ Z+ (22.6)

Now by subtraction:

(an − bn)qn − bn = dn(an+1 − bn+1) ≥ an+1 − bn+1. (22.7)

From our recursive formula, we get:

qn ≤ αn
αn − 1

=
an
bn

· 1

(an − 1)
=

an
an − bn

⇐⇒ an(an − bn) ≤ an. (22.8)

Thus by (22.7) and (22.8), we have:

an − bn ≥ an+1 − bn+1 > 0. (22.9)

Now, {an−bn} is a decreasing sequence of positive integers, so it must stablize to some k = an−bn for
all n ≥ N . Therefore, qnk−bn = dnk for n ≥ N . Hence bn ≡ 0 mod k, for all n ≥ N . But k = an−bn,
so a0 ≡ 0 mod k for all n ≥ N .

Since gcd(an, bn) = 1, we have that k = 1. Thus an−bn = 1 for all n ≥ N . Therefore, αn = an
bn

= an
an−1 ,

which implies that Z ∋ an = αn

αn−1 . Thus qn =
[

αn

αn−1

]
= an. Also, qnan = an+1dn, and therefore

q2n = qn+1dn ≥ qn+1. But, qn+1 ≥ q2n. Therefore, qn+1 = q2n, for all n ≥ N . �

Remark: The theorem we stated is for real numbers 1 < r < 2. If α0 > 2, then q0 = 1, and thus α1 = α0

2 .
Eventually, by the same iteration, we get an αN such that 1 < αN < 2, and we just start here.
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4.3 Evaluation of a Special Cantor Product

Theorem: Let q0 > 1 and qn be defined by

qn+1 = 2q2n − 1, (23.1)

for all n ≥ 0. Then,

α0 =

∞∏

n=0

(
1 +

1

qn

)
=

√
q0 + 1

q0 − 1
. (23.2)

Proof: By (23.1),

(
1 +

1

qn

)(
1 +

1

qn+1

)
=
qn + 1

qn
· qn+1 + 1

qn+1

=
(qn + 1)2q2n
qn · qn+1

=
qn − 1

qn − 1
· (qn + 1)2q2n
qn · qn+1

=
(qn − 1)2 · 2qn
qn+1(qn − 1)

=
(qn+1)qn

qn+1(qn − 1)

=
1− 1

qn+1

1− 1
qn

. (23.3)

Taking the product of both values:

∞∏

n=0

(
1 +

1

qn

) ∞∏

n=0

(
1 +

1

qn+1

)
=

∞∏

n=0

1− 1
qn+1

1− 1
qn

. (23.4)

Thus,
α2
0

1 + 1
q0

=
1

1− 1
q0

=⇒ α2
0 =

q0 + 1

q0 − 1
,

and this yields (23.2). �
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4.4 Connection With Engel Series

Lemma: If qn+1 = 2q2n − 1, then

qn −
√
q2n − 1 =

1

2qn
+

1

2qn

(
qn+1 −

√
q2n+1 − 1

)
.

Proof: Note that q2n+1 − 1 = (2q2n − 1)2 − 1 = 4q4n − 4q2n. Thus,

1

2qn
+

1

2qn

(
qn+1 −

√
q2n+1 − 1

)
=

1

2qn
+

1

2qn

(
2q2n − 1−

√
q2n+1 − 1

)

=
1

2qn

(
2q2n −

√
4q4n − 4q2n

)

=
1

2qn

(
2q2n − 2qn

√
q2n − 1

)

= qn −
√
q2n − 1. �

Theorem 24: If q0 ≥ 1 and (23.1) holds, then

q0 −
√
q20 − 1 =

∞∑

n=0

1

2n+1q0q1 · · · qn

is an Engel series.

Proof: Note that by the lemma, we have

q0 −
√
q20 − 1 =

1

2q0
+

1

2q0

(
q1 −

√
q21 − 1

)

=
1

2q0
+

1

2q0q1
+

1

2q1

(
q2 −

√
q22 − 1

)

= · · ·

=

n∑

m=0

1

2m+1q0 · · · qm
+ qn+1 −

√
q2n+1 − 1. (24.1)

Since qn → ∞ rapidly, the remainder goes to zero very rapidly. �
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Sylvester Series

5.1 Construction

As with the Engel series, we start with an x0 ∈ (0, 1] and define:

α0 =
1

x0
∈ [1,∞), q0 = [α0] + 1 =

[
1

x0

]
+ 1. (25.1)

Note that q0 is identical to what was the start of the Engel series. Now we make a change. Define α1 by

1

α0
=

1

q0
+

1

α1
. (25.2)

From (25.1), we have that α0 < q0. Note that

1

α1
=

1

α0
− 1

q0
=
q0 − α0

α0
=

[α0] + 1− α0

α0([α0] + 1)
≤ 1

α0([α0] + 1)
<

1

α2
0

. (25.3)

Now define iteratively

qn = [αn] + 1,
1

αn
=

1

qn
+

1

αn+1
. (25.4)

We then get that
αn+1 > α2

n. (25.5)

So, then the αn are increasing rapidly. Also,

1

αn+1
=

[αn] + 1− αn
αn([αn] + 1)

<
1

α2
n

.

Now, we have that
1 ≤ α0 < α1 < α2 < · · · < αn < · · · → ∞, and

2 ≤ q0 ≤ q1 ≤ · · · → ∞. (25.6)

Iterating (25.4), we get the following:

x0 =
1

α0
=

1

q0
+

1

α1
=

1

q0
+

1

q1
+

1

α2
= · · · =

n∑

m=0

1

qm
+

1

αn+1
, (25.7)

28
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and thus, letting n→ ∞, we have

x0 =

∞∑

m=0

1

qm
. (25.8)

Remark: We can find a lower bound for qm. From the definition of qm in (25.4), we have that

qn − 2 ≤ αn < qn.

Thus,
1

qn − 1
≥ 1

αn
=

1

qn
+

1

αn+1
>

1

qn
+

1

qn+1
. (25.9)

Therefore,
1

qn+1
<

1

qn − 1
− 1

qn
=

1

qn(qn)− 1
=⇒ qn+1 > q2n − qn. (25.10)

Thus,
qn+1 ≥ q2n − qn + 1. (25.11)
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5.2 Some Theorems

Theorem 25-1: Every x0 ∈ (0, 1] can be represented as a series

x0 =

∞∑

m=0

1

qm
,

with qm → ∞ and qm satisfying qn+1 ≥ q2n − qn + 1.

Proof: See the above discussion. �

Theorem 25-2: If x0 ∈ (0, 1] is given by (25.8) and the qn → ∞ satisfy (25.11), then qn are uniquely defined
by (25.4).

Proof: Define α0 := 1
x0

such that a0 ∈ [1,∞). Define α1 by

1

α0
=

1

q0
+

1

α1
.

Then, α1 =

∞∑

m=1

1

qm
.

Clearly, x0 = 1
α0
> 1

q0
=⇒ q0 > α0. The inequality (25.11) implies that

qn+1 − 1 ≥ qn(qn − 1).

Therefore,
1

qn+1 − 1
≤ 1

qn(qn − 1)
=

1

qn − 1
− 1

qn
.

Hence,
1

qn
≤ q

qn − 1
− 1

qn+1 − 1
, (25.12)

and the right hand side telescopes.

Therefore, x0 = 1
α0

=

∞∑

n=0

1

qn
≤

∞∑

n=0

(
1

qn − 1
− 1

qn+1 − 1

)
=

1

q0 − 1
.

Thus, α0 ≥ q0 − 1, and so q0 = [α0] + 1, and then we iterate. �



5.3. AN IRRATIONALITY CRITERION 31

5.3 An Irrationality Criterion

Theorem 26: Let x0 ∈ (0, 1] be represented by the Sylvester series

x0 =

∞∑

m=1

1

qm
,

where qm ∈ Z+, q0 ≥ 2, and qn+1 ≥ q2n − qn + 1, for all n ≥ 0. Then, x0 ∈ Q if and only if there exists
N ∈ Z+ such that

qn+1 = q2n − qn + 1 (26.1)

for all n ≥ N .

Proof: (⇐=) If (26.1) holds, then

1

qn+1 − 1
=

1

q2n − qn
=

1

qn(qn − 1)
=

1

qn − 1
− 1

qn
, for all n ≥ N,

and so
1

qn
=

1

qn − 1
− 1

qn+1 − 1
,

which has a telescoping property. Thus,

x0 =

∞∑

m=0

1

qm

=
N−1∑

m=0

1

qm
+

∞∑

m=N

1

qm

=

N−1∑

m=0

1

qm
+

∞∑

m=N

(
1

qm − 1
− 1

qm+1 − 1

)

=
N−1∑

m=0

1

qm
+

1

qN − 1
(by telescoping), which is rational.

(=⇒) Let x0 ∈ (0, 1], with x0 ∈ Q. Write

x0 =
p

q
, with p, q ∈ Z+, 1 ≤ p ≤ q, and gcd(p, q) = 1.

Recall (25.7):

1

αn
=

∞∑

m=n

1

qm
,

and so,

1

αn
= x0 −

n−1∑

m=0

1

qm
=

kn
q · q0 · · · qn−1

, (26.2)

for some kn ∈ Z+. Also, since
1

αn
=

1

qn
+

1

αn+1
,

we have
kn

q · q0 · · · qn−1
=

1

qn
+

kn+1

q · q0 · · · qn
⇐⇒ knqn = qq0 · · · qn−1 + kn+1. (26.3)

Recall (25.9):
qn − 1 ≤ αn < qn,
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and thus

αn+1 ≥ qn+1 − 1 ≥ q2n − qn. (26.4)

But by definition and (26.4),

αn+1 =
qq0 · · · qn
kn+1

≥ q2n − qn.

Canceling qn, we have that

qq0 · · · qn−1 ≥ k(qn − 1). (26.5)

Combining (26.5) and (26.3), we get that

knqn ≥ kn+1(qn − 1) + kn+1 = kn+1qn.

So, the kn is a decreasing sequence of positive integers, and thus are constant from some point on. Say
that kn = k for all n ≥ N . Therefore,

1

αn+1
=

k

qq0 · · · qn
=

1

qnαn
=

1

qn

(
1

qn
+

1

αn+1

)
. (26.6)

Thus, for all n ≥ N ,

1

αn+1

(
1− 1

qn

)
=

1

q2n
⇐⇒ αn+1 = qn(qn − 1) = q2n − qn ∈ Z. (26.7)

Recall that qn = [αn] + 1, from (25.4). So, qn+1 = [αn+1] + 1 = q2n − qn + 1, for all n ≥ N . �

Remarks:

(1) The Engel series for x0 ∈ (0, 1] and the Sylvester series for x0 ∈ (0, 1] both start identically.

Engel: u0 =
[

1
x0

]
+ 1 ≥ 2.

Sylvester: α0 = 1
x0
, q0 = [α0] + 1.

So, at the first step, q0 = u0. The difference takes place in the next step.

Engel: Define x1 := x1 = u0x0 − 1 ⇔ x0 = 1
u0

+ x1

u0
.

Sylvester: 1
α0

= x0 = 1
q0

+ 1
α2

, so α1 = u0

x1
.

So, in the Sylvester case, we don’t require the divisibility condition required by the Engel case.

Example: Let x0 = 1. In Engel, u0 = 2, so x1 = 1, and thus un = 2 for all n. Thus the Engel
series for 1 is

1 =
1

2
+

1

4
+

1

8
= · · ·

In Sylvester, q0 = 2, and q1 = 22 − 2 + 1 = 3, and q2 = 32 − 3 + 1 = 7, and q3 = 72 − 7 + 1 = 43.
Thus the Sylvester series for 1 is

1 =
1

2
+

1

3
+

1

7
+

1

43
+ · · ·
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(2) Sylvester has gotten rid of the divisibility condition essential for Engel and replaced it with a growth
condition. Thus, the Sylvester series and criterion is more widely applicable. This yields:

Theorem 27: For a ∈ Z+, define the generalized Fermat numbers by

Fn,a = 22
n − a, (⋆)

such that Fn,a 6= 0. Then,
∑ 1

Fn,a
∈ J is irrational.

Proof: Note that Fn+1,a = 22
n+1 − a ≥ F 2

n,a − Fn,a + 1 = (22
n − a)2 − (22

n − a) + 1 =

22
n+1 − 2a22

n

+ a2 + a+ 1, with the last three terms being fixed. Thus, this sum is irrational by
the Sylvester Condition. �

(3) When a = 1, the numbers 22
n − 1 satisfy the Divisibility conditions (Engel) and the truncations yield

strong approximations in the sense of Dirichlet, whereas when a > 0 for a odd, the truncations do not
produce strong approximations because

lcm{Fm,a}m=n
m=0 > Fn+1,a, in fact, much larger.



Chapter 6

Continued Fractions

6.1 General Continued Fractions

Remark: Our motivation is to find an iterative process which works in general (not just for specific series)
that encapsulates the strong approximations of Dirichlet.

Definition: By a general continued fraction, we mean an expression of the following type:

Rn = a0 +
a1

b1 +
a2

b2 +
a3

. . .

bn−1 +
an

bn

, (28.1)

where am, bm ∈ C. We also will consider the infinite expression:

R = a0 +
a1

b1 +
a2

b2 +
a3

b3 +
.. .

. (28.2)

For simplicity, we write

Rn = a0 +
a1
b1+

a2
b2+

a3
b3+

· · · an−1

bn−1+

an
bn
. (28.3)

and

R = a0 +
a1
b1+

a2
b2+

a3
b3+

· · · . (28.4)

Consider the sequence of truncations of Rn given by

R0 := a0 =
a0
1
, R1 := a0 +

a1
b1

=
a0b1 + a1

b1
, . . . . (28.5)

34
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Thus, for each Rm, we may define Pm and Qm to be the mth numerator and denominator, respectively,
calculated as they occur, without any cancellation.With this notation, P0 = a0, P1 = a0b1 + a1, Q0 = 1, and
Q1 = b1.

Theorem 28: Define P−1 = 1 and Q−1 = 0. Define P0 = a0 and Q0 = 1. Define Pm and Qm recursively by:

{
Pm = bmPm−1 + amPm−2

Qm = bmQm−1 + amQm−2

}
, (28.6)

for m ≥ 1. Then, Pm and Qm are the mth numerator and mth denominator of Rn (or R) respectively.

Proof: (by induction) From (28.5), we see that (28.6) holds for m = 1, and so for all fractions of
length 1. Assume that (28.6) holds for all fractions of length m.

We write that

a0 +
a1
b1+

a2
b2+

· · · am
bm+

am+1

bm+1
= a0 +

a1
b1+

a2
b2+

· · · am−1

bm−1+

bm+1am
bmbm+1 + am+1

. (28.7)

We note that this converts a fraction of length m+ 1 into a fraction of length m.

Thus Pm+1 and Qm+1 may be calculated from (28.6) by replacing

am 7−→ bm+1am, bm 7−→ bmbm+1 + am+1. (28.8)

Thus,

Pm = bmbm+1Pm−1 + am+1Pm−1 + bm+1amPm−2

= bm+1(bmPm−1 + amPm−2) + am+1Pm−1

= bm+1Pm + am+1Pm1 , (by the induction hypothesis) (28.9)

which is (28.6) for m+ 1. Similar for Qm. �

With Pn, Qn determined by Theorem 28, we define the value of Rn to be Rn = Pn

Qn
, provided Qn 6= 0. In

the case that Qn = 0, we write formally that Rn = Pn

0 .

Example: Consider R3 := 1 +
1

1− 1

1 +
1

1

. Now,

R0 =
1

1
, R1 = 1 +

1

1
=

2

1
, R2 = 1 +

1

1− 1

1

= 1 +
1

0
=

1

0
, but R3 = 1 +

1

1− 1

2

= 1 +
2

1
=

3

1
.
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6.2 Convergence of General Continued Fractions

We say that the infinite continued fraction R in (28.2) converges if

lim
n→∞

Pn
Qn

= ℓ <∞

exists with Pn, Qn defined by Theorem 28.

Theorem 29-1: For n ≥ 0, the numerators and denominators satisfy

PnQn−1 − Pn−1Qn = (−1)n−1a1a2 · · · an. (29.1)

Proof: (by induction) The theorem is true for n = 1 because P1Q0−P0Q1 = (a0b1+a1)·1−a0b1 = a1.
Note that (29.1) holds also for n = 0, since for n = 0, the product a1a2 · an is a null product.

Assume (29.1) holds for a certain m. Then,

Pm+1Qm − PmQm+1 = Qm(bm+1Pm + am+1Pm−1)− Pm(bm+1Qm + am+1Qm−1)

= −am+1(PmQm−1 − Pm−1Qm)

= −am+1(−1)m−1a1a2 · · ·am, (by Induction Hypothesis)

= (−1)ma1a2 · · · am. (29.2)

Hence, true. �

Theorem 29-2: If Qn 6= 0 and Qn−1 6= 0 for some n, then

Rn −Rn−1 =
(−1)n−1a1 · · · an

QnQn−1
.

Proof: Since Qn 6= 0 and Qn−1 6= 0, we have

Rn =
Pn
Qn

, and, Rn−1 =
Pn−1

Qn−1
.

So,

Rn −Rn−1 =
Pn
Qn

− Pn−1

Qn−1
=
PnQn−1 − Pn−1Qn

QnQn−1
=

(−1)n−1a1 · · ·an
QnQn−1

. �

Theorem 30: If {Qm} is zero-free, then the infinite continued fraction R in (28.2) converges if and only if

∑ (−1)n−1a1 · · · an
QnQn−1

is convergent. (30.1)

If so,

R = a0 +
∞∑

n=1

(−1)n−1a1 · · · an
QnQn−1

.

Proof: Note that

N∑

n=1

(Rn −Rn−1) = RN −R0, by telescoping

=
N∑

n=1

(−1)n−1a1 · · · an
QnQn−1

. (30.2)

Now, R converges if and only if limRN = ℓ <∞ exists, if and only if the series in (30.1) converged. �
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For ease of application, we prove the next result.

Theorem 31: If we have ∞∑

n=1

a1a2 · · · an
b1b2 · · · bn

=: ℓ <∞, (31.1)

and if an + bn 6= 0, for all n ≥ 1, then

R =
a1
b1−

a2b1
(a2 + b2)−

a3b2
(a3 + b3)−

· · · (31.2)

converges to the value ℓ given by (31.1).

Proof: We may set a0 = 0. Calculate the following:

R1 =
a1
b1

=⇒ P1 = a1, Q1 = b1. (31.3)

R2 =
a1

b1 −
a2b1

a2 + b2

=
a1(a2 + b2)

b1(a2 + b2)− a2b1
=
a1a2 + a1b2

b1b2
=
a1
b1

+
a1a2
b1b2

. (31.4)

We now make two claims:

Claim 1: Qn = b1 · · · bn, hence Qn is zero-free.

Claim 2: Rn =

n∑

m=1

a1 · · · am
b1 · · · bm

.

Proof of Claim 1: (by induction)

True for n = 1, 2. Assume true for all m ≤ n. Then

Qn+1 = (an+1 + bn+1)Qn − an+1bnQn−1

= (an+1 + bn+1)(b1 · · · bn)− an+1bn(b1 · · · bn−1)
= b1 · · · bn+1.



 (31.5)

Proof of Claim 2:

To prove this, we only need to show that

Rn −Rn−1 =
a1 · · · an
b1 · · · bn

. (31.6)

By Theorem 29.ii, and (31.2) we get that

Rn −Rn−1 =
(−1)n−1(a1)(a2b1)(a3b2) · · · (anbn−1)(−1)n−1

QnQn−1
=
a1 · · · anb1 · · · bn−1

b1 · · · bnb1 · · · bn−1
=
a1 · · · an
b1 · · · bn

,

which is (31.6).

The theorem follows. �
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6.3 Continued Fractions for e and π

Theorem 32: We have the following contented fraction for e:

Proof: Note that

e−1 =
1

2
− 1

2 · 3 +
1

2 · 3 · 4 − · · · .

We may write this as
∞∑

n=1

a1 · · ·an
b1 · · · bn

,

with a1 = 1 and ai = −1 for i ≥ 2, and bi = i+ 1 for i ≥ 1.

So, we get that

e−1 =
1

2 +
2

2 +
3

3 +
4

4 +
.. .

.

Therefore,

e = 2 +
2

2 +
3

3 +
4

4 +
.. .

. �

Theorem 33: (Lord Brouncher) We have the following continued fraction for π:

Proof: To get a continued fraction for π, we consider the (Newton / Gregory / Leibniz) Series

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .

This can be written as
∞∑

n=1

a1 · · ·an
b1 · · · bn

,

with a1 = 1, an = −(2n− 3), b1 = 1, bn = 2n− 1, for n ≥ 2. So,

π

4
=

1

1 +
12

2 +
32

2 +
52

2 +
72

. . .

. �
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Comparison of Theorems 32 and 33.

(1) The truncations of the fraction for e−1 yield approximations pn/qn good enough to satisfy the Dirichlet
Criterion that 0 6= |qne−1 − pn| → 0, whereas the truncations of the fraction for π

4 do not satisfy
0 6= |qn π4 − pn| → 0.

(2) The truncations of the fraction for e−1 are not strong approximations in the sense that |qne−1−pn| < 1
qn
.

Such strong approximations will be produced by standard / simple continued fractions.

History: Lord Brouncher found Theorem 33 by recasting a famous formula due to Wallace:

π

2
=

2 · 2
1 · 3 · 4 · 4

3 · 5 · 6 · 6
5 · 7 · · · .

The method of proof given above using the Newton series was due to Euler.
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6.4 Conversion of Continued Fractions

Definition: A regular continued fraction is one for which ai = 1 for i ≥ 1, i.e.,

R = a0 +
1

c1+

1

c2+

1

c3+
· · · .

Note that

a1

b1 +
a2

b2 +
a3

. . .

=
1

b1

a1
+

a2/a1

b2 +
a3

. . .

=
1

b1

a1
+

1

a1b2

a2
+
a1a3/a2

b3 +
a4

. . .

=
1

b1

a1
+

1

a1b2

a2
+

1

a2b3

a1a3
+

1

.. .

.

Define

c1 =
b1
a1
, c2 =

a1b2
a3

, c3 =
a2b3
a1a3

, . . .

Theorem 34: If {an}, {bn} are two infinite sequences of non-zero complex numbers, then

a1
b1+

a2
b2+

a3
b3+

· · · = 1

c1+

1

c2+

1

c3+
· · · ,

where

c2n =
a1a3 · · · a2n−1b2n
a2a4 · · · a2n

, and

c2n+1 =
a2a4 · · ·a2nb2n+1

a1a3 · · ·a2n+1
.

(Since we’re not talking about convergence, what we’re really saying is that for any truncation, the two sides
are equal.)

Proof: Homework. Use induction on n.

Theorem 35: Let {cn} be an infinite sequence of complex numbers such that

|cn| ≥ 2, for all n ≥ 1, and (35.1)

∞∑

n=1

1

|cncn+1|
= ℓ <∞. (35.2)

Then, the regular continued fraction
1

c1+

1

c2+
· · · , (35.3)

is convergent.

Proof: The numerators Pn and denominators Qn of R satisfy the following recurrences:

Pn = cnPn−1 + Pn−2,
Qn = cnQn−1 +Qn−2,

}
(35.4)

for n ≥ 2, with

P0 := 0, Q0 = 1, P1 = 1, Q1 = c1.
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We claim that
|Pn−1| ≤ |Pn| and |Qn−1| ≤ |Qn|, for all n ∈ N. (35.5)

Once we prove this, it follows that Pn and Qn are nonzero for n > 0.

To see this, note that (35.4) and (35.1) imply that

|Pn| ≥ ||cnPn−1| − |Pn−2|| ≥ 2|Pn−1| − |Pn−2| ≥ 2|Pn−1| − |Pn−1| = |Pn−1|,

inductively. Similarly for Qn. In particular, Pn and Qn are zero-free.

Now, define two sequences un, vn by

un := cn
Pn−1

Pn
, vn := cn

Qn−1

Qn
. (35.6)

Therefore,

Pn−2 =
un−1Pn−1

cn−1
, and Qn−2 =

vn−1Qn−1

cn−1
. (35.7)

Hence (35.7) and (35.4) yield

Pn = cnPn−1 +
un−1Pn−1

cn−1
= cnPn−1

(
1 +

un−1

cn−1cn

)
. (35.8a)

Similarly,

Qn = cnQn−1

(
1 +

vn−1

cn−1cn

)
. (35.8b)

By iteration of (35.8), we get that

Pn = c2c3 · · · cn
n−1∏

m=1

(
1 +

um
cmcm+1

)
, (35.9a)

Qn = c1c2c3 · · · cn
n−1∏

m=1

(
1 +

vm
cmcm+1

)
. (35.9b)

Note also that (35.6) combined with (35.8) yield

un =
1

1 +
un−1

cn−1cn

, and vn =
1

1 +
vn−1

cn−1cn

. (35.10)

Since u0 = 0 and v0 = 1, we have that |u1|, |v1| ≤ 2. Thus (35.10) implies inductively that

|un| ≤ 2 and |vn| ≤ 2, (35.11)

since

|un| ≤
1

1−
∣∣∣∣∣
un−1

cn−1cn

∣∣∣∣∣

≤ 1

1− 2

2 · 2

= 2.

This implies that
∑∣∣∣∣

um
cmcm+1

∣∣∣∣ is convergent, and

∑∣∣∣∣
vm

cmcm+1

∣∣∣∣ is convergent.





(35.12)
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This means that the infinite products

α :=

∞∏

m=1

(
1 +

um
cmcm+1

)
, and β :=

∞∏

m=1

(
1 +

vm
cmcm+1

)
, (35.13)

are convergent. Thus (35.9) implies that

lim
n→∞

Pn
Qn

=
α

c1β

exists. Thus the infinite continued fraction is convergent. �

Remark: For convergence, it suffices to have |cn| ≥ 2, for all n ∈ N. Additionally, convergent infinite
products are non-zero in value. (By definition we say that if an infinite product equals zero, that it diverges
to zero.)
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6.5 Bessel Functions: Their Quotients and Their Irrationals

First, we need to define the Gamma function.

Definition:

Γ(s) :=

∫ ∞

0

ts−1e−tdt, (36.1)

for ℜ(s) > 0. It satisfies the functional equation

Γ(s+ 1) = sΓ(s). (36.2)

This functional equation extends Γ to be a meromorphic function on C with simple poles only at 0, -1, -2,
etc, and elsewhere analytic. Also, Γ(n+ 1) = n!, for n ∈ N.

Remark: A more striking value is:

Γ

(
1

2

)
=

√
π. (36.3)

To realize this, observe:

Γ

(
1

2

)
=

∫ ∞

0

t−
1
2 e−tdt

=

∫ ∞

0

2e−u
2

du

=

∫ ∞

−∞
e−u

2

du

=

√∫ ∞

−∞

∫ ∞

−∞
e−(u2+v2) du dv

=

√∫ ∞

0

∫ 2π

0

e−r2r dr dθ

=

√(∫ ∞

0

e−r2r dr

)(∫ 2π

0

dθ

)

=

√
1

2
· 2π

=
√
π.

Definition: (Bessel Function) Let x ∈ C. Then,

Jv(x) :=

∞∑

k=0

(−1)k

k! · Γ(v + k + 1)

(x
2

)2k+v
, (36.4)

for v > −1 real. Clearly the series is convergent for all x ∈ C. It is well defined provided that xv is well
defined. We use the formulas

J 1
2
(x) =

√
2

π
x−

1
2 sinx

J− 1
2
(x) =

√
2

π
x−

1
2 cosx





(36.5)
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To see this:

J 1
2
(x) =

∞∑

k=0

(−1)k

k!(k + 1
2 )(k − 1

2 ) · · · 1
2 · Γ(12 )

(
x2k

√
x

22k
√
2

)

=

√
2

π
x−

1
2

∞∑

k=0

(−1)k · x2k+1

k!(k + 1
2 )(k − 1

2 ) · · · 1
2 · 22k+1

=

√
2

π
x−

1
2

∞∑

k=0

(−1)kx2k+1

(2k + 1)!

=

√
2

π
x−

1
2 sinx.

Similarly for J− 1
2
.

Consequently,
J 1

2
(x)

J− 1
2
(x)

= tanx, (36.6)

when J− 1
2
(x) 6= 0.

A recurrence for Jν(x):

The Jν(x) satisfy

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x), (36.7)

if x 6= 0 and ν > 0. To see (36.7), note that

Jν−1(x) + Jν+1(x) =
(x
2

)ν−1 ∞∑

n=0

(−x2/4)n
n! Γ(ν + n)

+
(x
2

)ν+1 ∞∑

n=0

(−x2/4)n
n! Γ(ν + n+ 2)

.

=
(x
2

)ν−1
[ ∞∑

n=0

(−x2/4)n
n! Γ(ν + n)

−
∞∑

n=0

(−x2/4)n+1

n! Γ(ν + n+ 2)

]

=
(x
2

)ν−1
[

1

Γ(v)
+

∞∑

n=1

(−x2/4)n
n! Γ(ν + n)

− (−x2/4)n
(n− 1)! Γ(ν + n+ 1)

]

=
(x
2

)ν−1
[

ν

Γ(ν + 1)
+

∞∑

n=1

(−x2/4)n · (ν + n− n)

n! Γ(ν + n+ 1)

]

=
(x
2

)ν−1 ν

Γ(ν + 1)
+

∞∑

n=1

(−x2/4)n · ν
n! Γ(ν + n+ 1)

=
(x
2

)ν 2ν

x

∞∑

n=0

(−1)n(x/2)2n

n! Γ(ν + n+ 1)

= Jν(x)
2ν

x

Asymptotic Behavior of Jν(x) as ν → ∞:

Fix x and let ν → ∞. Then,

Jν(x) =
(x/2)ν

Γ(ν + 1)

[
1 +O

(
1

ν

)]
,

where “O()” is big-oh notation.
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Hence,

Jν(x) ∼
(x/2)ν

Γ(ν + 1)
. (36.8)

To set up a continued fraction, rewrite the recurrence as

Jν−1(x) =
2ν

x
Jν(x) − Jν+1(x), and

Jν−1(x)

Jν(x)
=

2ν

x
− Jν+1(x)

Jν(x)
,

provided that Jν(x) 6= 0.

Hence,

Jν(x)

Jν−1(x)
=

1

2ν

x
− Jν+1(x)

Jν(x)

, (36.9)

provided that Jν−1(x) is also non-zero. Since Jν is an analytic function, it’s zero-set is countable and will
not cluster. Thus, the zero set of JνJν−1 has the same property.

Iterating (36.9), we get that

Jν(x)

Jν−1(x)
=

1

2ν

x
− 1

Jν(x)

Jν+1(x)

=
1

2ν

x
− 1

2(ν + 1)

x
− Jν+2(x)

Jν(x)

=
1

2ν

x
− 1

2(ν + 1)

x
− 1

2(ν + 2)

x
− 1

. . .

2(ν + n)

x
− Jν+n+1(x)

Jν+n

, (36.10)

formally as a function. Now view this as generating numerators Pm for 1 ≤ m ≤ n and denominators Qn for
1 ≤ m ≤ n and P ∗

n+1 and Q∗
n+1 as the numerator and denominator when the fraction ends.

Exercise: It can be shown using the continued fraction recurrence for Qn and repeated use of (36.7) that

P ∗
n+1 = Jν(x)

Q∗
n+1 = Jν−1(x).

Remark: Observe that in

R = a0 +
a1

b1 +
a2

b2 +
a3

. . .

bk−1 +
ak

bk +
ak+1

. . .
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if we set

bk 7→ γbk, ak 7→ γak,

to get a new fraction

R∗ = a0 +
a1

b1 +
a2

b2 +
a3

. . .

bk−1 +
γak

γbk +
γak+1

bk+1 +
.. .

and we call Pn and Qn the numerator and denominator of R, and P ∗
n and Q∗

n the numerator and denominator
of R∗, then

P ∗
n = γPn Q∗

n = γQn,

for n ≥ j.

Instead of (36.10), if we write

Jν
Jν−1

=
1

2ν

x
− 1

2(ν + 1)

x
− 1

. . .

2(ν + n)

x
− 1

(Jν+n/Jν+n+1)

then the new last denominator is

Jν−1(x)/Jν+n+1(x),

and the new last numerator is

Jν(x)/Jν+n+1(x).

If we calculate, we get that

Jν(x)

Jν−1(x)
− Pn
Qn

=
P ∗
n+1

Q∗
n+1

− Pn
Qn

=
(−1)n+1a1 · · ·an+1

QnQ∗
n+1

=
Jν+n+1(x)

QnJν−1(x)
.

This goes to 0 as n→ ∞ because

(1) We have chosen Jν−1(x) 6= 0 (fixed).

(2) Jν+n+1(x) → 0 rapidly.

(3) For large values of n, cn = 2(v+n)
x satisfies |cn| ≥ 2.

Then, Qn → ∞ eventually. Thus, the iteration converges to Jν(x)/Jν−1(x).
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Theorem 36: If Jν(x), Jν−1(x) 6= 0, then

Jν(x)

Jν−1(x)
=

1

2ν

x
− 1

2(ν + 1)

x
− 1

2(ν + 2)

x
− . . .

=
x

2ν − x2

2(ν + 1)− x2

2(ν + 2)− x2

2(ν + 3)− . . .

=
x

1− x2

3− x2

5− x2

7− . . .

.
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6.6 Some Theorems

Theorem 37: Let an, bn ∈ Z, and let

α =
a1
b1+

a2
b2+

· · ·

be convergent. Suppose
0 < |an| < |bn|, for all n ≥ N (37.1)

and
|an| 6= |bn| − 1, for infinitely many n. (37.2)

Then, α is irrational.

Proof: Define αk, the tail of α, by

αK =
ak
bk+

ak+1

bk+1+
· · · . (37.3)

We claim that
|αk| ≤ 1, for all k ≥ N. (37.4)

To realize this, note the following inequality:

∣∣∣∣
ak+1

bk+1

∣∣∣∣ < 1,

and so
bk − 1 < bk +

ak+1

bk+1
< bk + 1, for all k ≥ N. (37.5)

Case 1: (bk > 0)

Now,

bk +
ak+1

bk+1
> |bk| − 1 ≥ |ak|,

since ak, bk ∈ Z.

Case 2: (bk < 0)

In this case,

bk +
ak+1

bk+1
< −|bk|+ 1 ≤ −|ak|.

Thus,

|ak| < bk +
ak+1

bk+1
.

So, in both cases, ∣∣∣∣∣∣∣∣

ak

bk +
ak+1

bk+1

∣∣∣∣∣∣∣∣
< 1. (37.6)

Thus, the condition
ak+1

bk+1
< 1 impies (37.6). So, by iteration,

∣∣∣∣
ak
bk+

ak+1

bk+1+
· · · ak+ℓ

bk+ℓ+

∣∣∣∣ < 1. (37.7)

So, letting ℓ→ ∞, we get
|αk| ≤ 1, (37.8)
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which proves (37.4). Next we claim that

|αk| < 1, infinitely often. (37.9)

Suppose not. Then,
|αk| = |αk+1| = 1, for all k ≥ N1,

and so

|αk| =
∣∣∣∣

ak
bk + bk+1

∣∣∣∣ = 1, for all k ≥ N1.

Hence
|ak| = |bk + αk+1| ≥ |bk| − 1, for all k ≤ N1. (37.10)

But then, we also know from (37.1) that

|ak| ≤ |bk| − 1, for all n ≥ N,

thus
|ak| = |bk| − 1, for all k ≥ max(N,N1).

This contradicts (37.2). So, (37.9) holds. Suppose α ∈ Q. We know the relation

α =
Pk−1 + αKPK
Qk−1 + αkQk

.

Therefore,
αk(αQk − Pk) = Pk−1 − αQk−1.

If αQk − Pk = 0, then Pk−1 − αQk−1 = 0, which implies

Pk−1

Qk−1
=
Pk
Qk

,

which contradicts the identity
Pk−1

Qk−1
− Pk
Qk

=
(−1)ka1 · · · ak
QkQk−1

.

Thus, αQk − Pk and Pk−1 − αQk−1 are both non-zero. Hence,

αk =
Pk−1 − αQk−1

αQk − Pk
∈ Q.

Write

αN =
A2

A1
, for A1, A2 ∈ Z,

with |A2| ≤ |A2|, since |αN | ≤ 1. Now,

αN =
αN

bN + αN+1
=
A2

A1
,

and so

αN+1 =
A1aN −A2bN

A
=
A3

A2
,

with A2, A3 ∈ Z. But, |αN+1| ≤ 1, and so |A3| ≤ |A2|. Thus we get an infinite sequence of integers
An satisfying

|A1| ≥ |A2| ≥ |A3| ≥ · · · . (37.11)

This was a consequence of |αk| ≤ 1, for all k ≥ N . However, |αk| < 1 infinitely often. Hence, in
(37.11), infinitely many are to inequalities are strict. But this is a contradiction since |Ai| ∈ Z+. Thus
α is irrational. �
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Remark: We are not claiming that the truncations yield strong approximations. Sometimes they don’t.

Theorem 38: Let ν > 0 be rational. Let x ∈ Q, and let Jν(x), Jν−1(x) 6= 0. Then,

Jν(x)

Jν−1(x)
is irrational.

Proof: Let x = a
b . Let ν = c

d . Then,

Jν(x)

Jν−1(x)
=

a
b

2 cd−
a
b
2

2
(
c
d + 1

)
+

a
b
2

2
(
c
d + 2

)
− · · · ,

for a, b, c, d ∈ Z. We can write this as

a
2bc
d −

a2/b

2
(
c
d + 1

)
− · · · = a

2bc−
a2d/b

2
(
c
d + 1

)
− · · ·

=
a

2bc−
a2d

2b
(
c
d + 1

)
− · · · . (38.1)

Since c
d + n → ∞ as n → ∞, we have that the new an, bn in (38.1) will be integers satisfying (37.1)

and (37.2). Hence Theorem 38 holds. �

Corollary: If x ∈ Q, with sinx 6= 0 and cos c 6= 0, then tanx is irrational.

Proof:

tanx =
J 1

2
(x)

J− 1
2
(x)

. �

Corollary: π is irrational.

Proof:
tan

π

4
= 1. �

Remark: This is Lambert’s proof of the irrationality of π. (1761)
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6.7 Simple Continued Fractions

Definition: Recall a regular continued fraction has an = 1 for all n ≥ 1. A simple continued fraction is one
for which bn ∈ Z+, and a0 ∈ Z. At this point, we relabel bn as an an the continued fraction is

a0 +
1

a1+

1

a2+
· · · ,

which we denote by

〈a0, a1, a2, . . .〉,

if it is infinite, and

〈a0, a1, a2, . . . , an〉,
if it is finite.

Theorem 39: With P0 = a0, Q0 = 1, P−1 = 1, Q−1 = 0, we have

Pn = anPn−1 + Pn−2,

Qn = anQn−1 +Qn−2, for n ≥ 1

Lemma: Let F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, for n ≥ 2. Then, Qn ≥ Fn+1.

Theorem 40: Every simple continued fraction converges to a real number.

Proof: From an earlier formula and the previous Lemma, we have that

∞∑

n=1

(−1)n−1

QnQn−1
<∞,

and the fraction will have value

α = a0 +

∞∑

n=1

(−1)n−1

QnQn−1
,

if the fraction is infinite.

Note that Pn, Qn ∈ Z, and Qn > 0. But also:
Theorem 41:

PnQn−1 − Pn−1Qn = (−1)n−1

Corollary:

(Pn, Qn) = 1

Theorem 42: For n ≥ 2,

PnQn−2 − Pn−2Qn = (−1)n−2an.

Proof:

PnQn−2 − Pn−2Qn = (anPn−1 + Pn−2)Qn−2 − Pn−2(anQn−1 −Qn−2)

= an(Pn−1Qn−2 − Pn−2Qn−1) = (−1)n−2an
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Theorem 43: If α = 〈a0, a1, . . .〉 is a simple continued fraction, then Pn and Qn satisfy the following
inequalities:

P0

Q0
<
P2

Q2
<
P4

Q4
< · · · · · · P5

Q5
<
P3

Q3
<
P1

Q1

Recall: If 〈a0, a1, a2, . . .〉 is a simple continued fraction with Pn/Qn as the nth convergent, then:

Theorem 41:

PnQn−1 − Pn−1Qn = (−1)n−1

Corollary:

gcd(Pn, Qn) = 1

Theorem 42: For n ≥ 2,

PnQn−2 − Pn−2Qn = (−1)n−2an.

Proof:

PnQn−2 − Pn−2Qn = (anPn−1 + Pn−2)Qn−2 − Pn−2(anQn−1 −Qn−2) = an(Pn−1Qn−2 − Pn−2Qn−1) = (−1)n−2an.

Theorem 43: If α = 〈a0, a1, . . .〉 is a simple continued fraction, then Pn and Qn satisfy the following
inequalities:

P0

Q0
<
P2

Q2
<
P4

Q4
< · · · · · · P5

Q5
<
P3

Q3
<
P1

Q1

If the continued fraction is infinite, we know that it converges to some value α, and by Theorem 43:

α = lim
n→∞

P2n

Q2n
= lim
n→∞

P2n−1

Q2n−1
.

In particular, we have

Theorem 44: If 〈a0, a1, . . .〉 = α is an infinite continued fraction, then

0 6=
∣∣∣∣α− Pn

Qn

∣∣∣∣ <
1

Q2
n

. (44.1)

Proof: Since P2n/Q2n is strictly increasing and P2n−1/Q2n−1 is strictly decreasing, we have that

∣∣∣∣α− Pn
Qn

∣∣∣∣ 6= 0.

Also, from Theorem 43, we have that

∣∣∣∣α− Pn
Qn

∣∣∣∣ <
∣∣∣∣
Pn
Qn

− Pn+1

Qn+1

∣∣∣∣ =
1

QnQn+1
<

1

Q2
n

,

because Qn+1 > Qn. �

Theorem 45: Every infinite continued fraction converges to an irrational number. Clearly, every finite
continued fraction represents a rational number.

Proof: By the arguments in Theorem 44, Pn/Qn are strong approximations in the Dirichlet sense
to α, and so α is irrational. �

Theorem 46: Every irrational number has a unique simple continued fraction.
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Proof:
Uniqueness: Let

α = a0 +
1

a1 +
1

a2 +
1

.. .

. (46.1)

be a simple continued fraction expansion of α. We will show that ai is uniquely determined. Define

αn := 〈an, an+1, . . .〉. (46.2)

So, α = α0. Since each αn is itself a simple continued fraction, each αn is irrational. Note that

αn > 1 for n ≥ 1. (46.3)

Also, α = 〈a0, a1, . . . , an−1, αn〉. Note that

α = a0 +
1

α1
, with 0 <

1

α1
< 1, a0 ∈ Z.

Hence a0 = [α] and {α} = 1
α1

, and thus α1 = 1
{α} . So, a0 is uniquely determined, and so is α1. Next,

α1 = a1 +
1

α2
, with 0 <

1

α2
< 1,

and hence a1 = [α1]. So, by iteration, the an are uniquely given by:

an = [αn], αn+1 =
1

{αn}
. (46.4)

Existence: Let α be irrational. Write

α = [α] + {α} = a0 + {α}, with 0 < {α} < 1. (46.5)

Next rewrite as:

α = a0 +
1

1/{α} = a0 +
1

α1
,

with α1 = 1/{α}, and this yields

α = a0 +
1

[α1] + {α1}
,

with 0 < {α1} < 1. Now,

α = a0 +
1

a1 +
1

1/{α1}

.

So, we may iterate this and define an and αn by (46.4), at each stage obtaining an irrational αn. Hence
{αn} 6= 0. We now have the following relations

α = 〈a0, a1, . . . , an, αn+1〉.

Hence Pm/Qm = 〈a0, . . . , am〉 for 1 ≤ m ≤ n, and P ′
n/Q

′
n = 〈a0, a1, . . . , an, αn+1〉, can be obtained

from the continued fraction. Thus

Pn = anPn−1 + Pn−2

Qn = anQn−1 +Qn−2

P ′
n = αn+1Pn + Pn−1

Q′
n = αn+1Qn +Qn−1





(46.6)



54 CHAPTER 6. CONTINUED FRACTIONS

with αn+1 > 1. Thus,

α− Pn
Qn

=
P ′
n

Q′
n

− Pn
Qn

=
αn+1Pn + Pn−1

αn+1Qn +Qn−1
− Pn
Qn

=
Pn−1Qn − PnQn−1

Qn(αn+1Qn +Qn−1)

=
(−1)n

Qn(αn+1Qn +Qn−1)

n→∞−−−−→ 0.

Thus the continued fraction converges to α. �

Remark: The existence proof has given an exact measure of the difference α−Pn/Qn. If an are large, then
the approximations improve.
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6.8 Finite Continued Fraction Expansion of Rationals

If we apply the above contradiction as in the existence, we cannot get an infinite expansion, because it would
force α to be irrational. Thus,

α = 〈a0, a1, . . . , an〉,
which is a finite expansion which stops only because {an} = 0, i.e., αn ∈ Z so [αn] = an.

If an > 1, we could write an as (an − 1) + 1
1 , which gives us another continued fraction one longer. This

does not come out of our earlier algorithm. So, there are exactly two continued fraction expansions for each
rational number, (which we restate below as a theorem), but only one comes out of our algorithm.

Theorem 47: Every rational number has exactly two continued fraction expansions: one ending in an ≥ 2,
and one ending in an+1 = 1. If we add the condition that the finite continued fraction expansion does not end
in a 1, then we have that finite continued fraction expansions are unique. (This is similar to the restriction
that a decimal does not end with only 9s.)

Question: Can we classify reals (irrationals) by their continued fraction expansions?

We will prove α is represented as a periodic continued fraction if and only if α is a quadratic irrational.
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6.9 Minkowiski Question Mark Function

Pick α ∈ Q, and write α = a0.b0b1 · · · bmbm+1 · · · bm+s. Now define

β = β(α) = a0 +
1

b0 +
1

b1 +
1

.. .

.

Then β is a quadratic irrational. Minkowski’s Question Mark function used this construction to map quadratic
irrationals to rationals. This is an example of a singular function.
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6.10 Continued Fraction for e

Theorem 48: (Euler)

e = 〈2, 1, 2, 1, 1, 4, 1, 1, 6, 1, . . .〉, i.e.,

∣∣∣∣e−
Pn
Qn

∣∣∣∣ <
1

κQ2
n

,

with κ as large as possible. We will prove this by showing that

e+ 1

e− 1
= 〈2, 6, 10, 14, . . .〉,

which is much easier. Then we can relate the two fractions.

Proof: First we prove that
e+ 1

e− 1
= 〈2, 6, 10, 14, . . .〉.

Recall that

tan(x) =
x

1− x2

3− x2

5− . . .

,

and so,

tan(ix) =
ix

1 +
x2

3 +
x2

5 +
.. .

. (48.1)

Since tan(ix) = i tanh(x), we get that

tanh(x) =
x

1 +
x2

3 +
x2

5 +
.. .

. (48.2)

Note that

tanh(x) =
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1
. (48.3)

Since tanh(x) is irrational for 0 6= x ∈ Q, we conclude from (48.3) that (ex)2 is irrational for rational
x 6= 0. Put x = 1

2 in (48.2) to get

e − 1

e + 1
=

1/2

1 +
1/4

3 +
1/4

5 +
.. .

=
1

2 +
1/2

3 +
1/4

5 +
.. .

=
1

2 +
1

6 +
1

10 +
. . .

. (48.4)

So,
e+ 1

e− 1
= 〈2, 6, 10, · · · , 2(2n+ 1), · · · 〉. (48.5)

Let Pn/Qn denote the nth convergent in the proposed continued fraction for e and let P ′
n/Q

′
n denote

the nth convergent in (48.5). We now claim the following:
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Lemma: For each k ∈ Z+, we have that

P3k+1 = P ′
k +Q′

k, and Q3k+1 = P ′
k −Q′

k. (48.6)

Proof: We will establish the first equality in (48.6). The second is similar, and it should
be completed by the reader as an exercise.

Set Sk = P3k+1 and Tk = P ′
k +Q′

k. We will show by induction that Sk = Tk.

Initial Step:

S0 = P1 = the numerator of 2 + 1
1 = 3.

T0 = P ′
0 +Q′

0 = 2 + 1 = 3.
Hence S0 = T0.

Similarly, S1 = P4 = the numerator of 2 +
1

1 +
1

2 +
1

1 +
1

1

=
19

7
, thus S1 = 19.

Now, T1 = P ′
1 +Q′

1 = 13 + 6 = 19.
Hence S1 = T1.

Inductive Step:

From the fraction (48.5), we see that

P ′
k = 2(2k + 1)P ′

k−1 + P ′
k−2,

Q′
k = 2(2k + 1)Q′

k−1 +Q′
k−2.

Therefore,
Tk = 2(2k + 1)Tk−1 + Tk−2. (48.7)

Observe that
P3k−3 = P3k−4 + P3k−5,
P3k−2 = P3k−3 + P3k−4,
P3k−1 = 2kP3k−2 + P3k−3,
P3k = P3k−1 + P3k−2,
P3k+1 = P3k + P3k−1.




. (48.8)

Notice also that
P3k−3 − P3k−2 + 2P3k−1 + P3k + P3k+1 = (P3k−4 + P3k−5)− (P3k−3 + P3k−4)+

(4kP3k−2 + 2P3k−3) + (P3k−1 + P3k−2) + (P3k + P3k−1) (48.9)

By cancellation,
P3k+1 = (4k + 2)P3k−2 + P3k−5,

i.e. Sk = 2(2k + 1)Sk−1 + Sk−2. Thus comparing (48.7) and (48.9), we see that Tk and
Sk satisfy the same recurrences. We checked at k = 0, 1. Thus Tk = Sk, as claimed. �

From the Lemma, we know that

lim
k→∞

Pk
Qk

= lim
k→∞

P3k+1

Q3k+1
= lim

k→∞

Pk +Qk
P ′
k −Q′

k

, and so

lim
k→∞

Pk
Qk

= lim
k→∞

Pk +Qk
P ′
k −Q′

k

= lim
k→∞

P ′
k

Q′
k

+ 1

P ′
k

Q′
k

− 1
=

e+1
e−1 + 1
e+1
e−1 − 1

= e. �
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6.11 Irrational Numbers and Continued Fraction Convergence

Lemma: Let a
b and c

d be two rationals satisfying

|ad− bc| = 1. (49.1)

Let θ be an irrational that lies between a
b and c

d . Let
a
b be the fraction with the smaller denominator. Then,

theta− a

b
<

1

b2
. (49.2)

Proof: Note that
∣∣∣θ − a

b

∣∣∣ <
∣∣∣a
b
− c

d

∣∣∣ = |ad− bc|
bd

=
1

bd
<

1

b2
. �

Remark: Let θ be irrational, and let pn/qn be a convergent to θ. Consider the next convergent pn+1/qn+1.
We know that θ lies between the two, and we also know that

|pnqn+1 − pn+1qn+1| = 1. (49.3)

In addition, qn < qn+1. Thus, by the lemma,

∣∣∣∣θ −
pn
qn

∣∣∣∣ <
1

q2n
(49.4)

is valid for every convergent.

Lemma: If ab and c
d are two rationals satisfying (49.1), and if θ is an irrational that lies between them, then

one among a
b and c

d (call it p
q ), would satisfy

∣∣∣∣θ −
p

q

∣∣∣∣ <
1

2q2
. (49.5)

Proof: Suppose
∣∣∣θ − a

b

∣∣∣ > 1

2b2
,

∣∣∣θ − c

d

∣∣∣ > 1

2d2





(49.6)

Then
∣∣∣a
b
− c

d

∣∣∣ =
∣∣∣θ − a

b

∣∣∣+
∣∣∣θ − c

d

∣∣∣ > 1

2b2
+

1

2d2
(49.7)

which is equivalent to

2bd > d2 + b2,

which is true if and only if

0 > (b− d)2,

which is a contradiction. Hence the lemma. �
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Theorem 49: For an irrational θ, one out of every two consecutive convergents will satisfy:
∣∣∣∣θ −

p

q

∣∣∣∣ <
1

2q2
.

Note that we are not specifying which among a pair of consecutive convergents will satisfy (49.5). It could
be the one with the larger denominator, and then both consecutive convergents satisfy (49.2). This theorem
is of interest because it has a partial converse.

Theorem 50: If θ is irrational, and p
q is rational, such that

∣∣∣∣θ −
p

q

∣∣∣∣ <
1

2q2
,

then p
q is a convergent to θ.

Proof: First write ∣∣∣∣θ −
p

q

∣∣∣∣ =
ǫη

q2
, (50.1)

with ǫ = ±1 and 0 < η < 1/2. Next, write

p

q
= 〈a0, a1, . . . , an〉,

and choose n such that ǫ = (−1)n, i.e.,

sgn
p

q
= (−1)n.

(Here we are choosing between the two ways to end a rational continued fraction to satisfy the above
condition.)

Now, we can rewrite (50.1) as

θ − Pn
Qn

=
(−1)nη

Q2
n

. (50.2)

Let Pn−1/Qn−1 = 〈a0, a1, . . . , an−1〉. Then
|PnQn−1 − Pn−1Qn| = 1.

Thus, there exists ω such that

θ =
Pnω + Pn−1

Qnω +Qn−1
. (50.3)

A nice way to see (50.3) is to write it as
[
θ
1

]
=

[
Pn Pn−1

Qn Qn−1

] [
ω
1

]
, (50.4)

which is the same as [
ω
1

]
=

[
Pn Pn−1

Qn Qn−1

] [
θ
1

]
. (50.5)

So, from (50.2) and (50.3), we get that

(−1)nη

Q2
n

= θ − Pn
Qn

=
Pnω + Pn−1

Qnω +Qn−1
− Pn
Qn

=
Pn−1Qn − PnQn−1

(Qnω +Qn−1)Qn

=
(−1)n

(Qnω +Qn−1)Qn
. (50.6)
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This yields

η =
Qn

Qnω +Qn−1
, (50.7a)

and hence

ω =
Qn − ηQn−1

ηQn
. (50.7b)

Since 0 < η < 1/2 and 0 < Qn−1 < Qn, and by (50.3), we have that

ω > 1 and ω is irrational. (50.8)

Now, write ω as a continued fraction

ω = 〈an+1, an+2, · · · , 〉. (50.9)

From (50.3), we see that θ = 〈a0, a1, · · · , an, ω〉. But, we see that this is equal to θ =
〈a0, a1, · · · , an, an+1, · · · , 〉 as a simple continued fraction. Since such an expansion is unique, it is
the simple continued fraction expansion of θ, and Pn/Qn is the nth convergent. �



Chapter 7

Best Approximations

7.1 Definition and Some Theorems

Remark: If α = 〈a0, a1, · · · 〉 and αn = 〈an, an+1, · · · 〉, then we have seen that

α =
αnPn−1 + Pn−2

αnQn−1 +Qn−2
, (51.1)

and,

an = [αn]. (51.2)

From (51.1) we get

αn =
Pn−2 − αQn−2

αQn−1 − Pn−1
. (51.3)

So, we arrive at:

Corollary: If α = 〈a0, a1, · · · 〉, then the partial quotients an are given by

an =

[ |αQn−2 − Pn−2|
|αQn−1 − Pn−1|

]
. (51.4)

We begin by defining the norm of a real number x by

‖x‖ = min
n ∈ Z

|x− n|, (51.5)

so that ‖x‖ is the distance between x and the integer nearest to x. This norm satisfies the triangle inequality

‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖,

and ‖x‖ = 0 is and only if x ∈ Z. Hence, this norm is a metric on the circle group.

Since we wish to deal with best approximations to both rationals and irrationals, we will reformulate
Dirichlet’s theorem (Theorem 10) suitably.

Theorem 51: Let θ,Q ∈ R with Q > 1. Then, there exists an integer q such that

0 < q < Q and ‖qθ‖ ≤ 1

Q
.

62
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Remark: Theorem 51 is best-possible by choosing θ = 1
Q , for Q ∈ Z+.

Proof: First assume that Q ∈ Z. Consider the Q+ 1 numbers

{0, 1} ∪ {qθ | 0 < q < Q, q ∈ Z} ⊂ [0, 1]. (51.8)

Partition [0,1] as

[0, 1] =

[
0,

1

Q

)
∪
[
1

Q
,
2

Q

)
∪ · · · ∪

[
Q− 1

Q
, 1

]
. (51.9)

By the pigeonhole principle, two members from the list in (51.8) lie in the same subset in (51.9), i.e.,
there exist integers r1, s1, r2, s2 such that

|(r1θ − s1)− (r2θ − s2)| ≤
1

Q
,

with 0 ≤ r1 6= r2 < Q. So,
q = |r1 − r2|

does the job.

Now, if Q is not an integer, then apply the above argument for [Q] + 1 and note that q < [Q] + 1, and
therefore q ≤ [Q] < Q. In fact, we get that ‖qθ‖ ≤ 1

[Q]+1 <
1
Q . �

Definition: If θ ∈ R, a rational p/q is called a best approximation of θ if:

‖qθ‖ < ‖q′θ‖, for all 0 < q′ < q. (52.1)

Remark: Clearly, q = 1 yields a best approximation with p = the nearest integer to θ. Define q1 = 1 and
note that ‖q1θ‖ ≤ 1/2. Also, ‖q1θ‖ = 0 if and only if θ ∈ Z, in which case our process stops. If ‖q1θ‖ 6= 0,

then choose Q >
1

‖q1θ‖
, so that

1

Q
< ‖q1θ‖. (52.2)

By, Theorem 51, the set of Q for which

‖qθ‖ < 1

Q
< ‖q1θ‖, for all 0 < q < Q (52.3)

is non-empty. From among these q satisfying (52.3), choose q2 to be minimal. Hence,

‖q2θ‖ = |q2θ − p2| < |q1θ| ≤
1

2
.

If ‖q2θ‖ = 0, we stop here. Otherwise, we use (52.2) to iterate. This process generates the sequence of best
approximations.

Recall: Given θ ∈ R, we generated a sequence of positive integers qn starting with q1 = 1, that satisfied the
following:

1 = q1 < q2 < q3 < · · · (52.4)

and their companions
p1, p2, · · · , pn ∈ Z,

such that
‖qnθ‖ = |qnθ − pn|,
‖qn+1θ‖ < ‖qnθ‖,

‖qnθ‖ < ‖qθ‖, for all 1 ≤ q < qn+1.



 (54.5)

We call each pn/qn as a best approximation to θ. Note that the sequence qn can be finite and would end at
n when ‖qnθ‖ = 0.
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Theorem 52: For each n for which qn+1 is defined qn+1θ − pn+1 and qnθ − pn are of opposite sign.

Proof: Suppose qn+1θ − pn+1 and qnθ − pn have the same sign. We know that |qn+1θ − pn+1| <
|qnθ − pn|, by the definition of best approximation. Since, they have the same sign, (qn+1 − qn)θ −
(pn+1 − pn) = q′θ − p′, with q′ = qn+1 − qn and p′ = pn+1 − pn. Now, this satisfies

|q′θ − p′| < |qnθ − pn|, (52.6)

with q′ < qn+1, if qn+1θ − pn+1 6= 0. This violates (52.5), and hence the theorem holds when qn+1θ −
pn+1θ 6= 0.

If qn+1θ − pn+1 = 0, the theorem is trivially true. �

Remark: We can rewrite Theorem 52 as:

If qn+1θ − pn+1 6= 0, then

(qnθ − pn)(qn+1θ − pn+1) < 0. (52.7)

From the minimality of qn+1 and the choice Q = qn+1 in Theorem 51, we get that

‖qnθ‖ <
1

Q
=

1

qn+1
. (53.1)

Hence,

qn‖qnθ‖ < qn+1‖qnθ‖ < 1, and

∣∣∣∣θ −
pn
qn

∣∣∣∣ <
1

qnqn+1
.





(53.2)

Theorem 53: If θ is real and pn/qn the sequence of best approximations, then

(i) If θ is rational, then θ = pN/qN for some N , i.e. ‖qNθ‖ = 0.

(ii) If θ is irrational, the sequence is infinite and yields strong approximations in the Dirichlet sense.

Lemma: If pn/qn and pn+1/qn+1 are successive best approximations to a real θ, then

|pnqn+1 − pn+1qn| = 1.

Proof: We begin by noting that

qn+1pn − qnpn+1 = qn(qn+1θ − pn+1) = qn+1(qnθ − pn) (54.1)

We know that |qn+1θ − pn+1| < |qnθ − pn|, and so

|qn(qn+1θ − pn+1)| < |qn+1(qnθ − pn)|. (54.2)

Therefore,

0 < |pnqn+1 − pn+1qn| < qn‖qn+1θ‖+ qn+1‖qnθ‖,
0 < |pnqn+1 − pn+1qn| < 2qn+1‖qnθ‖,
0 < |pnqn+1 − pn+1qn| < 2.

by (53.2). But, |pnqn+1 − pn+1qn| ∈ Z+. Hence |pnqn+1 − pn+1qn| = 1. �
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Theorem 54: Let pn/qn and pn+1/qn+1 be successive best approximations to a real number θ. Then,

(i) qn+1pn − qnpn+1 and qnθ − pn have opposite sign.

(ii) qn+1pn − qnpn+1 = −(qnpn−1 − qn−1pn)

(iii) qn‖qn+1θ‖+ qn+1‖qnθ‖ = 1.

Proof: By (51.4) and (54.2), we see that

sgn qn+1pn − qnpn+1 = sgn−qn+1(qnθ − pn) = − sgn qnθ − pn.

Hence (i) is true. (ii) follows directly from (i) and (52.7). To see (iii), use (52.7) again and rewrite
(54.1) as

|qn+1pn − qnpn+1| = qn|qn+1θ − pn+1|+ qn+1|qnθ − pn| = qn‖qn+1θ‖+ qn+1‖qnθ‖,

and use the above Lemma. �

Theorem 55: If pn/qn is the sequence of best approximations to θ, then there exists an ∈ Z+ such that

pn+1 = anpn + pn1 , (55.1)

qn+1 = anqn + qn−1, (55.2)

|qn−1θ − pn−1| = an|qnθ − pn|+ |qn+1θ − pn|. (55.3)

Proof: From Theorem 54, we have that

(qn+1 − qn−1)pn = (pn+1 − pn−1)qn. (55.4)

By the Lemma, we have that gcd(pn, qn) = 1. Therefore, with pn | (pn+1 − pn−1)qn, we have that

pn | (pn+1 − pn−1). (55.5)

Thus, there exists and integer an such that

pn+1 − pn−1 = anpn. (55.6)

Similarly, qn | (qn+1 − qn−1)pn, so we have that there exists bn such that

bnqn = qn+1 − qn−1. (55.7)

Now, by (55.4), (55.6), and (55.7),

bnqnpn = qnpnqn,

and so an = bn. Thus the same integer satisfies both (55.1) and (55.2). Note that (55.2) together with
(52.4) forces that an > 0.

Lastly, to prove (55.3), multiply (55.2) by θ and subtract (55.1). Now,

qn+1θ − pn+1 = an(qnθ − pn) + (qn−1θ − pn−1).

(qn+1θ − pn+1)− an(qnθ − pn) = qn1θ − pn−1.

Since

sgn qn−1θ − pn−1 = sgn qn+1θ − pn+1 = − sgn qnθ − pn,

and an > 0, (55.3) follows. �
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Consequence: We can rewrite (55.3) as:

|qn−1θ − pn−1|
|qnθ − pn|

= an +
|qn+1θ − pn+1|

|qnθ − pn|
.

Since an ∈ Z and |qn+1θ − pn+1| < |qnθ − pn|, we conclude that

an =

[ |qn−1θ − pn−1|
|qnθ − pn|

]
.

Compare with

an = [αn] =

[ |αQn−2 − Pn−2|
|αQn−1 − Pn−1|

]
,

which was Theorem 51, line (51.3). With an index shift by 1, we see that they are the same.
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7.2 A Procedure to Generate Best Approximations

Note that if p/q is a best approximation to θ, then

p

q
− [θ]

is a best approximation to {θ} = θ− [θ]. So, we will concentrate on 0 < θ < 1. This discussion will be broken
into two cases: (1) 0 < θ ≤ 1/2, and (2) 1/2 < θ < 1.

Case 1: (0 < θ < 1/2)

With q1 = 1, the nearest integer is 0. Set p1 = 0. Thus,

q1θ − p1 = θ > 0, ‖θ‖ ≤ 1

2
. (56.1)

Since |qn+1pn − pn+1qn| = 1(⋆), taking n = 1 gives |q2p1 − p2q1| = 1, and hence |p2| = 1, and since
θ > 0 we have

p2 = 1. (56.2)

With p2 = 1 and p1 = 0, use p2 = a1p1 + p0 to get

p0 = 1. (56.3)

At this stage define q0 := 0. Since q1 = 1 and q2 = a1q1 + q0, we have that

q2 = a1. (56.4)

So, we need to know a1 in order to determine q2. For this we use

|q0θ − p0| = a1|q1θ − p1|+ |q2θ − p2|, (56.5)

and therefore,

1 = a1θ + ‖q2θ‖.

So,
1

θ
= a1 +

‖q2θ‖
‖q1θ‖

. (56.6)

Since ‖q2θ‖ < ‖q1θ‖, we have that

a1 = [1/θ]. (56.7)

So, we have determined a1 and thus q2. We have the formula

a0 =

[‖qn−1θ‖
‖qnθ‖

]
, for n ≥ 2

from last class. So, since we have q1 and q2, we can calculate a2, and we can start our recurrence since
we now have a1 and a2, and the recurrences

qn+1 = anqn + qn−1

pn+1 = anpn + pn−1,

so we can calculate a2, then q3, then p3, then a3, and so on.
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Case 2: (1/2 < θ < 1)

With q1 = 1, the nearest integer is 1 (not 0) and therefore p1 = 1, and thus

q1θ − p2 = θ − 1 < 0. (56.8)

We know that |q2p1 − p2q1| = 1, and therefore

|q2 − p2| = 1 (56.9)

But, we also know that sgn q2p1 − p2q1 = − sgn q1θ − p1, and the right hand term is less than zero.
Thus

q2 − p2 = 1. (56.10)

If we define
q0 := 1 and p0 := 0, (56.11)

then |q1p0 − q0p1| = 1, which fits with (⋆). Also, q1p0 − p1q0 = −1 and is of opposite sign to
q0θ − p0 = 1 · θ − 0 = θ. In addition, p2 = a1p1 + p0 implies that

p2 = a1, (56.12)

and q2 = a1q1 + q0 implies that
q2 = a1 + 1. (56.13)

This is all consistent with (56.10). So, (56.11) is a valid choice that yields consistent properties between
Case 1 and Case 2.

Similarly, p−1 = 1 and q−1 = 0 (56.14) are valid choices as well. With these choices, we have

|q−1θ − p−1| = a0|q0θ − p0|+ |q1θ − p1|.

Therefore,from (⋆), we get
1 = a0θ + |θ − 1|.

Thus,
1

θ
= a0 +

|θ − 1|
θ

. (56.15)

Since 0 < |θ − 1| < θ, we have that a0 = [1/θ]. (56.16)
Hence, we’re back to (56.7), and we iterate from here.

In order to fit both cases into one theorem, we shift the index in Case 2 by 1 to get:

Theorem 56: Let 0 < θ < 1. Define pn, qn, an by:

p0 = 1, q0 = 0,

p1 = 0, q1 = 1,

pn+1 = anpn + pn−1,

qn+1 = anqn + qn−1,

where

an =

[ |qn−1θ − pn−1|
|qnθ − pn|

]
,

if qnθ 6= pn. If qnθ = pn, then the procedure stops with an−1. Then, the pn/qn are (i) the best approximations
to θ for n ≥ 1 if 0 < θ ≤ 1/2, and (ii) the best approximations to θ for n ≥ 2, if 1/2 < θ < 1. Moreover
(−1)n+1(qnθ − pn) ≥ 0, and qn+1pn − qnpn+1 = (−1)n.
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7.3 Connection with Continued Fractions

We denoted by Pn and Qn the nth numerator and denominator of the fraction. The connection is that

qn = Qn−1 and pn = Pn−1. (57.1)

Theorem 57: Given an irrational θ the convergents Pn/Qn are (i) the best approximations to θ for n ≥ 0
if 0 < θ ≤ 1/2, and (ii) the best approximations to θ for n ≥ 1 if 1/2 < θ < 1.

Proof: To generate the continued fraction process, write θ = [θ] + {θ}. If 0 < {θ} ≤ 1/2, then [θ] is
the nearest integer. If 1/2 < {θ} < 1, then the nearest integer is [θ] + 1. In this case, note that

θ = [θ] + {θ} = [θ] +
1

1/{θ} .

Then, the next convergent is given by

[θ] +
1

[1/{θ}] = [θ] + 1/1 = [θ] + 1,

with [θ] + 1 equals the nearest integer. �

Remark: If θ ∈ Q, then θ has two continued fraction expansions, then

θ = 〈a0, a1, . . . , aN−1, aN 〉, with aN ≥ 2. (58.1a)

θ = 〈a0, a1, . . . , aN−1, aN − 1, 1〉, with aN+1 = 1. (58.1b)

Theorem 58: If θ = p/q, has the expansions (58.1a) and (58.1b) above, then (i) ALL convergents to
(a) are best approximations for n ≥ 1, and (ii) ALL convergents to (b) are best approximations except
〈a0, a1, . . . , aN−1, aN − 1〉.
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Equivalence of Real Numbers

8.1 Definition

Definition: Two real numbers θ and θ′ are said to be equivalent if there exists integers r, s, t, u such that

|ru − ts| = 1, (59.1)

and

θ =
rθ′ + s

tθ′ + u
. (59.2)

We may write (59.2) in matrix vector form as
[
θ
1

]
=

[
r s
t u

] [
θ′

1

]
, (59.3)

and utilize the group properties of

S :=

{[
r s
t u

]
| r, s, t, u ∈ Z, |rs− tu| = 1

}
.

The relation defined by (59.2) is an equivalence relation. For reflexivity, let
[
r s
t u

]
=

[
1 0
0 1

]
.

To see symmetry, consider (
θ′

1

)
=

(
r s
t u

)−1(
θ
1

)
.

For transitivity, assume (
θ
1

)
=

(
r s
t u

)(
θ′

1

)
,

and (
θ′

1

)
=

(
r′ s′

t′ u′

)(
θ′′

1

)
,

and therefore (
θ
1

)
=

(
r s
t u

)(
r′ s′

t′ u′

)

︸ ︷︷ ︸
∈S

(
θ′′

1

)
. (59.4)

70
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8.2 Connection with Continued Fractions

If

θ = 〈a0, a1, · · · 〉, (59.5)

with

Pm/Qm = 〈a0, a1, · · · , am〉, (59.6)

and

θ = 〈a0, a1, · · · , an−1, θn〉, (59.7)

then

θ =
θnPn−1 + Pn−2

θnQn−1 +Qn−2
, (59.8)

where

|Pn−1Qn−2 − Pn−2Qn−1| = 1. (59.9)

Thus,

θ ∼ θn, for all n. (59.10)

This leads to:

Theorem 59: Two real numbers θ and θ′ are equivalent if and only if there exists integers a0, · · · , am and
b0, · · · , bm, and c1, c2, · · · all in Z+ such that

θ = 〈a0, · · · , am, c1, c2, · · · 〉 (59.11)

θ′ = 〈b0, · · · , bm, c1, c2, · · · 〉. (59.12)

In particular, any two rationals in reduced form are equivalent.

Proof: (=⇒) We are given (59.11) and (59.12). Define

θ′′ := 〈c1, c2, · · · 〉. (59.13)

So, by (59.10),

θ ∼ θ′′, θ ∼ θ′ and θ′ ∼ θ′′. (59.14)

(⇐=) Suppose θ ∼ θ′. Utilize (59.2) to invert the matrix to get

θ′ − −uθ + s

tθ − r
, (59.15)

because (
r s
t u

)−1

=

(
−u s
t −r

)
. (59.16)

Note that

qθ − p = q

(
rθ′ + s

tθ′ + u

)
− p =

q′θ′ − p′

tθ′ + u
. (59.17)

where

q′ = qr − pt, and p′ = −qs+ pu. (59.18)

(Note: We may case this in matrix form as

(
q′

p′

)
=

(
r −t
−s u

)(
q
p

)
. (59.19)
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Solving for p, q in terms of p′, q′:

±q = q′u+ p′t, and ± p = q′s+ p′r. (59.20)

Next, rewrite the first equality in (59.18) as

q′ = q(r − tθ) + t(qθ − p). (59.21)

Without loss of generality, let
r − tθ > 0. (59.22)

If

|t(qθ − p)| < r − tθ ⇐⇒ |qθ − p| < r − tθ

|t| , (59.23)

then
sgn q′ = sgn q. (59.24)

The usefulness of (59.23) is that the bound is uniform. Let pn/qn and pn+1/qn+1 be two successive
best approximations (convergents) to θ and p′n/q

′
n and p′n+1/q

′
n+1 be defined via (59.18). Then:

Claim: p′n/q
′
n and p′n+1/q

′
n+1 are successive best approximations to θ′ if n is large enough.

Proof: Observe that if n is large enough, then (p, q) := (pn, qn) and (r, s) = (pn+1, qn+1)
will satisfy (59.23). Therefore sgn qn = sgn q′n > 0 and sgn qn+1 = sgn q′n+1 > 0. In
addition,

(pn+1 − pn, qn+1 − qn) =: (p, q)

also satisfies (59.23) for large n. Hence,

sgn qn+1 − qn = sgn q′n+1 − q′n < 0. (59.25)

And so
0 < q′n < q′n+1. � (59.26)

Now, from (59.17)

|q′nθ′ − p′n| = |tθ′ + u||qnθ − pn| > |tθ′ + u||qn+1θ − pn| = |q′n+1θ
′ − pn+1′ |. (59.27)

Suppose there are integers x′, y′ such that

0 < y′ < q′n+1 and y′θ′ − x′| ≤ |q′nθ′ − p′n|. (59.28)

We need to show that (x′, y′) = (p′n, q
′
n).

Let (x, y) correspond to (x′, y′). Thus,

|yθ − x| ≤ |qnθ − pn|

by the principles underlying (59.27) and (59.19). Therefore

|yθ − x| ≤ r − tθ

2|t|

for large enough n. Similarly

|qn+1θ − pn+1| ≤
r − tθ

2|t| .

Thus, (p, q) = (qn+1 − y, pn+1 − x) satisfies (59.23).
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Therefore, (x, y) satisfies 0 < y < qn+1 and |yθ − x| ≤ |qnθ − pn|, which forces

(x, y) = (pn, qn),

because pn/qn is a best approximation. Thus, by the transformation (x′, y′) = (p′n+1, q
′
n+1).

Thus, p′n/q
′
n and p′n+1/q

′
n+1 are successive best approximations eventually. Thus p′n+1/q

′
n+1 and p

′
n/q

′
n

are successive convergents to θ′. Lastly, observe that

q′n+1 = rqn+1 − tpn+1 = r(cnqn + qn−1)− t(cnpn + pn−1) = cn(rqn − tpn) + (rqn−1 − tpn−1) = cnq
′
n + q′n−1.

(59.29)
This is the same recurrence that satisfies qn+1. (Note: even though we’re using the same index n,
we don’t claim that the convergent pn/qn to θ and its corresponding p′n/q

′
n to θ′ happen at the same

indices.) This proves the theorem. �
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8.3 The Markov Constant of a Real Number

Given an irrational θ, define

ν(θ) := lim inf
q ∈ Z+

q‖qθ‖ = lim inf
n→∞

qn‖qnθ‖, (60.1)

where qn is the denominator of the nth best approximation to θ.

Dirichlet’s Theorem implies that 0 ≤ ν(θ) ≤ 1. Since one out of every pair of consecutive convergents to
θ satisfies ∣∣∣∣θ −

p

q

∣∣∣∣ <
1

2q2
,

we have the improved inequality 0 ≤ ν(θ) ≤ 1/2.

Define the Markov Constant of θ as

M(θ) =
1

ν(θ)
. (60.2)

Thus, M(θ) = ∞ if ν(θ) = 0. If M(θ) <∞, then

∣∣∣∣θ −
p

q

∣∣∣∣ <
1

(M(θ)− ǫ)q2
(60.3a)

has infinitely many solutions, and ∣∣∣∣θ −
p

q

∣∣∣∣ <
1

(M(θ) + ǫ)q2
(60.3b)

has only a finite number of solutions.

M(θ) = ∞ implies that there exists λn → ∞ such that

∣∣∣∣θ −
pn
qn

∣∣∣∣ <
1

λnq2n
. (60.4)

Recall that if θ = 〈a0, a1, · · · , an〉, then qn+1 = anqn + qn−1, and so

∣∣∣∣θ −
p

q

∣∣∣∣ <
∣∣∣∣
pn
qn

− pn+1

qn+1

∣∣∣∣ =
1

qnqn+1
<

1

anq2n
. (60.5)

Thus we have,
Theorem 60: If the partial quotients an are unbounded, then M(θ) = ∞.

Corollary: M(e) = ∞.

Unsolved Problem: What is M(π)?

Theorem 61: Let θ and θ′ be equivalent irrationals. Then, ν(θ) = ν(θ′).

Proof: Write

θ =
rθ′ + s

tθ′ + u
from 59.2,

with r, s, t, u ∈ Z and |ru − ts| = 1. Suppose κ > 0 is such that

q|qθ − p| < κ (61.1)

has infinitely many solutions. Define (p′, q′) using (p, q) as before. Then,

q′ = qr − pt, p′ = −qs+ pu from (59.18).
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From this, we get that

qθ′ − p′ = pm
qθ − p

r − tθ
, (61.2)

where the ± coincides with sgn(ru − st). We have previously used the relation

q′ = q(r − tθ)− t(qθ − p),

from (59.2). Combining (59.21) and (61.2), we get the following:

q′|qθ′ − p′| ≤ q|qθ − p|+ |t|(qθ − p)2

|r − tθ| .

< κ+
|t||qθ − p|2
|r − tθ|

< κ+
|t|

|r − tθ|
κ2

q2
. (61.3)

By letting q → ∞ (guaranteed because (61.1) has infinitely many solutions), we conclude that if κ′ > κ,
then

q′|q′θ′ − p′| < κ′ (61.4)

has infinitely many solutions. Since (61.4) has infinitely many solutions for every κ′ > κ, we conclude
that

ν(θ′) ≤ ν(θ).

Since θ ∼ θ′ is a symmetric relation, we should also have that ν(θ) ≤ ν(θ′), and thus

ν(θ) = ν(θ′). �

Natural Question: Is the converse of Theorem 61 true? Well it’s definitely false for ν(θ) = 0, but even in
the non-zero case, there uncountable many irrationals θ with ν(θ) = 3, even though there are only countable
many irrationals equivalent to any given irrational θ.

Theorem 62: (Hurwitz) Let θ be irrational. Then, there exist infinitely many rationals p/q such that

∣∣∣∣θ −
p

q

∣∣∣∣ <
1√
5q2

. (62.1)

The constant
√
5 is best possible in the sense that for every ǫ > 0

∣∣∣∣θ −
p

q

∣∣∣∣ <
1

(
√
5 + ǫ)q2

(62.2)

has only a finite number of solutions if

θ ∼ 1 +
√
5

2
= 1 +

1

1 +
1

1 +
1

. . .

=: α.

Hence M(α) =
√
5.

Proof: We focus on (p, q) being (pn, qn), the best approximations to θ. Put

An := qn‖qnθ‖. (62.3)
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We know that
qn+1‖qnθ‖+ qn‖qn+1θ‖ = 1. (62.4)

Define
λ :=

qn−1

qn
and µ :=

qn+1

qn
. (62.5)

From (62.4), we deduce
qn
qn−1

qn−1‖qn−1θ‖+
qn−1

qn
qn‖qnθ‖ = 1, (62.6)

which yields
An−1

λ
+ λAn = 1

and therefore
λ2An − λ+ An−1 = 0. (62.7)

Similarly (62.4) yields
µ2An − µ+An+1 = 0. (62.8)

Note that

µ− λ =
qn+1 − qn

qn
=: an. (62.9)

From (62.7) and (62.8), we get

(λ2 − µ2)An + (µ− λ) +An−1 −An+1 = 0,

and therefore,
an(λ+ µ)An = an +An−1 −An+1. (62.10)

On the other hand
(λ2 − µ2)An − (λ+ µ) +An−1 +An+1 = 0. (62.11)

Multiply both sides of (62.11) by 2a2nAn to get

qa2n(λ
2 − µ2)A2

n − 2a2nAn(λ+ µ) + 2a2nAn(An−1 +An+1) = 0. (62.12)

By (62.10)
−2a2nAn(λ+ µ) = −2an(an +An−1 +An+1. (62.13)

Therefore

2a2n(λ
2 + µ2)A2

n − (an +An−1 +An+1)
2 = 2a2n(λ

2 + µ2)A2
n − a2nA

2
n(λ+ µ)2

= a2nA
2
n(2λ

2 + 2µ2 − λ2 − µ2 − 2λµ)

= a2nA
2
n(λ− µ)2

= a4nA
2
n. (62.14)

Thus we may rewrite (62.12) as

a4nA
2
n + (an + An−1 +An+1)

2 − 2an(an +An−1 −An+1) + 2a2nAn(An−1 +An+1) = 0. (62.15)

Observe that

(an +An−1 −An+1)
2 − 2an(an +An−1 −An+1) = an − (an +An−1 − An+1)

2 − a2n

= (An−1 −An+1)
2 − a2n. (62.16)
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Combining (62.16) with (62.15) yields

a4nA
2
n + (An−1 +An+1)

2 − a2n + 2a2nAn(An−1 +An+1) = 0. (62.17)

Canceling a2n throughout, we rewrite (62.17) as

a2nA
2
n + 2An(An−1 +An+1) = 1− a−2

n (An−1 −An+1)
2 ≤ 1. (62.18)

Now,
LHS(62.18) ≥ (a2n + 4) ·min(A2

n−1, A
2
n, A

2
n+1) (62.19)

with the equality strict if An−1 = An = An+1, and so we have

(a2n + 4) ·min(A2
n−1, A

2
n, A

2
n+1) ≤ 1. (62.20)

Since for all n an ≥ 1, in order for (62.20) to hold, we must have either

min(An−1, An, An+1) <
1√
5
, or, (62.21)

min(An−1, An, An+1) =
1√
5
, in which case an = 1. (62.22)

Note that (62.22) cannot hold. This forces An−1 = An = An+1, and this forces λ and µ to be irrational
from (62.7) and (62.8), which contradicts our assumption that λ and µ are rational. So, (62.21) holds,
and thus one out of every three consecutive convergents satisfies the Hurwitz Inequality. So, there
are infinitely many.

Now we show that this is best possible. Let

α :=
1 +

√
5

2
. (62.23)

Then, α is a root of x2 − x− 1 = 0. Let p/q 6= α. Consider

f

(
p

q

)
− f(α) =

(
p

q
− α

)
f ′(ξ), (62.24)

for some ξ between α and p/q, by the Mean Value Theorem.

Note that f(α) = 0. Thus by (62.24), we have
∣∣∣∣f
(
p

q

)∣∣∣∣ =
∣∣∣∣a−

p

q

∣∣∣∣ |f ′(ξ)| . (62.25)

But then
f ′(ξ) = 2ξ − 1.

So, let p/q → α, which implies ξ → α, and so

f ′(ξ) → 2α− 1 =
√
5. (62.26)

Thus by (62.25) and (62.26),

∣∣∣∣α− p

q

∣∣∣∣ =

∣∣∣f
(
p
q

)∣∣∣
|f ′ (ξ)| =

∣∣p2 − pq − q2
∣∣

q2 |f ′(ξ)| ≥ 1

|f ′(ξ)| q2 ,

because the numerator is not equal to zero. Since f ′(ξ) →
√
5, we have that

√
5 as the best constant

for (1 +
√
5)/2. Hence

√
5 is M(θ) for θ ∼ α. �
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Remark: The irrationals equivalent to α are those for which an = 1 for all n ≥ N . Let us call this set of
irrationals Eα. Thus if θ ∈ I rEα, then infinitely many an are ≥ 2. If any an ≥ 2, then a2 + 4 ≥ 8 for that
n. The proof of Theorem 62 shows that for any n such that an ≥ 2, we must have min(An−1, An, An+1) <
1/

√
8. So this yields:

Theorem 63: If θ ∈ I r Eα, then ∣∣∣∣θ −
p

q

∣∣∣∣ <
1√
8q2

has infinitely many solutions.

Remark: Is this best possible? Consider

2 +
1

2 +
1

2 +
1

. . .

=: β.

Then, β = 1+
√
2. This β is a root of g(x) = x2 − 2x− 1 = 0 and g′(x) = 2x− 2 = 2

√
2 =

√
8. So the above

argument will show ∣∣∣∣θ −
p

q

∣∣∣∣ <
1

(
√
8 + ǫ)q2

holds only finitely often. Thus M(θ) =
√
8 for all irrationals equivalent to 1 +

√
2.

Consider
θ ∈ I r Eα r Eβ .

We have a sequence Eα, Eβ , Eγ , etc, with M(α) < M(β) < M(γ) < · · · .

Theorem: The set of irrationals θ for which M(θ) = 3 is uncountable.

Remark: We know two estimates for |θ − Pn/Qn|:
∣∣∣∣θ −

Pn
Qn

∣∣∣∣ <
∣∣∣∣
Pn
Qn

− Pn+1

Qn+1

∣∣∣∣ =
1

QnQn+1
. (65.1)

θ − Pn
Qn

=
(−1)n

Qn(θn+1Qn +Qn−1)
. (65.2)

Thus, in order to understand Qn‖Qnθ‖, we need to understand Qn+1/Qn.

Theorem 65: Let
θ = a0 +

a1
b1+

a2
b2+

· · · ,

and let Pn/Qn be the nth convergent. Then

Pn
Pn−1

= bn +
an

bn−1+

an−1

bn−1+
· · ·

b1+

a1
a0
,

Qn
Qn−1

= bn +
an

bn−1+

an−1

bn−2+
· · ·

b2+

a2
b1
.

Proof: The recurrence
Pn = bnPn−1 + anPn−2

implies
Pn
Pn−1

= bn +
anPn−1

Pn−1
= bn +

an
Pn−1/Pn−2

.

Iterate this. �
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In the case of simple continued fractions,

Pn
Pn−1

= 〈an, an−1, · · · , a1, a0〉, for n ≥ 1,

Qn
Qn−1

= 〈an, an−1, · · · , a2, a1〉, for n ≥ 2.

Therefore,

Qn‖Qnθ‖ =
1

Qn+1 + (Qn−1/Qn)
=

1

〈an+1, an+2, · · · 〉+ 〈0, an, an−1, · · · , a1〉
. (65.3)

Theorem 66: If θ = 〈a0, a1, · · · 〉, then

ν(θ) = lim inf

{
1

〈an+1, an+2, · · · 〉+ 〈0, an, an−1, · · · , a1〉

}
, (66.1)

and so,
M(θ) = lim sup{〈an+1, an+2, · · · 〉+ 〈0, an, an−1, · · · , a1〉}. (66.2)



Chapter 9

Farey Fractions

Definition: The Farey Sequence of order n, denoted by Fn is the collection of all reduced fractions p/q in
ascending order, with q ≤ n. Clearly,

Fn ∩ [m,m+ 1) = (Fn ∩ [0, 1)) +m. (67.1)

Hence, we focus only on the half-open unit interval [0, 1).

Example:

F5 ∩ [0, 1] =
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1
.

Remark:
|Fn ∩ [0, 1]| = 1 + ϕ(1) + ϕ(2) + · · ·+ ϕ(n), (67.2)

where ϕ is the Euler function.

Theorem 67: Let p/q and r/s be two rationals satisfying

|ps− rq| = 1. (67.3)

Then, p/q and r/s are consecutive fractions in Fn for n satisfying

max(q, s) ≤ n < q + s. (67.4)

Proof: Without loss of generality, assume that

p

q
<
r

s
and hence qr − ps = 1. (67.5)

Consider the function

f(t) =
p+ rt

q + st
, for t ≥ 0. (67.6)

Note that f is strictly increasing because

f ′(t) =
(q + st)r − (p+ rt)s

(q + st)2

=
qr − ps

(q + st)2

=
1

(q + st)2
> 0,

80
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and therefore

f : [0,∞) →
[
p

q
,
r

s

)
(67.7)

is one-to-one and onto.

Note also that
t ∈ Q ⇐⇒ f(t) ∈ Q

because (
p r
q s

)−1

is a unimodular matrix as well.

Thus, f maps non-negative rationals in a one-to-one and onto fashion to the rationals in

[
p

q
,
r

s

)
.

Let u/v ∈ Q, with gcd(u, v) = 1, and consider

f
(u
v

)
=
p+ r

u

v

q + s
u

v

=
pv + ru

qv + su
=:

a

b
, (67.8)

with a := pv + ru and b := qv + su.

Observe that
q(pv + ru)− p(qv + su) = u(qr − sp) = u. (67.9)

Similarly,

s(pv + ru)− r(qv + su) = v(sp− rq) = −v. (67.10)

Since gcd(u, v) = 1, there exists integers A and B such that

Au+Bv = 1. (67.11)

Therefore, from (67.9), (67.10), and (67.11), we see that there exist integers A′, B′ ∈ Z such that
A′a+B′b = 1 if and only if gcd(a, b) = 1. Thus f takes reduced rationals to reduced rationals.

Clearly, max(q, s) ≤ n, which is equivalent to
p

q
,
r

s
∈ Fn.

According to the above discussion, all reduced fractions in

(
p

q
,
r

s

)
are given by

pv + ru

qv + su
with

gcd(u, v) = 1 and u, v > 0.

This means that the denominators of any fraction in the range

(
p

q
,
r

s

)
are at least as big as q + s.

Thus the theorem is proved. �

Algorithm to generate Fn+1 from Fn: Consider all fractions of the form
p+ r

q + s
from consecutive

p

q
,
r

s
∈ Fn,

and choose only those with q + s = n+ 1. The result combined with Fn is Fn+1.

Definition: The fraction
p+ r

q + s
is called the mediant of

p

q
and

r

s
.

Lemma: (a property of mediants) The mediant of two fractions lies between them, i.e.,

p

q
<
r

s
=⇒ p

q
<
p+ r

q + s
<
r

s
.



82 CHAPTER 9. FAREY FRACTIONS

Moreover, the “cross-difference” is preserved by the process of taking mediants, i.e.,

qr − ps = q(p+ r)− p(q + s) = (q + s)r − (p+ r)s.

Therefore, if qr − ps = 1, then so are the two cross-differences, and then so the mediant is reduced as well.

Theorem 68: Let
p

q
and

r

s
be two consecutive fractions in some Fn. Then |ps− qr| = 1.

Proof: In F1, all elements are integers, and this is clear. To construct Fn+1 from Fn, we use the
mediants as in the above Algorithm to generate Fn+1 from Fn. But the mediant preserves cross-
differences by the above Lemma. Hence the theorem is true. �

Exercise: If
p

q
,
p′

q′
,
p′′

q′′
are three consecutive fractions in some Fn, then

p+ p′′

q + q′′
=
p′

q′
. Warning: the thing

that makes this non-trivial is that
p+ p′′

q + q′′
need not be reduced!

Theorem 69: Let θ be irrational and θ ∈
(
p

q
,
r

s

)
, with qr − ps = 1. Then, one of the three fractions

p

q
,
p+ r

q + s
,
r

s
will satisfy

∣∣∣θ − a

b

∣∣∣ < 1√
5b2

.

Proof: (version 1) For a rational a/b, define the interval

Iλ

(a
b

)
:=

(
a

b
− 1

λb2
,
a

b
+

1

λb2

)
. (69.1)

If λ is such that

Iλ

(
p

q

)
∪ Iλ

(r
s

)
⊇
[
p

q
,
r

s

]
. (69.2)

Then, ∣∣∣θ − a

b

∣∣∣ < 1

λb2
(69.3)

for either
p

q
=
a

b
or

r

s
=
a

b
.

Note that (69.2) holds if and only if

1

λq2
+

1

λs2
>
r

s
− p

q
=

1

qs
, (69.4)

which is equivalent to

λ ≤ qs

q2
+
qs

s2
=
s

q
+
q

s
. (69.5)

But,

g(x) = x+
1

x
, (69.6)

and hence

λ ≤ g

(
s

q

)
= g

(q
s

)
. (69.7)

Without loss of generality, let
p

q
< θ <

p+ r

q + s
. (69.8)
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We now want

Iλ

(
p

q

)
∪ Iλ

(
p+ r

q + s

)
⊇
[
p

q
,
p+ r

q + s

]
. (69.9)

Thus we want

λ ≤ g

(
q + s

q

)
= g

(
1 +

s

q

)
,

and therefore,
λ ≤ min

x
{max(g(x), g(1 + x))}.

Then, for such a λ, we would have the theorem hold. �

Proof: (version 2)

Lemma: There are no positive integers q and s such that

1

qs
≥ 1√

5

(
1

q2
+

1

s2

)
(69.21)

and
1

q(q + s)
≥ 1√

5

(
1

q2
+

1

(q + s)2

)
(69.22)

Proof: Suppose (69.21) and (69.22) both hold. Then

q2 + s2 −
√
5qs ≤ 0, (69.23a)

and
(q + s)2 + q2 −

√
5(q + s)q ≤ 0. (69.23b)

Thus,
2q2 + s2 + 2sq −

√
5q2 −

√
5sq ≤ 0.

and therefore
(2−

√
5)(q2 + sq) + s2 ≤ 0. (69.24)

Adding the inequalities:

(3 −
√
5)q2 + 2(1−

√
5)sq + 2s2 ≤ 0.

Multiplying by two:
6− 2

√
5)q2 + 4(1−

√
5)sq + 4s2 ≤ 0. (69.25)

Observe that
(1−

√
5)2 = 6− 2

√
5 (69.26)

and so we have
(1−

√
5)q + 2s)2 ≤ 0,

but the left hand side is not zero, so this is a contradiction. �

Let θ be irrational, and let
p

q
< θ <

r

s
,

with rq − ps = 1. Without loss of generality, we have that

p

q
< θ <

p+ r

q + s
<
r

s
. (69.27)
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Assume that the Theorem is false. Then from (69.27):

θ − p

q
≥ 1√

5q2
,

r

s
− θ ≥ 1√

5s2
,

p+ r

q + s
− θ ≥ 1√

5(1 + s)2
. (69.28)

Thus,
r

s
− p

q
=

1

sq
≥ 1√

5

(
1

q2
+

1

s2

)

and
p+ r

q + s
− p

q
=

1

q(q + s)
≥ 1√

5

(
1

q2
+

1

(q + s)2

)
.

This contradicts the lemma above, so the theorem holds. �



Chapter 10

Transcendental Numbers

10.1 Khintchin’s Metric Theorems

Let f(q) be increasing over q ∈ Z+, with f(1) ≥ 2 and let f(q) → ∞ as q → ∞. Then, either

∑ 1

f(q)
<∞, (70.1)

or
∑ 1

f(q)
= ∞. (70.2)

Theorem 70: (Khintchin’s First Theorem) Let f be as above, and let (70.1) hold. Let S be the set of all

reals such that

∣∣∣∣θ −
p

q

∣∣∣∣ <
1

qf(q)
has infinitely many solutions. Then, S has measure zero.

Proof: Let S0,1 := S ∩ [0, 1]. Note that Sm,m+1 = S ∩ [m,m + 1] = S0,1 +m. So, it suffices just to
show that the measure of S0,1 is zero (because a countable union of sets of measure zero must have
measure zero).

In view of the convergence, if ǫ > 0 is given, then there exists n such that

∑

q>N

1

qf(q)
< ǫ. (70.3)

Define

Iq(f) :=

(
0,

1

qf(q)

)
∪
(
1

q
− 1

qf(q)
,

1

q
+

1

qf(q)

)
∪
(
2

1
− 1

qf(q)
,

2

q
+

1

qf(q)

)
∪ · · · ∪

(
1− 1

qf(q)
, 1

)
.

If θ ∈ S0,1, then θ ∈ Iq(f) for infinitely many q. Therefore, S0,1 ⊆
⋃

q>N

Iq(f), for each N . Hence

µ(S0,1) ≤
∑

q>N

µ(Iq(f)) =
∑

q>N

2

f(q)
< 2ǫ,

with ǫ > 0. Thus, µ(S0,1) = 0 as claimed. �
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Theorem 71: (Khintchin’s Next Theorem) Let f(q) be as above and let (70.2) hold. Then, almost all reals

θ satisfy

∣∣∣∣θ −
p

q

∣∣∣∣ <
1

qf(q)
for infinitely many p/q.

Proof: Very difficult.

Remarks: The set of irrationals satisfying this is of measure 0:

∣∣∣∣θ −
p

q

∣∣∣∣ <
1

q2 log(q)2

Almost all irrationals satisfy this: ∣∣∣∣θ −
p

q

∣∣∣∣ <
1

q2 log(q)
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10.2 The First Transcendental Number

Theorem 72: (Liouville’s Theorem) Let α be an algebraic number of degree n. Then, there exists c(α) such
that ∣∣∣∣α− p

q

∣∣∣∣ >
c(α)

q2
,

if degα 6= 0.

Proof: Clearly, the theorem holds for the rational case (α = 1). Now let α be irrational, i.e., degα ≥ 2.
Let P (x) be the minimal polynomial of α, with P (x) ∈ Z[x], P (α) = 0, and P is irreducible. Now, by
the Mean Value Theorem, we have that

P (α)− P

(
p

q

)
= P ′(ξ)

(
α− p

q

)
(72.1)

for some ξ lying between α and p/q. We’re assuming that p/q ∈ (α− 1, α+ 1). Let

κ := max
ξ ∈ [α−1,α+1]

|P ′(ξ)|. (72.2)

Therefore, from (72.1) and (72.2), we get

∣∣∣∣α− p

q

∣∣∣∣ ≥
|P (α− P (p/q)|

|P ′(ξ)| ≥ |P (p/q)|
κ

(72.3)

because P (α) = 0.

Next, since P is irreducible over Q, we have that P (p/q) 6= 0. Hence

qnP (p/q) ∈ Zr {0}. (72.4)

Therefore,
|qnP (p/q)| ≥ 1. (72.5)

Thus, from (72.3) and (72.5) ∣∣∣∣α− p

q

∣∣∣∣ ≥
1

κqn
if

∣∣∣∣α− p

q

∣∣∣∣ < 1.

If |α− p/q| ≥ 1, then the inequality holds with c(α) = 1, so choose c(α) := min

(
1,

1

κ

)
. �

Theorem 73: The number λ defined by

λ :=

∞∑

n=0

1

10n!

is not algebraic.

Proof: Notice that ∣∣∣∣∣λ−
n∑

m=0

1

10m!

∣∣∣∣∣ ≤
2

10(n+1)!
,

i.e., ∣∣∣∣λ− pn
qn

∣∣∣∣ ≤
4

qn+1
.
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Irrationality Type and Measure

11.1 Definitions

Definition: Let θ be irrational. We say that θ is of irrationality type ≤ τ if for ǫ > 0,

∣∣∣∣θ −
p

q

∣∣∣∣ >
c(ǫ)

qτ+ǫ

for some c(ǫ) and for all rationals p/q. Thus,

∣∣∣∣θ −
p

q

∣∣∣∣ >
1

qτ+ǫ

has only a finite number of solutions, for every ǫ > 0.

Definition: If τ0 = inf τ such that θ is type ≤ τ , we say θ is of τ0.

Definition: Let θ be irrational. We say that µ is an irrationality measure for θ if there exists a constant c
such that ∣∣∣∣θ −

p

q

∣∣∣∣ >
c

qµ

for all rationals p/q. This is an effective measurement. We need an effectively computable c.

Remark: Clearly, µ ≥ τ0 = τ(θ).

Remark: By Dirichlet’s Theorem, ∣∣∣∣θ −
p

q

∣∣∣∣ <
1

q2

has infinitely many solutions. By Liouville’s Theorem, if θ is a quadratic irrational, then

∣∣∣∣θ −
p

q

∣∣∣∣ >
c

q2

for c = c(θ). Thus, τ(θ) = 2 for all quadratic irrationals.

Theorem 70∗: Almost all reals have irrationality type 2.
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Proof: For each k ∈ Z+, consider the set Sk such that τ(θ) < 2 +
1

k
, where Sk = {θ | τ(θ) > 2 + 1

k}.
Thus, ∣∣∣∣θ −

p

q

∣∣∣∣ <
1

q1+(1/2)k

has infinitely many solutions. By Khintchin’s Theorem, since

∞∑

q=1

1

q1+(1/k)
<∞,

for each fixed k ∈ Z+, we have µ(Sk) = 0. Thus,

S :=
∞⋃

k=1

Sk

has µ(S ) = 0. But for θ ∈ I r S , we have τ(θ) = 2. But I − S is almost all of R. Hence the
theorem holds. �
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11.2 The Thue-Siegel-Roth-Dyson Theorem

Remark: Liouville’s Theorem implies that if α is algebraic, then τ(α) ≤ degα. Axel Thue realized that
proving τ(α) < degα when degα ≥ 3 has important consequences.

Theorem T: (Thue, 1909, Crelle) Let α be algebraic. Then

τ(α) ≤ n

2
+ 1

Let n ≥ 3. Then, the Diophantine equation

xn −Dyn = k (T0)

has only a finite number of solutions. In contrast,

x2 −Dy2 = k

can have ∞’ly many solutions. This is Pell’s Equation.

Proof: Rewrite (T0) as

(x− n
√
Dy)(xn−1 + xn−2 n

√
Dy + · · ·+ n

√
D
n−1

yn−1) = k. (T1)

We may view (T1) as ∣∣∣∣
n
√
D − x

y

∣∣∣∣ = O

(
1

yn

)
.

This would violate Theorem T if y → ∞. �

Remark: More generally, if F (x, y) is a form of deg n ≥ 3, then F (x, y) = m has only a finite number of
solutions integers x, y.

In 1921, Siegel published the following theorem:

Theorem: (Siegel, 1921, Math Z.) τ(α) ≤ 2
√
n. More precisely, τ(α) ≤ min

1≤β≤n−1

(
n

β + 1
+ β

)
.

This was followed by:
Theorem: (Dyson, 1947, Acta Mathematica) τ(α) ≤

√
2n.

These improvements seemed to suggest:
Theorem: (Roth, 1955, Mathematika) If α is algebraic, then τ(α) = 2.
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11.3 Methods for Obtaining Irrationality Type and Measure

Theorem 74: Let K denote the set of rationals or an imaginary quadratic field. Let R be the ring of integers
in K. Let θ ∈ C.

(a) (Asymptotic Version) Suppose there exists Q > 1, E > 1, and pn, qn ∈ R satisfying

|qn| ≤ Qn(1+o(1))

|qnθ − pn| ≤ E−n(1+o(1))

}
(74.1)

and
pnqn+1 6= qnpn+1. (74.2)

Then, θ 6∈ K. Moreover, given ǫ > 0, there exists b0 = b0(ǫ) such that if a, b ∈ R, with |b| > b0(ǫ), then

∣∣∣θ − a

b

∣∣∣ > 1

bτ+ǫ
(74.3)

where

τ =
logQE

logE
= 1 +

logQ

logE
(74.4)

Thus θ is of type ≤ τ .

(b) (Effective Version) Suppose there exists Q,E > 1, K0 > 0, L0 ≥ 1/2, and pn, qn ∈ R satisfying (74.2)
together with the following

|qn| < k0Q
n and |qnθ − pn| ≤ ℓ0E

−n (74.5)

Then, σ 6∈ K. Moreover, for all a, b ∈ K, we have that

∣∣∣θ − a

b

∣∣∣ > c

|b|u (74.6)

where

µ =
logQE

logE
= 1 +

logQ

logE
(74.7a)

and

c =
1

2k0Q



2+
log(2ℓ0)

logE





(74.7b)

Thus µ is an irrationality measure for θ.

Proof of effective version: From (74.5), we see that

|qnθ − pn| → 0, as n→ ∞.

Therefore,
|qnθ − pn|−1 → ∞, as n→ ∞.

We have by Dirichlet’s Criterion that θ 6∈ K, because either pn/qn 6= 0 or pn+1/qn+1 6= 0.

Let m be the least positive integer such that

|q′mθ − p′m|−1 ≥ 2|b|, for all m′ ≥ m. (74.8)

Suppose that n is such that

ℓ0E
−n ≤ 1

2|b| ⇐⇒ 2|b|ℓ0 ≤ En ⇐⇒ n ≥ log(2|b|ℓ0)
logE

(74.9)
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Thus (74.5) would imply

|qnθ − pn| ≤
1

2|b|

for n satisfying (74.9).

Therefore,

|qnθ − pn|−1 ≥ 2|b| (74.10)

Thus,

mleq
log(2|b|ℓ0)

logE
+ 1 (74.11)

Given a, b ∈ R, choose n = m or n = m+ 1 such that

aqn 6= bpn (74.12)

(guaranteed by (74.2)).

Thus, (74.10) implies that

|qn|
∣∣∣θ − a

b

∣∣∣ ≥ |qn|
(∣∣∣∣
pn
qn

− a

b

∣∣∣∣−
∣∣∣∣θ −

pn
qn

∣∣∣∣
)

≥ 1

|b| −
1

2|b|

≥ 1

2|b| (74.13)

because of (74.9) and the fact that 0 6= aqn − bpn ∈ R. Thus

∣∣∣θ − a

b

∣∣∣ > 1

2|b||qn|

≥ 1

2|b|k0Qm+1

≥ 1

2|b|k0Q
log(2|b0|ℓ0)

logE
+ 2

=
Q

−



2+
log(2ℓ0)

logE





2k0
· 1

|b|
1+

logQ

logE

,

which is the claim. �

Remark: It is usually cumbersome to verify (74.2). So, we will establish a result which gets rid of (74.2).
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Theorem 75: (Alladi, 1980) Let θ ∈ R and pn, qn ∈ Z, such that

(i) qn → ∞ as n→ ∞,

(ii) qn+1 = q
1+o(1)
n .

(iii) For some λ ∈ (0, 1) ∣∣∣∣θ −
pn
qn

∣∣∣∣ =
1

q
(1+λ)(1+o(1))
n

.

Then, ∣∣∣∣θ −
p

q

∣∣∣∣ >
1

q

(

1+
1

λ

)

(1+o(1))

n

,

i.e., θ is irrational of type ≤ 1 +
1

λ
.

Remark: Given (75.i), (75.ii), and (75.iii), we can extract a subsequence Pn/Qn satisfying the same condition
together with (74.2).

Observe that by (74.1)

∣∣∣∣θ −
pn
qn

∣∣∣∣ <
E−n(1+o(1))

qn

≤ 1

q
1+

n logE

log qn
(1 + o(1))

≤ 1

q
1+

logE

logQ
(1 + o(1))

.

Thus, λ =
logE

logQ
, and so

logQ

logE
=

1

λ
in Theorem 74.

Theorem 76: Let 0 6= s ∈ Q. Then es is irrational of type 2.

Proof: Given s, define

ar =

∫ 1

0

esxxrdx, (76.1)

for r = 0, 1, 2, . . .. The ar are given recursively by

a0 =

∫ 1

0

esxdx =
es − 1

s
(76.2)

and

ar =
esx

s
xr
∣∣1
0
− r

s

∫ 1

0

esxxr−1dx =
es

s
− r

s
ar−1, (76.3)

for r ≥ 1. Thus by iteration:

ar =
(−1)r · r!
sr+1

{(
1− s+

s2

2!
− · · ·+ (−1)rsr

r!

)
es − 1

}
= (−1)r(ure

s − vr) (76.4)

If s = p/q, then from (76.4), we get

pr+1ur ∈ Z and pr+1vr ∈ Z. (76.5)
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Now, we bring in the Legendre polynomials:

Pn(x) =
1

n!

dn{xn(1− x)n}
dxn

(76.6)

Note
Pn(x) ∈ Z[x], degPn = n. (76.7)

Define

In = pn+1

∫ 1

0

esxPn(x)dx (76.8)

This is an integral linear combination of the ar’s. Therefore

In = qne
s − pn, for qn, pn ∈ Z.

An n-fold integration by parts (integrating Pn(x) and differentiating esx) yields

In =
pn+1sn

n!

∫ 1

0

esxxn(1− x)ndx (76.9)

This says that In 6= 0 because the integrand is positive. Additionally,

max
0≤x≤1

esxxn(1− x)n = o

(
1

4n

)
. (76.10)

Hence

0 6= In = qne
s − pn = o

(
pn

qnn!4n

)
n→∞−−−−→ 0 (76.11)

So, es 6∈ Q.

Note that esx varies from 1 to e−s or es for 0 ≤ x‘1. We know that for any continuuous function f on
a closed and bounded interval,

‖f‖n n→∞−−−−→ ‖f‖∞.
Thus, we infer that

In = qne
s − pn =

pn
qnn!

(
1

4

)
=

1

(n!)1+o(1)
(76.12)

Next observe that

ar ∼
(−1)rr!

sr+1

{(
e−s − sr+1

(r + 1)!
(−1)r+1

)
es − 1

}
=

es

r + 1
as r → ∞. (76.13)

Therefore,

ur ∼
r!e−s

sr+1
. (76.14)

Note that the coefficients of Pn(x) alternate in sign. This, combined with the alternating signs in
(76.4) imply that there is no cancellation of the qn, i.e.

qn = (n!)1+o(1). (76.15)

Moreover,
qn+1 = q1+o(1)n . (76.16)
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Thus we have constructed pn, qn ∈ Z that satisfy

0 6=
∣∣∣∣e
s − pn

qn

∣∣∣∣ =
1

q
2(1+o(1))
n

. (76.17)

So, apply Theorem 75 with λ = 1. Thus, es is of irrationality ≤ 1 +
1

λ
= 2, and thus since it is

irrational, we have es of irrationality type = 2. �

Remark: The irrationality of es for all 0 6= s ∈ Q implies the irrationality of log s for all 0 6= s ∈ Q.
However, the irrationality measure for es does not transfer to an irrationality measure for log s. So, we need
to approach log s directly. We need some tools to do this.

Lemma: Let ℓn := lcm{1, 2, . . . , n}. Then,

ℓn = en(1+o(1)).

Proof: Recall the Chebychev Function:

ψ(n) =
∑

n≤x
Λ(n) =

∑

pα≤x
log p. (77.1)

Note that
ℓn =

∏

p

pαp(n), (77.2)

where

αp(n) = max{α | pα ≤ n}. (77.3)

Thus,

ℓn =
∏

pα≤n
p = eψ(n). (77.4)

The Prime Number Theorem is equivalent to

ψ(n) = n(1 + o(1)). (77.5)

Hence the lemma. �

Remark: For irrationality measures (effective), we need explicit upper bounds for ψ(x) and other related
functions. Such bounds were established by Rossen & Schoenfeld in the Illinois J. Math, 64-93 in 1962:

ℓn < (2.826)n, for all n. (77.6)

We now want to evaluate the size of Pn(z) asymptotically. For this, define

α(z) := max

{∣∣∣∣∣

(
1±

√
1− z

)2

x

∣∣∣∣∣

}
(77.7)

β(z) := min

{∣∣∣∣∣

(
1±

√
1− z

)2

x

∣∣∣∣∣

}
(77.8)

for x 6∈ [1,∞).
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Lemma: For each z ∈ C, the Pn(x) satisfy

nPn(z) + (2n− 1)(2z − 1)Pn−1(z) + (n− 1)Pn−2(z) = 0.

Theorem 77: (Poincaré) Let {un} be a sequence of complex numbers satisfying

a1(n)un + a2(n)un−1 + a3(n)un−2 = 0, (77.9)

where
aj(n) → αj , as n→ ∞.

Suppose
α1x

2 + α2x+ α3 = 0 (77.10)

has roots distinct in modulus.

Suppose un 6= 0 for infinitely many n. Then, if neither root is of modulus 1, we have

|un| = |ℓ|n(1+o(1))

where ℓ is a root of (77.10).

For a proof, see Milne-Thompson: “The Calculus of Finite Differences”, London (1933). The proof actually
shows

lim
n→∞

∣∣∣∣
un+1

un

∣∣∣∣ = ℓ. �

Theorem 78: Let z 6∈ [0, 1], then Pn(z) 6= 0 for each n. Moreover

|Pn(z)| ≤ α

(
1

z

)n(1+o(1))
.

Proof: The Pn(x) are orthogonal polynomials because if m < n, integrate the following by parts n
times: ∫ 1

0

Pm(x)Pn(x)dx =
1

n!

∫ 1

0

xn(1− x)nP (n)
m (x)dx = 0, (78.1)

because P
(n)
m (x) = 0, for n > m. The orthogonality of Pn implies that all its zeros lie in [0, 1].I t is

known that orthogonal polynomials have all their zeros in the interval of support for their measure, in
this case [0, 1]. Thus, Pn(z) 6= 0 for each n because z 6∈ [0, 1]. From the recurrence for Pn (which was
homework), the auxiliary limiting polynomial is

x2 + 2(2z − 1)x+ 1 (78.2)

The roots of this polynomial are

−2(2z − 1)±
√
4(2z − 1)2 − 4

2
= −(2z − 1)± 2

√
z2 − z. (78.3)

Note that
(1 ±

√
1− z)2

z
=

2− z ± 2
√
1− z

z
,

and

α

(
1

z

)
= max

∣∣∣∣
(1±

√
1− z)2

z

∣∣∣∣
1/z

(78.4)

Then by Poincarè’s Lemma, this theorem follows. �
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We can show a lot more:
Theorem 79: For z 6∈ [0, 1],

Pn(z) ≤ α

(
1

z

)n
.

Proof: By the Cauchy Integral Formula:

Pn(z) =
1

2πi

∫

C

ωn(1− ω)n

(ω − z)n+1
dω. (79.1)

Chose C to be the contour

C := {ω
∣∣ |ω − z| =

√
z2 − z} = {ω

∣∣ ω = z +
√
z2 − zeiθ, 0 ≤ θ ≤ 2π}. (79.2)

Thus
dω =

√
z2 − zieiθdθ,

ω − z =
√
z2 − zeiθ,

ω(1− ω) = z − z2 + (1− 2z)
√
z2 − zeiθ − (z2 − z)e2iθ.



 (79.3)

By (79.1), (79.2), (79.3), we have

Pn(z) =
1

2π

∫ 2π

0

(
(z − z2) + (1− 2z)

√
z2 − zeiθ − (z2 − z)e2iθ√

z2 − zeiθ

)n
dθ

=
1

2π

∫ 2π

0

(
−
√
z2 − z(eiθ + e−iθ) + (1− 2z)

)n
dθ

=
1

2π

∫ 2π

0

(1− 2z − 2
√
z2 − z cos θ)ndθ. (79.4)

This yields

|Pn(z)| ≤
1

2π

∫ 2π

0

α

(
1

z

)n
dθ = α

(
1

z

)n
,

which is the theorem. �

Theorem 80: (1980, Alladi-Robinson, Crelle) log 2 has irrationality type ≤ 4.622 . . ..

Proof: We begin by noting that

∫ 1

0

xm

1 + x
dx =

∫ 1

0

xm(1− x+ x2 − x3 + · · · )dx

=
xm+1

m+ 1
− xm+2

m+ 2
+
xm+3

m+ 3
− · · ·

∣∣∣∣
1

0

= (−1)m

(
log 2−

m∑

k=1

(−1)k−1

k

)
(80.1)

Therefore, ∫ 1

0

Pn(x)

1 + x
dx = Pn(−1) log 2− an

bn
, (80.2)

where an, bn ∈ Z with bn | ℓn, where ℓn = lcm343{1, . . . , n}.
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Thus,

En = ℓn

∫ 1

0

Pn(x)

1 + x
dx = qn log 2− pn, (80.3)

where pn, qn ∈ Z,

qn = ℓnPn(−1). (80.4)

An n-fold integration by parts yields

En = ℓn

∫ 1

0

xn(1− x)n

(1 + x)n+1
. (80.5)

Since the integrand is > 0, we have

En 6= 0. (80.6)

Also,

max
0≤x≤1

x(1 − x)

1 + x
= (

√
2− 1)2. (80.7)

Thus

|En| ≤ ℓn(
√
2− 1)2n =

(
e(
√
2− 1)2

)n(1+o(1))
→ 0 as n→ ∞ (80.8)

because

e(
√
2− 1)2 < 1. (80.9)

Thus log 2 is irrational. Observe that Pn(x) is a polynomial with alternating coeffificents. Thus,
Pn(−1) → ∞. So, by Poincarè’s Lemma:

Pn(−1) = α(−1)n(1+o(1)) = (
√
2 + 1)2n(1+o(1)). (80.10)

This implies

qn+1 = q1+o(1)n , (80.11)

with qn = (e(
√
2 + 1)2)n(1+o(1)).

Also since ‖f‖ → ‖f‖∞, we have that

En =
(
e(
√
2− 1)2

)n(1+o(1))
. (80.12)

Therefore
∣∣∣∣log 2−

pn
qn

∣∣∣∣ =
(
e(
√
2− 1)2

)n(1+o(1))

qn
=

1

q(1+λ)(1+o(1))
(80.13)

with

λ = − log(e(
√
2− 1)2)/ log(e(

√
2 + 1)2) (80.14)

and

1 +
1

λ
= 4.622 . . . . (80.15)

Now Theorem 80 follows from Theorem 74. �
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Theorem 81: (Lemma on Padé Approximations) Suppose f(z) ∈ C[z] such that for all n ≥ n0 there exist
polynomials An(z), Bn(z) of degree ≤ n such that

An(z) +Bn(z)f(z) = z2n+1En(z), (81.1)

where En(z) ∈ C[[z]]. Suppose further that En(0) 6= 0 for each n ≥ n0, and not both An(0) and Bn(0) are
0. Then,

An(z)Bn+1(z)−An+1(z)Bn(z) = cnz
2n+1 (81.2)

where cn ∈ C and cn 6= 0.

Proof: Identity for (81.1) is:

An+1(z) +Bn+1(z)f(z) = z2n+3En+1(z). (81.3)

Therefore

An(z)Bn+1(z)−An+1(z)Bn(z) = z2n+1Dn(z). (81.4)

where Dn(z) ∈ C[[z]], i.e. the right hand side has a zero of order at least 2n + 1. But this is a
polynomial of degree ≤ 2n+ 1. Thus, the right hand side of (81.4) is

cnz
2n+1. (8.15)

It remains to show that cn 6= 0.

Suppose cn = 0. Then,

An(z)Bn+1(z)−An+1(z)Bn(z) ≡ 0 = z2n+1En(z)Bn+1(z)− z2n+1En+1(z)Bn(z) (81.6)

by (81.1) and (81.3).

Thus,

En(z)Bn+1(z) = z2En+1(z)Bn(z). (81.7)

Therefore,

z2 | En(z)Bn+1(z) (81.8)

but En(0) 6= 0. Hence

z2 | Bn+1(z).

Similarly, we will get

z2 | En(z)An+1(z)

and this yields

z2 | An+1(z) (81.9)

because En(z) 6= 0. Thus, z2 divides both An+1(z) and Bn+1(z). This implies that

An+1(0) = Bn+1(0) = 0,

which is a contradiction. Hence, cn 6= 0. �
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Theorem 82: For z 6∈ [1,∞) let

In(z) =

∫ 1

0

Pn(x)

1− zx
dx. (82.0)

Then, In(z) 6= 0 for infinitely many n. Moreover

|In(z)| = β(z)n(1+o(1)) (82.1)

Proof: Since Pn(x) are orthogonal polynomials, we have that

f(x) :=
1

1− zx
−

N∑

n=0

In(z)Pn(x)∫ 1

0
P 2
n(t)dt

(82.2)

should satisfy ∫ 1

0

f(x)Pm(x)dx = 0, for all m = 0, 1, 2, . . .. (82.3)

Since the Pn(x) form a basis for C[x], we conclude that

∫ 1

0

f(x)P (x)dx = 0, for all P (x) ∈ C[x]. (82.4)

Since the polynomials are dense in the space of continuous functions, we conclude that

∫ 1

0

f(x)g(x)dx = 0, for all continuous functions g ∈ C [0, 1].

Hence, f ≡ 0. But this implies that 1/(1− zx) ∈ C[x], which is a contradiction.

Therefore, In(z) 6= 0 for at least infinitely many n ∈ N.

Next we establish a recurrence for In(z), namely consider

nIn(z) + (2n− 1)

(
2

z
− 1

)
In−1(z) + (n− 1)In−2(x) =

∫ 1

0

nPn(x) + (2n− 1)

(
2

z
− 1

)
Pn−1(x)− (n− 1)Pn−2(x)

1− zx
dx. (82.5)

rom the recurrence

nPn(x) + (n− 1)Pn−2(x) = −(2n− 1)(2x− 1)Pn−1(x) (82.6)

for the Legendre polynomials, we get that

nIn(z) + (2n− 1)

(
2

z
− 1

)
In−1(z) + (n− 1)In−2(z) = (2n− 1)

2

z

∫ 1

0

Pn−1(x)dx = 0 (82.7)

because n− 1 ≥ 0.

Rewrite the recurrence for In(z) as

In(z) +

(
2− 1

n

)(
2

z
− 1

)
In−1(z) +

(
1− 1

n

)
In−2(z) = 0. (82.8)

This is a recurrence with almost constant coefficients, with characteristic polynomial

x2 + 2

(
2

z
− 1

)
x− 1 = 0 (82.9)
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whose roots are α(z) and β(z). Since α(z)β(z) = 1 for all z and α(z) = β(z) precisely when z ∈ [1,∞),
we infer that

α(z) > 1 > β(z). (87.10)

Now, by Poincaré’s Theorem,
|In(z)| = ℓn(1+o(1)) (82.11)

with ℓ := α(z) or ℓ := β(z).

Since
1

1− zx
is constant in [0, 1], we know that In(z) → 0 as n→ ∞. Thus

|In(z)| = β(z)n(1+o(1)). �

Theorem 83: (Alladi-Robinson, 1980, Crelle) Let K be either the rationals or an imaginary quadratic field.
Let R be the ring of integers in K. Suppose r, s ∈ R satisfy

r/s 6∈ [1,∞), (83.1)

β(r/s)|r| · e < 1. (83.2)

Then, ∣∣∣log
(
1− r

s

)
− a

b

∣∣∣ > 1

bτ+ǫ
, (83.3)

for all a, b ∈ R, |b| > b0(ǫ), where

τ = 1 +
log
(
α
(r
s

)
· |r|
)
+ 1

log
(
α
(r
s

)
· r
)
− 1

. (83.4)

Proof: First observe that if |z| < 1 then

∫ 1

0

xm

1− zx
dx =

∫ 1

0

xm(1 + zx+ z2x2 + · · · )dx

=

∞∑

k=0

zk
∫ 1

0

xm+kdx

=
∞∑

k=0

zk

m+ k + 1
. (83.5)

Since

log(1− z) = −
∞∑

k=0

zk+1

k + 1
. (83.6)

we have ∫ 1

0

xm

1− zx
dx = − 1

zm+1

(
log(1− z) +

m∑

k=1

zk

k

)
. (83.7)

Note that (83.7) holds for m = 0 as well. The left integral in (83.7) is analytic in z for z 6∈ [1,∞).

Next, we can define a single-valued branch of log(ω) for ω ∈ Cr [0,−∞), i.e., log(1−z) can be defined
in z 6∈ [1,∞). Thus

(83.7) holds for all z ∈ Cr [1,∞). (83.8)

Consequently,

In(z) :=

∫ 1

0

Pn(x)

1− zx
dx = −1

z
Pn

(
1

z

)
log(1− z) +

1

ℓn
Qn

(
1

z

)
(83.9)
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where ℓn = lcm{1, 2, 3, . . . , n}, with Qn satisfying

Qn(x) ∈ Z[x], x | Qn(z), deg(Qn) = n. (83.10)

An n-fold integration by parts of In yields:

In(z) = (−z)n
∫ 1

0

xn(1 − x)n

(1− zx)n+1
dx. (83.11)

From (83.10) and (83.11), we have

In(z) = (−z)n
∫ 1

0

xn(1− x)n

(1 − zx)n+1
dx = −1

z
Pn

(
1

z

)
log(1− z) +

1

ℓn
Qn

(
1

z

)
. (83.12)

Now define

An(z) = zn+1Qn

(
1

z

)
, (83.13a)

Bn(z) = −ℓnznPn
(
1

z

)
, (83.13b)

En(z) = (−1)nℓn

∫ 1

0

xn(1 − x)n

(1− zx)n+1
dx. (83.14)

This yields
An(z) +Bn(z) log(1 − z) = z2n+1En(z). (83.15)

Clearly
En(0) 6= 0, (83.16)

and

Bn(0) = −ℓn
(
2n

n

)
6= 0. (83.17)

So, by the lemma on Padé Approximations, we have that

An+1

(r
s

)
Bn

(r
s

)
6= An

(r
s

)
Bn+1

(r
s

)
, (83.18)

with z = r/s. We clear the denominators caused by r/s, namely

pn = −snAn
(r
s

)
, (83.19a)

qn = snBn

(r
s

)
, (83.19b)

where pn, qn ∈ R, to get

∣∣∣qn log
(
1− r

s

)
− pn

∣∣∣ =
∣∣∣r
s

∣∣∣ |r|nℓn
∣∣∣In
(r
s

)∣∣∣ 6= 0, (83.20)

and

|qn| ≤ e · |r| · α
(r
s

)n(1+o(1))
, (83.21)

∣∣∣qn log
(
1− r

s

)
− pn

∣∣∣ ≤
(
erβ

(r
s

))n(1+o(1))
−→ 0 as n→ ∞. (83.22)

This proves the theorem. �
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Remark: The method used above applies if 1 − zx in the denominator is replaced by (1 − zx)ℓ/k. To do
this, we need an estimate on the least common multiple

dn(k, ℓ) := lcmm=1,...,n[km+ k − ℓ]. (84.1)

Corollary 1: log 2 has irrationality type ≤ 4.622 . . ..

Corollary 2: If p, q ∈ Z+ and

(
1−

√
1 +

p

q

)2

· q · e < 1, then log

(
1 +

p

q

)
has irrationality type ≤:

zp,q = 1 +

log

(
q

(
1 +

√
1 +

p

q

)2
)

+ 1

log

(
q

(
1 +

√
1 +

p

q

)2
)

− 1

.

Remark: If q → ∞ and log(p)/ log(q) → 0, then zp,q → 2.

Corollary 3: π/
√
3 is irrational of type ≤ 8.3099.

Theorem 84: Let 1 ≤ ℓ ≤ k, with

gcd(ℓ, k) = 1. (84.1)

Let

f(k) =
k

ϕ(k)

k∑

j=1
(j,k)=1

1

j
. (84.2)

Then

dn(k, ℓ) = ef(k)n(1+o(1)). (84.3)

Proof: Let x := kn + k − ℓ and let p be prime. We choose n sufficiently large that if
√
x < p < x¡

then gcd(p, k) = 1. Let αp be the largest power of p dividing any one of the numbers km+ k − l with
m = 1, . . . , n. Clearly

αp ≤
log(x)

log(2)
. (84.4)

Note that

dn(k, ℓ) =
∏

p prime

pαp =
∏

p≤√
x

pαp ·
∏

√
x<p<x

p = Π1 ·Π2. (84.5)

Now,

Π1 ≤
∏

p≤√
x

plog(x)/ log(2) = e{
∑

p≤
√

x
(log(p))}(log(x)/ log(2)) = eθ(x)(log(x)/ log(2)) = e

√
x log(x)(1+o(1)).

(84.6)

Next

Π2 =
∏

p>
√
x

p| some km + k − ℓ ≤ x

p =
k∏

j=1
(j,k)=1




∏

p≡j (mod k)
p| some km+ k − ℓ

p


 . (84.7)
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Claim 84.8:

p | km+ k− ℓ for some m with km+ k− ℓ ≤ x and p ≡ j (mod k) if and only if p ≤ x

aj
, where

aj is the least positive residue of −ℓj−1 (mod k). To justify this claim, observe that

p | km+ k − ℓ for some m, with km+ k − ℓ ≤ x and p ≡ j (mod k)

⇐⇒ λp = km+ k − ℓ, k ∈ Z, m ≤ n, p ≡ j (mod k)

⇐⇒ λp ≡ −ℓ (mod k), λp ≤ x, k ∈ Z, m ≤ n, p ≡ j (mod k)

⇐⇒ λp ≡ −ℓj−1 (mod k), λp ≤ x, k ∈ Z, m ≤ n, p ≡ j (mod k) (84.9)

The best way to achieve this is to choose λ = a, and therefore p ≤ x/aj as claimed.

Therefore,

Π2 =

k∏

j=1
(j,k)=1




∏
e



























∑

p≤x/aj
p≡j (mod k)

log(p)






























= e



























k∑

j=1
(j,k)=1

x

ajϕ(k)



























(84.10)

Note that aj runs through the full set of reduced residues mod k. Hence the theorem holds. �

Theorem 85: (Alladi-Robinson, Crelle, 1980) Let ℓ, k, r, s ∈ N, with ℓ < k, and gcd(ℓ, k) = 1, gcd(r, s) = 1,
and r < s. Suppose (

1−
√
1 +

r

s

)2

s · ef(k) < 1, (85.1)

where f(x) =
k

ϕ(k)

K∑

j=1
(j,k)=1

1

j
. Then,

(
1 +

r

s

)−ℓ/k
is irrational of type

≤ τr,s,k :=

log

(
s

(
1 +

√
1 +

r

s

)2
)

+ f(k)

log

(
s

r2

(
1 +

√
1 +

r

s

)2
)

− f(k)

+ 1. (85.2)

Proof: Using the substitution u := 1− zx. we get that

∫ 1

0

xm

(1 − zx)ℓ/k
dx = −1

z
· 1

zm

∫ 1−z

1

(1− u)mu−(ℓ/k)du =

=
1

zm+1

∫ 1

1−z




m∑

j=0

(−1)j
(
m

j

)
uj−(ℓ/k)


 du =

1

zm+1

m∑

j=0

(−1)j
(
m

j

)
1− (1 − z)j+1−(ℓ/k)

j + 1− (ℓ/k)
.
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85.3
(85.3)

If we define am(n) by

Pn(x) =

n∑

m=0

am(n)xm, (85.4)

then

dn(k, ℓ) · zn+1 ·
∫ 1

0

Pn(x)

(1− zx)ℓ/k
dx = An(z) +Bn(z)(1− z)1−(ℓ/k), (85.5)

where

An(z) = dn(k, ℓ) ·
n∑

m=0

am(n)zn−m
m∑

j=0

(−1)j
(
m

k

)
1

j + 1− (ℓ/k)
, (85.6)

and

Bn(z) = dn(k, ℓ) ·
n∑

m=0

am(n)zn−m
m∑

j=0

(−1)j
(
m

k

)
1

j + 1− (ℓ/k)
. (85.7)

So, now we have that

An(z), Bn(z) ∈ Z[z] and degAn = degBn = n. (85.8)

An n-fold integration by parts yields

∫ 1

0

Pn(x)

(1− zx)ℓ/k
dx =

(−z)n
n!

·
n∏

j=1

(j + (ℓ/k)− 1)

∫ 1

0

xn(1− x)n

(1− zx)n+(ℓ/k)
dx. (85.9)

Now let

En(z) = (−1)ndn(k, ℓ)
1

n!

n∏

j=1

(j + (ℓ/k)− 1)

∫ 1

0

xn(1 − x)n

(1 − zx)n+(ℓ/k)
dx. (85.10)

Thus
An(z) +Bn(z)(1− z)1−(ℓ/k) = z2n+1En(z). (85.11)

Also,
En(0) = 0 (85.12)

because the integrand is positive (if 0 < z < 1), and we’re going to choose z = r/s.

Moreover,

An(0) = dn(k, ℓ)am(n)

∫ 1

0

(1− y)n

yℓ/k
dy > 0. (85.13)

Thus by Theorem 81 (Padé Approximation Lemma), we have that

An

(
−r
s

)
Bn+1

(
−r
s

)
6= An+1

(
−r
s

)
Bn

(
−r
s

)
. (85.14)

Next define
pn := −snAn

(
−r
s

)
and qn := snBn

(
−r
s

)
. (85.15)

Thus,

qn

(
1 +

r

s

)1−(ℓ/k)

− pn = sn
(r
s

)2n+1

dn(k, ℓ)
(−1)n+1

n!

m∏

j=1

(j + (ℓ/k)− 1)

∫ 1

0

xn(1− x)n

(
1 +

r

s
ℓ
)n+(ℓ/k)

dx. (85.16)
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Note that

0 <
1

n!

n∏

j=1

(j + (ℓ/k)− 1) < 1. (85.17)

Also,

0 <

∫ 1

0

xn(1− x)n
(
1 +

r

s
ℓ
)n+(ℓ/k)

dx <

∫ 1

0

xn(1− x)n(
1 +

r

s
x
)n dx ≤

(s
r

)2n(
1−

√
1 +

r

s

)2n

, (85.18)

because

max
0≤x≤1

x(1− x)

1 +
r

s
x

=
(s
r

)2(
1−

√
1 +

r

s

)2

. (85.19)

Hence if (85.1) is satisfies, the expansion in (85.16) is nonzero and approaches zero as n approaches
infinity. Also,

0 ≤
∣∣∣∣qn
(
1 +

r

s

)1−(ℓ/k)

− pn

∣∣∣∣ ≤
(
sef(k)

(
1−

√
1 +

r

s

)2
)n(1+o(1))

. (85.20)

We need an upper bound for qn in order to get an irrationality measure.

Note that
∣∣∣∣∣∣∣

m∑

j=0

(−1)j
(
m

j

)
(
1 +

r

s

)k

j + 1− (ℓ/k)

∣∣∣∣∣∣∣
=
(
1 +

r

s

)(ℓ/k)−1
∫ 1

0

(1 − u)m

uℓ/k
du ≤

∫ 2

0

u−(ℓ/k)du ≤ 2k. (85.21)

Also, sgnam(n) = (−1)m. Therefore,

∣∣∣Bn
(
−r
s

)∣∣∣ ≤ 2k
(r
s

)n
Pn

(
−r
s

)
dn(k, ℓ), (85.22)

and

qn ≤
(
rα
(
−r
s

)
ef(x)

)n(1+o(1))
. (85.23)

Now apply the Lemma on Padé Approximations with

Q = rα
(
−r
s

)
ef(k), E−1 = sef(k)

(
1−

√
1 +

r

s

)2

.

The theorem follows. �

Remark: If
r

s
is small enough, i.e.

r2

s
is small enough, then (85.1) will hold. Furthermore, if

log(r)

log(s)
is

sufficiently close to zero, we get that τr,s,k < 3.

Corollary: 3
√
17 is irrational of type ≤ 2.5763 · · · .

Proof: Take r = 1, s = 5831. Note that s + 1 = s + r = 5832 = 183, and 5831 = 17 · 73. So,

1 +
r

s
=

183

17 · 73 . Thus,
3

√
1 +

r

s
=

18

7
· 1

3
√
17

. We apply the theorem to 3

√
1 +

r

s
to get an irrationality

measure < 3, and conclude that 3
√
17 has irrationality measure < 3. �
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Remark: A corollary to this is that x3 − 17y3 =M has only a finite number of solutions.

Theorem: (Baker) 3
√
2 has irrationality type < 3. He proved this by considering 128 = 2 · 43 and 125 = 53.

So, 2 · 43 ∼ 53. Now,

3

√
128

125
=

4

5
3
√
2, etc . . . .

His theorem was deeper and can use this to prove the result. Our previous theorem cannot do this.

Remark: The corollary to this is that x3 − 2y3 =M has only a finite number of solutions.

Theorem 88: (We are skipping a few theorems that we’ll go back to.) Let D be not a kth power. Then,

xk −Dyk =M

has only a finite number of solutions.

Proof: Suppose not. Then the equation above has infinitely many solutions. Pick an arbitrary large

solution (x, y) = (x0, y0). Then, xk0 ∼ Dyk0 , and so
x0
y0

∼ k
√
D, and thus

Dyk0
xk0

= 1 +
r

s
where

r

s
is

arbitrarily small. By Theorem 85, the irrationality measure is < k. Hence there are actually a finite
number of solutions. This is a contradiction. �
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11.4 ζ(2)

Theorem 89: ζ(2) is irrational, and of type ≤ 11.85.

Proof: (due to Beukers, originally of Ápery, details by Alladi)

Lemma L.89: Let r, s be integers ≥ 0, and let

ar,s =

∫ 1

0

∫ 1

0

xrys

1− xy
dxdy. (89.1)

Then,

(1) ar,s is a rational with denominator dividing ℓ2r if r > s. Recall that ℓr := lcm{1, . . . , r}.

(2) ar,r = ζ(2)−
(
1 +

1

22
+

1

32
+ · · ·+ 1

r2

)
.

Proof: Writing: ∫ 1

0

∫ 1

0

xrys(1 + xy + x2y2 + · · · )dxdy

we see that this is equal to

∫ 1

0

∫ 1

0

(xrys + xr+1ys+1 + xr+2ys+2 + · · · )dxdy.

=
1

(r + 1)(s+ 1)
+

1

(r + 2)(s+ 2)
+ · · · . (89.2)

If r > s, then we may way rewrite (89.2) as

ar,s =
1

r − s

{(
1

s+ 1
− 1

r + s

)
+

(
1

s+ 2
− 1

r + 2

)
+ · · ·

}
.

But, this telescopes, and so

ar,s =
1

r − s

{
1

s+ 1
+

1

s+ 2
+ · · ·+ 1

r

}
, (89.3)

which is clearly a rational with denominator divising ℓ2r.

When r = s, we have that

ar,r =
1

(r + 1)2
+

1

(r + 2)2
+

1

(r + 3)2
+ · · · = ζ(2)−

(
1 +

1

22
+

1

32
+ · · ·+ 1

r2

)
. (89.4)

�

Now, consider the expression

En =

∫ 1

0

∫ 1

0

Pn(x)(1 − y)n

1− xy
dxdy. (89.5)

Note that Pn(x) ∈ Z[x] and degPn = n. Also, (1− y)n ∈ Z[y] and deg(1− y)n = n. Lastly, the above
expression is a integer linear combination of ar,s for 0 ≤ r, s ≤ n. Hence, ℓ2n clears the denominators.
Thus by Lemma L.89,

En = qnζ(2)− pn, for some pnqn ∈ Z. (89.6)

Next, and n-fold integration by parts with respect to x yields

En = ℓ2n

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)n

(1 − xy)n+1
dxdy. (89.7)
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Note that the integrand is positive. Hence

En > 0. (89.8)

Next we compute
max
0≤x≤1
0≤y≤1

f(x, y) =:Mf . (89.9)

where

f(x, y) :=
x(1 − x)y(1− y)

1− xy
. (89.10)

Clearly, the max is attained when
∂f

∂x
=
∂f

∂y
= 0. (89.11)

Observe that
∂x

∂y
=

(1− xy)(1 − y)(1− 2x)− x(1 − x)y(1− y)(−y)
(1− xy)2

. (89.12)

Thus with some cancellation,

∂f

∂y
= 0 =⇒ (1− xy)(1 − 2y) + xy(1− y) = 0. (89.13)

Comparing (89.12) and (89.13), we get
x = y, (89.14)

i.e., we want
(1− x2)(1 − 2x) + x2(1 − x) = 0.

This is true if and only if
x3 − 2x+ 1 = (x− 1)(x2 + x− 1) = 0. (89.15)

Hence, x = 1 and β :=

√
5− 1

2
are roots.

So, the maximum is at β:

Mf = f(β) =
β(1− β)β(1 − β)

1− β2
. (89.16)

But, 1− β = β2, and so

f(β) =
β6

β
= β5 =

(√
5− 1

2

)5

. (89.17)

Now use ‖g‖n → ‖g‖∞ to get that

En =
(
e2β5

)n(1+o(1))
. (89.17)

Observe that
0 < e2β5 < 1. (89.18)

Hence En → 0 as n → ∞. Thus ζ(2) 6∈ Q. To get an irrationality type for ζ(2), we need an estimate
on the size of qn. For this, we write

Pn(x) =

n∑

m=0

am(n)xm. (89.19)
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Then

qn = ℓ2n

n∑

m=0

|am(n)|
(
n

m

)
. (89.20)

So,

Pn(x) =
1

n!

dnxn(1− xn)

dxn

=
1

n!

dn

dxn

(
n∑

m=0

(
n

m

)
(−1)mxn+m

)

=
∞∑

m=0

(−1)mxm
(
n

m

)
(n+m)!

m!n!
. (89.21)

Thus,

am(n) = (−1)m
(
n

m

)(
n+m

m

)
, (89.22)

yielding

qn = ℓ2n

n∑

m=0

(
n

m

)2(
n+m

m

)
. (89.23)

This expression is due to Apery.

How do we estimate qn from this? What we need is an asymptotic estimate for log qn. To get this, it
suffices to estimate

max
0≤m≤n

(
n

m

)2(
n+m

m

)
.

To this end. we use the Weak Stirling Formula:

log(n!) ∼ n logn− n. (89.24)

Set m := λn, for 0 < λ < 1. Now,

(
n

m

)2(
n+m

m

)
=

n!(n+m)!

(m!)3((n−m)!)2

So, we get

n log(n)− n+ (m+ n) log(m+ n)− n−m ∼ e.

Now,

e3m log(m)−3m+2(n−m) log(n−m)−2(n−m) = en log(n)+(n+m) log(n+m)−3m log(m)−2(n−m) log(n−m)

= en log(n)+n(1+λ)(log(n)+log(1+λ))−3nλ(log(n)+log(λ))+2n(1−λ)(log(n)+log(n−λ)) (89.25)

Note that the coefficient of n log(n) is

1 + (1 + λ) − 3y − 2(1− λ) = 0. (89.26)

The coefficient of n is

g(λ) = (1 + λ) log(1 + λ)− 3λ log(λ)− 2(1− λ) log(1− λ). (89.27)
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Thus with m = λn, we have that

(
n

m

)2(
n+m

m

)
= enf(λ)(1+o(1)). (89.28)

Observe that
f ′(λ) = 1 + log(1 + λ)− 3− 3 log(λ) + 2 + 2 log(1 − λ) = 0.

Therefore
(1 + λ)(1 − λ)2

λ3
= 1,

and hence
(1 + λ)(1 − λ)2 = λ3.

Thus,
1− λ− λ2 = 0,

which has the above β as a root.

It turns out that f(β) = 5 log(α), where α =
1 +

√
5

2
. Hence

qn = (e2α5)n(1+o(1)). (89.29)

By Alladi’s earlier Lemma, this yields that the irrationality measure is 5 log(α) ≈ 11.85.
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11.5 ζ(3)

Theorem 92: (Apéry) ζ(3) is irrational of type ≤ 13.8.

Proof: (Beukers) We begin with the observation:

d

dσ

( ∞∑

n=1

1

(n+ σ)s

)∣∣∣∣∣
σ=0

=

∞∑

n=1

−s
(n+ σ)s+1

∣∣∣∣∣
σ=0

= −sζ(s+ 1). (92.1)

From this view point, ζ(s+ 1) comes out of ζ(s) via a differentiation process.

Lemma (L-92):

For integers r, s ≥ 0, define

Ir,s :=

∫ 1

0

∫ 1

0

∫ 1

0

xrys

1− (1− xy)z
dx dy dz. (92.2)

Then

(1) Ir,s is a rational with denominator dividing ℓ3r if r ≥ s. (92.3)

(2) Ir,r = 2

(
ζ(3)− 1− 1

23
− · · · − 1

r3

)
. (92.4)

Proof of Lemma:

Note that ∫ 1

0

1

1− (1 − xy)z
dx =

log(1− (1− xy)z)

1− xy

∣∣∣∣
1

0

= − log(xy)

1− xy

Therefore,

Ir,s = −
∫ 1

0

∫ 1

0

log(xy) · xrys
1− xy

dx dy. (92.5)

When r ≥ s, we know that

ar,s =

∫ 1

0

∫ 1

0

xrys

1− xy
dx dy =

1

r − s

{(
1

s+ 1
− 1

r + 1

)
+

(
1

s+ 2
− 1

r + s

)
+ · · ·

}
. (92.6)

We note that for representation (92.6) to be valid, it is not necessary for r, s to be integres.
However, if r, s ∈ Z, then telescoping takes place. Thus, from (92.6):

− d

dr
ar+σ, s+σ

∣∣
σ=0

=
1

r − s

{(
1

(s+ 1)2
− 1

(r + 1)2

)
+

(
1

(s+ 2)2
+

1

(r + 2)2

)
+ · · ·

}
. (92.7)

If r, s are integers, then this telescopes to

1

r − s

{
1

(s+ 1)2
+

1

(s+ 2)2
+ · · ·+ 1

r2

}
, (92.8)

which is a rational with denominator dividing ℓ3r. Thus (1) is proved.

To establish (2), consider

ar,r =
1

(r + 1)2
+

1

(r + 2)2
+ · · · .

Therefore,

d

dσ
ar+σ, s+σ

∣∣
σ=0

= −2

(
1

(r + 1)3
+

1

(r + 2)3
+ · · ·

)
= −2

(
ζ(e)−

(
1 +

1

23
+ · · ·+ 1

r3

))
, (92.9)

which proved (92.4). �
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Analogous to (89.5), we now consider

En = ℓ3n

∫ 1

0

∫ 1

0

∫ 1

0

Pn(x)Pn(y)

1− (1 − xy)z
dx dy dx. (92.10)

From Lemma L-92, it follows that

En = qnζ(3)− pn, pn, qn ∈ Z. (92.11)

From our earlier discussion ,we see that in (92.11)

qn = ℓ3n

n∑

m=0

am(n)2 = ℓ3n

n∑

m=0

(
n

m

)2(
n+m

m

)2

. (92.12)

Recall from the proof of log(2) that since am(n) alternates in sign:

Pn(−1) =

m∑

m=0

(
n

m

)(
n+m

m

)
= (

√
2 + 1)2n(1+o(1)). (92.13)

Thus it follows from (92.13) that

max
0≤m≤n

(
n

m

)(
n+m

m

)
= (

√
2 + 1)2n(1+o(1)). (92.14)

So from (92.14), we get

max
0≤m≤n

(
n

m

)2(
n+m

m

)2

= (
√
2 + 1)4n(1+o(1)). (92.15)

Consequently (92.12) and (92.15) yield

qn =
{
e3(

√
2 + 1)4

}n(1+o(1))
. (92.16)

Note that the expression for qn in (92.12) in Apéry’s version of the proof.

Our real task is to evaluate En and show that it goes to zero. We integrate En by parts with respect
to x, n times, to get

En = ℓ3n(−1)n
∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nPn(y)y
nzn

(1− (1 − xy)z)n+1
dx dy dz. (92.17)

At this stage, we use the substitution

w =
1− z

1− (1− xy)z
, (92.18)

which is equivalent to
z + w − 1 = (1− xy)wz, (92.19)

which is symmetric in w and z (and also symmetric in x and y, but we don’t need this).

So, we can invert w and z in (92.18) to yield:

z =
1− w

1− (1 − xy)w
. (92.20)
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This substitution has more miraculous properties:

dz =
−(1− (1− xy)w − (1− w)(1 − xy)

(1− (1− xy)w)2
dw =

−xy
(1− (1 − xy)w)2

dw. (92.21)

and also
1− (1− xy)z =

xy

1− (1− xy)w
. (92.22)

By combining (92.21) and (92.22), we arrive at

1

1− (1− xy)z
dz = − 1

(1− (1− xy)w
dz. (92.23)

In addition,

1− w =
xyz

1− (1 − xy)z
. (92.24)

Why is this miraculous? We can make the following substitution in (92.17) using (92.23) and (92.24):

En = −ℓ3n(−1)n
∫ 1

0

∫ 1

0

∫ 1

0

Pn(x)Pn(y)(1− w)n

1− (1− xy)w
dx dy dw. (92.25)

The triple integral in (92.25) is ideally set up for integration by parts n times with respect to y. This
yields:

En = −ℓ3n
∫ 1

0

∫ 1

0

∫ 1

0

(xn(1− x)nyn(1− y)nwn(1− w)n

(1− (1 − xy)w)n+1
dx dy dw. (92.26)

Now set

γ = max
0≤x≤1
0≤y≤1
0≤z≤1

x(1 − x)y(1− y)w(1 − w)

1− (1 − xy)w
(92.27)

to get
En = (e3γ)n(1+o(1)) (92.28)

because
‖f‖n → ‖f‖∞.

The integrand in (92.26) is positive. Hence

En 6= 0. (92.28)

Also (see homework)

γ = (
√
2− 1)4. (92.30)

and (luckily)
0 < e3γ < 1. (92.31)

Hence En → 0 as n → ∞ and thus ζ(3) is irrational. To get the irrationality measure, apply our
lemma with

Q = (
√
2 + 1)4

E−1 = e−3(
√
2 + 1)4. �
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11.6 Transcendence of e

Theorem 93: (Hermite, 1873) e is transcendental.

Proof: (as in Transcendental Number Theory, Baker) We begin by noting that if f is a polynomial
(of degree m), then for any z ∈ C, the integral

I(z) =

∫ z

0

ez−wf(w)dw (93.1)

can be evaluated by repeated integration by parts.

Since ez−w and f(w) are both entire, the integral can be evaluated along any path connecting 0 to z
- we may take the straight line connecting 0 and z. As a first step:

I(z) = −ezf(w)|z0 +
∫ z

0

ez−wf ′(w)dw

= ezf(0)− f(z)− ez−wf ′(w)
∣∣z
0
+

∫ z

0

ez−wf ′′(w)dw

= ez(f(0) + f ′(0))− f ′(z)− f(z) +

∫ z

0

ez−wf ′′(w)dw (93.2)

So, by iteration of (93.2), we get that

I(z) = ez
m∑

k=0

f (k)(0)−
m∑

j=0

f (j)(z). (93.3)

Now we define f̂(w) to be the polynomial obtained from w be replacing all the coefficients by their
absolute values. Then, it follows (by a crude estimate) that

|I(z)| ≤ e|z|f̂(|z|)|z|. (93.4)

Suppose now that e were algebraic, and let

a0 + a1e + a2e
2 + · · ·+ ane

n = 0, (93.5)

i.e., g(x) := a0 + a1x+ · · ·+ anx
n is the minimal polynomial of e, for ai ∈ Z.

We will now consider estimates for

J = a0I(0) + a1I(1) + · · ·+ anI(n), (93.6)

where
f(x) = xp−1(x− 1)p(x− 2)p · · · (xn)p, (93.7)

and p is a large prime to be specified later.

Clearly (93.7) implies that

f (j)(k) = 0, if j < p and 0 < k ≤ n,
f (j)(k) = 0, if j < p− 1 and 0 ≤ k ≤ n.

}
(93.8)

On the other hand,
f (j)(k) ≡ 0 (mod p!), for j ≥ p.
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But then,
f (p−1)(0) ≡ 0 (mod (p− 1)!)
f (p−1)(0) 6≡ 0 (mod p!)

}
(93.9)

if p is chosen large enough.

Observe that (93.3) and (93.6) imply that

J =
(∑

f (k)(0)
)
(a0 + a1e+ · · ·+ ane

n)−
n∑

k=0

m∑

j=0

akf
(j)(k) = −

n∑

k=0

m∑

j=0

akf
(j)(k). (93.10)

Note that J ∈ Z. So from (93.9) and (93.10), we see that

J ≡ 0 (mod (p− 1)!)
J 6≡ 0 (mod p!)

}
(93.11)

Therefore,
|J | ≥ (p− 1)!. (93.12)

To get an upper bound for J first note that

f̂(k) ≤ np−1(2n)np ≤ (2n)m (93.13)

because m = np+ p− 1 and because (93.7) implies that

|f̂(x)| ≤ |x|p−1(|x|+ 1)p(|x|+ 2)p · · · (|x|+ n)p. (93.14)

Thus, by (93.4) and (93.6), we have that

|J | ≤ |a0|ef̂(0) + |a1|e2f̂(1) + · · ·+ |an|enf̂(n) ≤ Cp, (93.15)

where
C := max

0≤i≤n
|ai|nen(2n)n. (93.16)

However, the lower bound (93.12) and the upper bound (93.16) are incompatible if p is large. This is
a contradiction, and therefore e is transcendental. �

Corollary:

Let r/s ∈ Q with r/s 6= 0. Then er/s is transcendental, hence irrational.

This leads to the question of whether eα is transcendental for α 6= 0 algebraic. This was proved by
Lindemann from which the transcendence of π follows.
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11.7 Transcendence of π

Theorem 94: (Lindemann (1882)) π is transcendental.

Proof: (as in Baker) Suppose π is algebraic. Then, since i is algebraic, so is iπ =: ϑ. Let ϑ be
algebraic of degree d, and let ℓ be the leading coefficient of the minimal polynomial of ϑ. Let

θ1 = {ϑ1 · · ·ϑd}

be the full set of roots of this minimal polynomial - they are the set of conjugates of ϑ. Consider next
the product (

1 + eϑ1
) (

1 + eϑ2
)
· · ·
(
1 + eϑd

)
= 0, (94.1)

since eϑ1 = eiπ = −1.

The product in (94.1) is a sum of expressions of the type eΘ, for

Θ =
∑

ǫiϑi. (94.2)

where ǫi ∈ {0, 1}. Out of these, let precisely n of them be non-zero, and we call these {α1, . . . , αn}.
Thus,

2d − n︸ ︷︷ ︸
=: q

+α1 + · · ·+ αn = 0. (94.3)

Analogous to the previous proof, we now consider

J = I(α1) + · · ·+ I(αn), (94.4)

with

I(z) :=

∫ z

0

ez−wf(w)dw,

where
f(x) := ℓnpxp−1(x− α1)

p · · · (x− αn)
p. (94.5)

As before, p is a prime to be chosen sufficiently large later.

–End Review from Last Class–

By the same reasonging underlying (93.2), (93.3), (93.8), we get:

J = (eα1 + · · ·+ eαn)

m∑

i=0

f (j)(0)−
n∑

k=1

m∑

j=0

f (j)(αk) = −q
m∑

j=0

f (j)(0)−
n∑

k=1

m∑

j=0

f (j)(αk). (94.6)

where m = deg f = np+ p− 1.

Note that in (94.6), the expressions involve symmetric functions in the αk multiplied by ℓnp (or we
may treat them as symmetric functions of the ℓαk) and therefore will be integer values. Hence, J ∈ Z.
Observe that

f (j)(αk) = 0, for all k and for j < p. (94.7)

Additionally,
f (j)(αk) and f

(j)(0) ≡ 0 (mod p)! if j ≥ p.

So, the only case we need to consider is f (p−1)(0):

f (p−1)(0) = (p− 1)!(−ℓ)np(α1 · · ·αn)p
≡ 0 (mod (p− 1)!)

6≡ (mod p!) (94.8)
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if p is large enough.

Hence J is a nonzero integral multiple of (p− 1)!, which implies

|J | ≥ (p− 1)!. (94.9)

On the other hand
|J | ≤ |α1|e|α1|f̂(|α1|) + · · ·+ |αn|e|αn|f̂(|αn|) ≤ Cp. (94.10)

(Note: C depends on α1, . . . , αn and n, but is independent of p.) Estimates (94.9) and (94.10) are
incompatible if p is large. Hence, the transcendence of π follows. �

Remarks: Lindemann actually proved:

Theorem L1: If α is algebraic and non-zero, then eα is transcendental.

This has an immediate consequence that iπ (and hence π) is transcendental, because eiπ = −1.

The transcendence of π has the immediate consequence that it is impossible to square the circle, i.e. to
construct a square equal in area to a given circle using only a ruler and compass.

Another consequence is that is α is algebraic and nonzero, then sin(α), cos(α) and tan(α) are transcendental
(we have previously shown that is α nonzero rational, then the values of the these functions must be irrational).

The real theorem of Lindemann was:

Theorem L2:

For distinct algebraic numbers α1, . . . , αn and any nonzero algebraic β1, . . . , bn, then we have

β1e
α1 + · · ·+ βne

αn 6= 0,

i.e., eα1 , . . . , eαn are algebraically independent.

Theorem L1 follows immediately from this, setting one of αi = 0 so βie
αi = βi which is algebraic.
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11.8 ζ(2π)

Theorem 95: At even positive integers 2k, the value ζ(2k) of the Riemann zeta function is a rational
(depending on k) multiple of π2k, i.e.

∞∑

n=1

1

n2k
=
pk
qk
π2k, for k = 1, 2, . . ..

An immediate corollary to this is that all values ζ(2k) are irrational because π is transcendental.

Lemma 95-L: Let g(x) ∈ C1[−π, π], i.e., g(x) is differentiable on [−π, π] and g′(x) is continuous. Let
the Fourier coefficients of g be defined by

a0 :=
1

2π

∫ π

−π
g(x) dx

an :=
1

π

∫ π

−π
g(x) cos(nx) dx

bn :=
1

π

∫ π

−π
g(x) sin(nx) dx. (95.1)

Then, we have (Parseval’s identity)

1

π

∫ π

−π
g2(x) dx = 2a20 +

∞∑

n=1

(a2n + b2n). (95.2)

Proof of Lemma: We use the orthogonality of cos(mx) and sin(nx) on (−π, π):
∫ π

−π
cos(mx) cos(nx) dx = 0 =

∫ π

−π
sin(mx) sin(nx) dx, as long as m 6= n.

∫ π

−π
cos(mx) sin(nx) dx = 0. (95.3)

Note also that
1

π

∫ π

−π
cos2(nx) dx =

1

π

∫ π

−π

1 + cos(2nx)

2
dx = 1 (95.4a)

1

π

∫ π

−π
sin2(nx) dx =

1

π

∫ π

−π

1− sin(2nx)

2
dx = 1 (95.4b)

Some remarks on Fourier series and Fourier coefficients:

Suppose

g(x) = a0 +

∞∑

n=1

(an cos(nx) + bn sin(nx)) (∗)

is assumed to be convergent for all x ∈ (−π, π). What are an, bn? The an, bn will be
given by (95.1) owing to the orthonormality of the cos(mx) and the sin(nx).

Conversely, given an integrable g, define an, bn via (95.1) and consider the series (∗). So,
we write

g ∼ a0 +
∞∑

n=1

(an cos(nx) + bn sin(mx))

because it is not clear whether (i) the above series converges, and if so (ii) whether it
conveges to g(x).
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It is known that:

(I) If g is continuous, then the Fourier series is (C, 1)-summable g, i.e., if sn denotes the
nth partial sum of (∗), then

s1 + s2 + · · ·+ sn
n

→ g.

(II) an, bn
n→∞−−−−→ 0. (Riemann-Lebesgue)

(III) If g ∈ C1[−π, π], then the Fourier series converges to g on (−π, π).

Thus, for g(x) ∈ C1[−π, π], we have that

1

π

∫ π

−π
g2(x) dx =

1

π

∫ π

−π

(
a0 +

∞∑

n=1

an cos(nx) + bn sin(nx)

)2

dx.

Because of the orthonormality, the cross-terms disappear. What is left is:

1

π

∫ π

−π
g2(x) dx =

1

π

∫ π

−π
a20 dx+

∞∑

n=1

a2n
π

∫ π

−π
cos2(nx) dx+

∞∑

n=1

b2n
π

∫ π

−π
sin2(nx) dx

= 2a20 +

∞∑

n=1

(a2n + b2n). �

Proof of Theorem 95: We will apply the lemma with

g(x) = xk (95.6)

for k = 1, 2, . . . and establish the theorem by induction on k.

Case 1: (k = 1)

a0 = an = 0 for n = 1, 2, . . .. (95.7)

because x cos(nx) is an odd function.

bn = bn(1) =
1

π

∫ π

−π
x sin(nx) dx

=
−x cos(nx)

πn

∣∣∣∣
π

−π
+

1

πn

∫ π

−π
cos(nx) dx

=
(−1)n+1 · 2

n
. (95.8)

So, by Parserval (Lemma 95-L), we have that

1

π

∫ π

−π
x2 dx =

2π2

3

=

∞∑

n=1

b2n

=
∞∑

n=1

4

n2

= 4ζ(2). (95.9)
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Therefore,

ζ(2) =
π2

6
. (95.10)

Case 2: (k = 2)

Here, we have
bn = 0, for n = 1, 2, . . .. (95.11)

Now,

a0(2) =
1

2π

∫ π

−π
x2 dx

=

∫ π

−π

π2

3
. (95.12a)

Also,

an(2) =
1

π

∫ π

−π
x2 cos(nx) dx

=

∣∣∣∣
x2 sin(nx)

πn

∣∣∣∣
π

−π
− 2

π

∫ π

−π

x sin(nx)

n
dx

=

∣∣∣∣
2 cos(nx)

πn2

∣∣∣∣
π

−π
− 2

πn2

∫ π

−π
cos(nx) dx

=
(−1)n

4
n2. (95.12b)

Therefore,

1

π

∫ π

−π
x4 dx =

2π4

5

= 2a20 +

∞∑

n=1

(a2n + b2n)

=
2π4

9
+ 16

∞∑

n=1

1

n4
. (95.13)

Hence,

ζ(4) =
1

6

(
2π4

5
− 2π4

9

)
=
π4

90
. (95.14)

Case 3: (k = 3)

First note that
an(3) = 0, for n = 0, 1, . . .. (95.15)

Also

bn(3) =
1

π

∫ π

−π
x3 sin(nx) dx

=

∣∣∣∣
−x3 cos(nx)

πn

∣∣∣∣
π

−π
+

3

πn

∫ π

−π
x2 cos(nx) dx

=
2π2(−1)n+1

n
+

3

n
an(2)

=
2π2(−1)n+1

n
+

12(−1)n

n3
. (95.16)
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Hence,

1

π

∫ π

−π
x6 dx =

2π6

7

=
∞∑

n=1

b2n

=
∞∑

n=1

(
2π2

n
− 12

n3

)2

= 4π4
∞∑

n=1

1

n2

︸ ︷︷ ︸
ζ(2)

−48π2
∞∑

n=1

1

n4

︸ ︷︷ ︸
ζ(4)

+144

∞∑

n=1

1

n6

︸ ︷︷ ︸
ζ(6)

.

So,

144ζ(6) = π6

(
2

7
− 2

3
+

8

15

)
=

16π6

105
.

Thus,

ζ(6) =
π6

945
. (95.17)

More generally, by induction on k, we can show:

For k odd:

bn(k) =
1

n
fk

(
π2,

1

n2

)

where fk(u, v) is a homogeneous polynomial in u, v of degree (k − 1)/2.

For k even:

a0(k) =
πk

k + 1

an(k) = gk

(
π2,

1

n2

)
,

where gk(u, v) is a homogeneous polynomial in u, v of degree k/2.

Hence when k is odd:

1

π

∫ π

−π
xkdx =

π2k

2k + 1

=

∞∑

n=1

b2n(k)

=

∞∑

n=1

1

n2
f2
k

(
π2,

1

n2

)

=

k∑

j=0

cjπ
2jζ(2k − 2j).

And so in the odd case
ζ(2k) =

pk
qk
π2k.

The above part for the k is even case is analogous. �



Chapter 12

The Transcendence Theorems of
Lindemann and Weierstrass

The method of to prove the transcendence of e and the proof of the transcendence of π due to Lindemann,
were used by Lindemann to prove the following more general result.

Theorem 97: (Lindemann, 1882) If α 6= 0 is algebraic, then eα is transcendental.

Corollary 97.1: π is transcendental.

Proof: If π were algebraic, then iπ would also be algebraic. Then, eiπ = −1 would be transcendental,
which is a contradiction. Hence π is transcendental. Consequently, the problem of squaring the circle
is settled in the negative.

Recall the proof of the transcendence of π:

We assumed that π was algebraic and hence iπ was algebraic, and we can let α2, . . . , αn be the set of
all (other) conjugates of iπ. Then note that

(
1 + eiπ

)
(1 + eα2) · · · (1 + eαn) = 0.

Using the method of Hermite, we derived a contradiction.

We may view iπ as log(−1). From this view, we have the following corollary.

Corollary 97.2: If α 6= 0, 1 is algebraic, then log(α) is transcendental for any branch of log(α).

Corollary 97.3: If α 6= 0 is algebraic, then cos(α), sin(α), tan(α), csc(α), sec(α), cot(α) are all
transcendental as well.

Proof: Write

cos(α) =
eiα + e−iα

2
=: β/2

and assume toward a contradiction that β is algebraic. Then,

2 cos(α) = eiα +
1

eiα
= β

and hence (
eiα
)2 − βeiα + 1 = 0. (97.1)
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Therefore, eiα is the root of a quadratic equation with algebraic coefficients. Hence, eiα is algebraic,
because from (97.1) we may a construct a polynomial with integer coefficients of (possibly much) larger
degree for which eiα is a root. To construct this polynomial, consider

(eiα)2 − β′eiα + 1 (97.2)

as β′ runs through all conjugates of β, and multiply all such expressions in (97.2) by the expression
in (97.1) to get this polynomial in Q[x] for which eiα. This is a contradiction, and so cos(α) is
transcendental.

The transcendence of sin(α) follows from the equation cos2(α) + sin2(α) = 1. Similarly for tan(α)
using the formula tan2(α) = sec2(α) − 1. �

Theorem 98 (Lindemann’s Theorem): If α1, . . . , αn are algebraic numbers which are linearly
independent over Q, then eα1 , . . . , eαn are algebraically independent.

Corollary: Theorem 97. Proof: Apply n = 1.

Lindemann sketched a proof. In establishing Theorem 98 rigorously, Weierstrass strengthened it as follows:

Theorem 99: (Lindemann-Weierstrass) If α1, . . . , αn are distinct algebraic numbers, then for non-zero
algebraic numbers β1, . . . , βn, we have that

β1e
α1 + · · ·+ βne

αn 6= 0. (99.1)

Remark 1: (99.1) is equivalent to saying that eα1 , . . . , eαn are linearly independent over the field of algebraic
numbers.

Remark 2: If all of the αi are nonzero, then we apply the theorem with αn+1 = 0, and we now have n+ 1
distinct algebraic numbers. In this case (99.1) is strengthened to the following:

β1e
α1 + · · ·+ βne

αn 6= βn+1 (f)

or any algebraic βn+1.

At first glance, it appears that Theorem 98 is stronger because it implies algebraic independence, whereas
Theorem 99 only implies linear independence over the set of algebraic elements. In fact, Theorem 99
implies Theorem 98, and we will now prove this:

Proof: If γ1, . . . , γn are algebraically dependent, then there exists a polynomial

p(x1, . . . , xn) ∈ A[x1, . . . , xn]

such that
p(γ1, . . . , γn) = 0.

Given p ∈ A[x1, . . . , xn], write

p(x1, . . . , xn) =
∑

(j1,...,jn)∈Z≥0

βj1,...,jnx
j1
1 · · ·xjnn .

If, according to the hypothesis of Theorem 98, we have that α1, . . . , αn are linearly independent over
Q (algebraic numbers) and hence linearly independent over Z, then

ej1α1+···+jnαn = xj1 · · ·xjn
∣∣








x1=e
α1

...
xn=e

αn











(99.5)

Since α1, . . . , αn are linearly independent over Z, the values j1α1 + · · · + jnαn would all be different
for distinct tuples (j1, . . . , jn).

So, by Theorem 99, (99.5), and (99.4),

p(eα1 , . . . , eαn) 6= 0.

Hence, eα1 , . . . , eαn are algebraically independent. �
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Now we actually prove Theorem 99.

Theorem 99: (Lindemann-Weierstrass) If α1, . . . , αn are distinct algebraic numbers, then for non-zero
algebraic numbers β1, . . . , βn, we have that

β1e
α1 + · · ·+ βne

αn 6= 0. (99.1)

Proof: Suppose that the theorem is false. Then, there exist distinct algebraic α1, . . . , αn, and algebraic
β1, . . . , βn such that

β1e
α1 + · · ·+ βne

αn = 0. (99.2)

We may assume without loss of generality that in (99.2) all βi are nonzero because otherwise, we only
consider the nonzero βi.

Next we form all possible expressions

β′
1e
α1 + · · ·+ β′

ne
αn (99.3)

where β′
1, . . . , β

′
n run independently through all conjugates of β1, . . . , βn, and we multiply all such

expressions and this will be 0. We end up with terms of the form

e(
∑

jIαi) (99.4)

where the ji ∈ N and their coefficients are rational. We can then multiply this by the least common
multiple and obtain an expression with integer coefficients.

Some of the values
∑
jiαi could be the same. So we group the exponents with same values

∑
jiαi

and calculate each such coefficients. These will be our new αs. So we can assume that in (99.2) we
are dealing with coefficients βi which are (rational) integers. (Recall that the rational integers are just
the usual integers. We use the word rational to distinguish from the algebraic integers, which we will
mention later.) We will get a contradiction in this case. This is sufficient.

Next, since each αi is algebraic, αi is the root of a minimal polynomial (with integer coefficients). Thus,
α1, . . . , αn are collectively the roots of a polynomial (which may not be irreducible). Let αn+1, . . . , αN
be the remaining roots of this (monstrous) polynomial. Thus, for any αi, the list α1, . . . , αN will
contain all of the conjugates of α2.

Now consider the expression ∏
(β1e

αk1 + · · ·+ βNe
αkN ) = 0 (99.5)

where (k1, k2, . . . , kN ) run through all permutations of 1, 2, . . . , N , and with

βn+1 = βn+2 = · · · = βN = 0. (99.6)

The product in (99.5) may be expanded and expression as a sum of terms of the form

eh1α1+···+hNαN (99.7)

where the h2 ≥ 0 are integers satisfying

h1 + h2 + · · ·+ hN = N !. (99.8)

The expressions
h1α1 + · · ·+ hNαN (99.9)

will run through a full set of conjugates. These will be our new αs, with the property that he coefficient
of eα will be the same as that of eα

′
where α, α′ are expressions as in (99.9) and α, α′ are conjugates.

This is now our new expression in (99.2). So, after rearranging the terms, this can be put in the
following form: there exist integers

0 = n0 < n1 < n2 < · · · < nr = n (99.10)
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such that
αnt+1, αnt+2, . . . , αnt+1 (99.11)

is a full set of conjuates and their coefficients are all equal, i.e.,

βnt+1 = βnt+2 = · · · = βnt+1 . (99.12)

Remark: At least one of the βs will be non-zero. This is realized by imposing an order on the
complex numbers C by declaring

z1 < z2, if

{
Re(z1) < Re(z2), or
Re(z1) = Re(z2) and Im(z1) = Im(z2)

. (99.13)

Since α1, . . . , αn are algebraic numbers, there exists an integer ℓ such that ℓα1, . . . , ℓαn are algebraic
integers.

Algebraic Numbers & Algebraic Integers: Let α algebraic be a root of

p(x) = a0 + a1x+ · · ·+ anx
n (99.14)

which is irreducible with gcd(a0, . . . , an) = 1. Therefore p(α) = 0. We say that α is an algebraic
integers if an = 1. Let β = anα. Therefore,

p

(
β

an

)
= a0 + a1

β

an
+ a2

β2

a22
+ · · ·+ an

βn

ann
= 0. (99.15)

Therefore, multiplying through by an−1
n :

a0a
n−1
n + · · ·+ an−2an−1β

n−2 + an−1β
n−1 + βn = 0. (99.16)

Therefore, β is the root of a monic polynomial with integer coefficients, and hence β = anα is
an algebraic integer.

Now consider for a large prime p (to be specified later)

fi(x) =
ℓnp{(x− α1)(x− α2) · · · (x− αn)}p

x− αi
(99.17)

for i = 1, 2, . . . , n. ℓ was chosen so that ℓαi is an algebraic integer for all i. Also consider the integrals

Ii(z) =

∫ z

0

ez−wfi(w) dw (99.18)

as in Hermite’s proof of the transcendence of e. Also consider the expressions

Ji = β1Ii(α1) + β2Ii(α2) + · · ·+ βnIi(αn) (99.19)

for i = 1, 2, . . . , n.

By repeated integration by parts, we have

Ji =

(
n∑

i=1

βie
αi

)


m∑

j=0

f
(j)
i (0)


−

m∑

j=0

n∑

k=1

βkf
(j)
i (αk) = −

m∑

j=0

n∑

k=1

βkf
(j)
i (αk) (99.20)

in our new (99.2), where m = np− 1 = deg(fi).

The polynomials fi(x) in (99.17) have algebraic coefficients. We do not have a full set of conjugates

because we are dividing by the factor x − αi. Hence note that each value f
(j)
i (αk) is an algebraic

integer with the property:

p! | f (j)
i (αj), for all j, i except for j = p− 1, k = i (99.21a)
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and in fact

f
(p−1)
i (αi) = ℓnp(p− 1)!

n∏

k=1
k 6=i

(αi − αk)
p
. (99.21b)

Note that when we say that p! divides as above, we mean as an algebraic integer. That is, f
(j)
i (αk) is

p! times an algebraic integer.

So, if p is large enough, then

(p− 1)! | f (p−1)
i (αi), but p! ∤ f

(p−1)
i (αi). (99.22)

Thus, Ji is a multiple of (p− 1)! but not of p!, i.e., Ji is a nonzero multiple of (p− 1)!.

Next, rewrite the expression on the right in (99.20) as

Ji = −
m∑

j=0

r−1∑

t=0

βnt+1

(
f
(j)
i (αnt+1) + · · ·+ f

(j)
i (αnt+1)

)
(99.23)

for all i = 1, 2, . . . , n. From (99.23) it follows that

J1J2 · · · Jn ∈ Z r {0}. (99.24a)

Therefore,
|J1J2 · · · Jn| ≥ ((p− 1)!)

n
. (99.24b)

On the other hand, we have trivially from (99.18) and (99.19) that

|Ji| ≤
n∑

k=1

|βk|e|αk|f̂(|αk|)|αk| ≤ Cp (99.25)

for some large constant C which depends on ℓ and the |αi but not on p. This is a crude upper bound.

Recall that f̂ as in Hermite’s proof is the polynomial f with the absolute value function applied to
each coefficient of f .

Hence,
|J1J2 · · · Jn| ≤ Cnp. (99.26)

This is incompatible with the lower bound in (99.24). Thus we have a contradiction. �



Chapter 13

The Gelfond-Schneider Theorem

Hilbert’s 7th Problem:

(1) In an isosceles triangle, if the ratio of the base angle to the vertex angle is algebraic irrational, then the
ratio between the base length and the side length is transcendental.

(2) Is ab transcendental when a 6∈ {0, 1} is algebraic and b is algebraic irrational? (“Hilbert’s Conjecture”
is that the answer is the affirmative. This was confirmed by the Gelfond-Schneider Theorem.) We
will call this Conjecture 100.

Reformulation of Conjecture 100:

Write αβ = γ as β log(α) = log(γ), and therefore,

log(γ)

log(α)
= logα(γ) = β.

Equivalently, if α 6= 0, 1 is algebraic and γ is algebraic, then

log(γ)

log(α)
= logα(γ)

is either rational or transcendental.

Theorem 100′: (Gelfond, 1929) If α, γ are algebraic with α 6= 0, 1, then
log(γ)

log(α)
cannot be an imaginary

quadratic irrational.

Consequence: eπ is transcendental. This is true because eπ =
(
eiπ
)−i

= (−1)
−i
.

Theorem 100′′: (Kuzmin, 1930) If α, γ are algebraic, with α 6= 0, 1, then
log(γ)

log(α)
cannot be a real quadratic

irrational. Consequence: 2
√
2 (which is known as the Hilbert Number) is transcendental.

Theorem 100: (Gelfond-Schneider, 1934) Conjecture 100 is true.

Observation: Conjecture 100(2) implies Conjecture 100(1).

Proof: To see this, consider an isosceles triangle with base angle θ and top angle ϕ. Recall that
2θ + ϕ = π, which is transcendental. Assume that

ϕ = αθ, (100.2)
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for α an algebraic irrational. Now,

2θ + αθ = π

θ(2 + α) = π

θ =
π

2 + α
= βπ,

for some β which is an algebraic irrational.

Recall that

base

side
= 2 cos(θ)

= eiθ + e−iθ

= eiβπ +
1

eiβπ

= (−1)β + (−1)−β .

By the Gelfond-Schneider Theorem, we have that (−1)β is transcendental. Hence,

(−1)β +
1

(−1)β

is also transcendental.

Remark: We reformulated the Gelfond-Schneider Theorem as follows: If α, β are algebraic and not 0
or 1, and if their ratio is not rational, then their ratio is transcendental.

Observe that if F is a subfield of C, then x1, x2 ∈ C are linearly independent over F if and only if neither x1
nor x2 is a multiple of the other (with the multiple coming from F). So, this yields another version of the
Gelfond-Schneider Theorem.

Theorem 100-R: If α1, α2 are algebraic numbers such that log(α1) and log(α2) are linearly independent
over Q, then log(α1) and log(α2) are linearly independent over the field of algebraic numbers, i.e.

β1 log(α1) + β2 log(α2) 6= 0 (100.5)

for all β1, β2 which are algebraic numbers not both zero.

Remark: Baker’s theorems deal with an n-variable extension of (100.5), published in 1966 and 1967 in
Mathematika.

Theorem 101: (Baker) Let α1, . . . , αn be non-zero algebraic numbers such that log(α1), . . . , log(αn) are
linearly independent over Q. Then, 1, log(α1), . . . , log(αn) are linearly independent over the field of algebraic
numbers.

Remark: In the case n = 2, this theorem yields

β1 log(α1) + β2 log(α2) 6= γ, (101.1)

where γ is algebraic, i.e.
αβ1

1 6= α2e
γ , (101.2)

for γ algebraic. This strengthening of the Gelfond-Schneider Theorem will play a role subsequently
in our discussion of transcendental functions.
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Theorem 101′: (Baker) If α1, . . . , αn are algebraic numbers, and if β1, . . . , βn are algebraic such that

β1 log(α1) + · · ·+ βn log(αn) 6= 0, (101.3)

then the expression actually is transcendental.

Remark: This theorem is equivalent to saying that if β0 6= 0 is algebraic, then

β0 + β1 log(α1) + · · ·+ βn log(αn) 6= 0. (101.4)

We can deduce (101.4) from Theorem 101, and so Theorem 101 =⇒ Theorem 101′. We now
prove this.

Proof that 101 ⇒ 101′: Clearly, (101.4) holds for n = 0. So, assume that (101.4) holds for
all n < m where m ∈ Z+. Consider the expression in (101.4) for n = m. If log(α1), . . . , log(αn)
are linearly independent over Q, then (101.4) follows from Theorem 101. Hence, we only need to
consider the case where log(α1), . . . , log(αn) are linearly dependent over Q. Thus let

ρ1 log(α1) + · · ·+ ρm log(αm) = 0 (101.5)

where ρi ∈ Q and ρi not all 0. Suppose
ρr 6= 0. (101.6)

Then,

ρr (β0 + β1 log(α1) + · · ·+ βm log(αm)) = ρr (β0 + β1 log(α1) + · · ·+ βm log(αm))− 0

= ρr (β0 + β1 log(α1) + · · ·+ βm log(αm))− βr · 0
= ρr (β0 + β1 log(α1) + · · ·+ βm log(αm))

− βr (ρ1 log(α1) + · · ·+ ρm log(αm))

= β′
0 + β′

1 log(α1) + · · ·+ β′
m log(αm) (101.7)

where
β′
0 = ρrβ0 6= 0, and β′

j = ρrβj − βrρj (101.8)

with β′
r = 0.

Thus, the expression in (101.7) is of the type as in (101.4), but with n < m. Thus by the induction
hypothesis, the expression on the right in (101.7) is not equal to 0. So the expression on the left of
(101.7) is not equal to zero. �

Theorem 101′′: If α1, . . . , αn, β1, . . . , βn are non-zero algebraic numbers, then eβ0αβ1

1 · · ·αβn
n is transcen-

dental.

Proof: If eβ0αβ1

1 · · ·αβn
n = αn+1 is algebraic and nonzero, then

β1 log(α1) + · · ·+ βn log(αn)− log(αn+1) = β0 6= 0. (101.9)

This fails by Theorem 101′ for n+ 1. �

Theorem 101′′′: Let α1, . . . , αn be algebraic and not equal to 0 or 1, and let β1, . . . , βn be algebraic such
that 1, β1, . . . , βn are linearly independent over Q. Then, αβ1

1 · · ·αβn
n is transcendental.

Remark: When n = 1, the hypothesis that 1, β1 are linearly independent over Q is the same as saying
β1 is irrational. This special case is the Gelfond-Schneider Theorem.

Proof: We will show that for any choice of algebraic numbers α1, . . . , αn not equal to 0 or 1, and any
choice β1, . . . , βn of algebraic numbers, that

β1 log(α1) + · · ·+ βn log(αn) 6= 0. (101.10)
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This needs to be shown for all n, since if (100.10) is true, then Theorem ′′′ follows, because if

αβ1

1 · · ·αβn
n = αn+1 (101.11)

is algebraic, then β1 log(α1) + · · ·+ βn log(αn)− log(αn+1 = 0, which violates (101.10) for n+ 1.

Note that β1, . . . , βn linearly independent over Q with βn+1 = −1 is the same as 1, β1, . . . , βn linearly
independent over Q. We will establish (101.10) by induction on n. It is clearly true for n = 1,
so let (101.10) be true for n < m. Consider now n = m. If log(α1), . . . , log(αn) are linearly
independent over Q, then (101.10) holds because of Theorem 101. So, we only consider the case
where log(α1), . . . , log(αn) are linearly dependent over Q, i.e., there exists ρ1, . . . , ρm ∈ Q such that

ρ1 log(α1) + · · ·+ ρm log(αm) = 0 (101.12)

with ρr 6= 0. Now consider that

ρr (β1 log(α1) + · · ·+ βm log(αm)) = β′
1 log(α1) + · · ·+ β′

m log(αm) (101.13)

with βr = 0. The result follows by induction. �

Two Striking Consequences:

Corollary 101-1: If α is algebraic and β 6= 0 is algebraic, then eπα+β is transcendental.

Proof: Set eπα+β = γ, so that
πα+ β = log(γ). (101.14)

If γ is algebraic, rewrite (101.14) as

iπα− i log(γ) = −iβ,

i.e.,
α log(−1)− i log(γ) = −iβ. (101.15)

This violated Theorem 101′. Hence γ is transcendental.

Corollary 101-2: If α 6= 0 is algebraic, then π + log(α) is transcendental.

Effective Estimates for Linear Forms of Algebraic Numbers (due to Baker)

Definition: Given an algebraic number α, we can find a polynomial p(x) = a0 + a1x + · · ·+ anx
n of least

degree such that gcd{a0, . . . , an} = 1 and p(α) = 0. The height of α is

h(α) := max
0≤i≤n

|ai|.

Given
Λ = β1 log(α1) + β2 log(α2) + · · ·+ βn log(αn)

with Λ 6= 0, Baker obtained effective lower bounds for |Λ − β|, i.e., how close to an algebraic number Λ can
get. He found

|Λ− β| ≥ C(Λ, β) > 0,

where C(λ, β) was an effectively computable constant in terms of (i) the degree of αi, βi and (ii) the heights
of αi, βi. Such bounds showed that certain classes of Diophantine Equations had only a finite number of
solutions by obtaining a bound on the size of any solutions. These bounds were often triple order exponents,
e.g. 1010

500

.
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Catalan’s Conjecture: (Mihǎilescu’s Theorem)

Catalan conjectured that 8 and 9 are the only two consecutive powers. This was communicated in 1844 in a
letter to Crelle’s Journal.

Theorem 102: (Robert Tidjeman, 1976) The Diophantine Equation

xm − yn = 1 (102.1)

for m,n, x, y > 1 integers has only a finite number of solutions. A large solution to (102.1) implies that

m log(x)− n log(y)

is very small. In 2002, Preda Mihǎilescu (who was at the time not employed) solved Catalan’s conjecture.
We will present a special case.

Theorem 102-S: For x, y > 1, [x = 2, y = 3] is the only solution to the Diophantine equation

3x − 2y = 1, . (102.2)

Remark: This result was known as early as 1343 (Gersonides).

Proof: Note that (102.2) implies
2y ≡ −1 (mod 3x)

and so
22y ≡ 1 (mod 3x). (102.3)

Clearly, 2 is a primative root of 3, i.e. (Z/3Z)× = {1, 2} = 〈2〉. It turns out that 2 is also a primative
root of 32, since in (Z/9Z)×, we have

〈2〉 = {2, 4, 8, 7, 5, 1} = (Z/9Z)×.

In fact, since 2 is a primative root of 32, it is a primative root of 3x for all x ∈ Z+.

Therefore, in (102.3), we have
ϕ (3x) = 3x−1 · 2 (102.4)

must divide 2y. Thus 3x−1 | y and so
y ≥ 3x−1. (102.5)

Hence
2y ≥ 23

x−1

. (102.6)

This is far too big to fit into (102.2) unless x is very small. Indeed, x = 2 is the only one that works.
�



Chapter 14

Transcendence Degree and
Transcendental Functions

14.1 Definitions

Definition: The transcendence degree of a field extension L over K is the largest cardinality of an
algebraically independent subset of L over K.

Definition: A subset S of L is a transcendence basis for L over K if the elements of S are algebraically
independent over K and if L is an algebraic extension of K(S). Every field extension has a transcendence
basis, and any two transcendence bases have the same cardinality. That cardinality is called the
transcendence degree of L over K.

Remark: Transcendence bases for field extensions are analogous (in a sense) to bases for vector spaces, with
one important difference: In a vector space, each basis spans the whole vector space. In a field extension L,
we may not have L = K(S) for some transcendence basis S.

Definition: An field extension L over K is called purely transcendental if it has a transcendence basis S
such that L = K(S).
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14.2 Schanuel’s Conjecture and its Implications

Schanuel’s Conjecture (1960s) If z1, z2, . . . , zn are n complex numbers linearly independent over Q, then

TrDeg
[
Q (z1, z2, . . . , zn, e

z1 , ez2 , . . . , ezn) : Q
]
≥ n.

Implication 1: Schanuel’s Conjecture proves the Lindemann-Weierstrass Theorem. Take z1, . . . , zn to
be algebraic and linearly independent over Q. By Schanuel’s Conjecture,

TrDeg
[
Q (z1, z2, . . . , zn, e

z1 , ez2 , . . . , ezn) : Q
]
≥ n.

Thus, ez1 , . . . , ezn must be algebraically independent, and this is the Lindemann-Weierstrass Theorem.

Implication 2: Schanuel’s Conjecture proves a stronger form of Baker’s Theorem. Choose αi := ezi

for i = 1, . . . , n and hence zi = log(αi). Choose zi (i.e., αi) such that log(α1), . . . , log(αn) are linearly
independent over Q. Then, by Schanuel’s Conjecture, we have that

TrDeg
[
Q (log(α1), . . . , log(αn), α1, . . . , αn) : Q

]
≥ n.

Now, log(α1), . . . , log(αn) are algebraically independent, which is stronger than Baker’s Theorem.

Implication 3: Schanuel’s Conjecture implies the Gelfond-Schneider Theorem.

Implication 4: Schanuel’s Conjecture implies that e and π are algebraically independent. Choose z1 = 1,
z2 = iπ, Then, z1, z2 are linearly independent over Q. Now,

TrDeg
[
{1, iπ, e1,−1} : Q

]
≥ 2.

Hence, e and iπ are algebraically independent, which implies that e and π are algebraically independent. If
this is true, then this would imply that e+ π and eπ are transcendental, which is a famous open conjecture.
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14.3 Transcendental Functions and their Exceptional Sets

Definition: Given a field F and F(z), the field of rational fractions with coefficients in F, we define g(z) ∈ F(z)
to be algebraic over F(z) if there exists ρ0, ρ1, . . . , ρn ∈ F(z) such that

ρ0(z) + ρ1(z)g(z) + ρ2(z)g
2(z) + · · ·+ ρn(z)g

n(z) = 0,

with not all ρi = 0.

We may clear the denominators of each ρi(z) and hence assume each ρi(z) ∈ F[z], i.e, each ρi is just a
polynomial.

Definition: We say that f(z) ∈ F(z) is transcendental over F(z) if f(z) is not algebraic over F(z).

Example: The functions ez, 2z, az (a 6= 0, 1), log(z), cos(z) (in fact, all the trig functions), are all
transcendental functions.

Theorem 102-T: The function f(z) := ez is a transcendental function over C[z].

Proof: Suppose that ez is algebraic, say of degree d. So, there exists p0, p1, . . . , pd ∈ C(z) with pd 6= 0
such that

p0(z) + p1(z)e
z + p2(z)e

2z + · · ·+ pd(z)e
dz = 0. (102.6)

Rewrite (102.6) as
pd(z)e

dz = −pd−1e
(d−1)z − · − p0(z), (102.7)

and compare the sizes of both sides. Note that for z = r > 0, we have that

lhs(102.7) ≥ edr · crdeg(pd). (102.8)

On the other hand
rhs(102.7) ≤ ce(d−1)rk (102.9)

where
k := max

0≤i≤d−1
deg(pi).

The bounds in (102.8) and (102.9) are incompatible as r → ∞. Thus, ez is a transcendental function. �

Theorem: Every entire algebraic function is a polynomial. (Prove this as an exercise. Use ideas similar to
Theorem 102-T, something about the Maximum-Modulus Theorem?)

Theorem: If g(z) is algebraic over Q(z), then g(α) is algebraic for every algebraic α.

Problem: Given f(z) transcendental over C(z), when is f(α) transcendental given α algebraic? I.e.,
determine

Ef := {α ∈ A | f(α) is transcendental}.
We call this the exceptional set of f . This questions is due to Weierstrass.

Example: Let f(x) := ez. Then, Ef = {0}. (Lindemann)

Example: Let f(x) := 2z. Then, Ef = Q. (Gelfond-Schneider)

Example: Let f(x) := cos(z). Then, Ef = {0}.
Example: Let f(x) := log(z). Then, Ef = {0, 1}.
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Example: Let f(x) := ee
z

. Then, Ef = ∅. Follows from Schanuel’s Conjecture: Consider z1 = α and
z2 = eα with α 6= 0 algebraic. Clearly z1, z2 are linearly independent. By Schanuel’s Conjecture,

TrDeg
[
{α, eα, eα, eeα} : Q

]
≥ 2.

Hence eα and ee
α

are algebraically independent and thus ee
α

is transcendental when α 6= 0. When α = 0,
we have f(α) = e. Hence Ef = ∅.

Example: Let f(z) := e1+zπ. Then, Ef = ∅.
Proof: If z = α = 0, then f(0) = e, which is transcendental. Thus we now consider z = α 6= 0.
Suppose

f(α) = e1+πα = β ∈ A.

Then, 1+ πα = log(β), and so i+ iπα = i log(β). Therefore, α log(−1)− i log(β) = −i. Thus, we have
a nonvanishing linear combination of log(−1) and log(β) (which is algebraic). This violates one of the
earlier theorems due ot Baker. Hence, f(α) must be transcendental. �

Example: let g(z) := ez + e1+z. Then, Eg = ∅.
Proof: If z = α = 0, then g(0) = 1 + e, which is transcendental. Similarly, g(1) = e + e2, which is
transcendental. Thus we now consider z = α 6= 0, 1, i.e. 0, 1 6= 1+α. By the Weierstrass Theorem,
1, eα and e1+α are linearly independent over A. In particular, eα + e1+α is not algebraic. �

Remark: It is a surprising fact that given B ⊆ A, there exists a transcendental function f for which Ef = B.

We want examples of transcendental functions (which are not growing fast or are not entire).

Theorem 102-L: Let

f(z) :=
∞∑

n=0

z2
n

(102.10)

for |z| < 1. Then, f is a transcendental function.

Proof: First write that f(z) satisfies the functional equation

f(z) =

∞∑

n=0

z2
n

= z +

∞∑

n=1

z2
n

= z + f(z2). (102.11)

This will be used to show that f(z) is a transcendental function.

Suppose that f(z) is algebraic. Then there exist rational functions p0(z), p1(z), . . . , pd−1(z) such that

f(z)d + pd−1(z)f(z)
d−1 + · · ·+ p1(z)f(z) + p0(z) = 0 (102.12)

and d is minimal and so the expression in (102.12) is uniquely determined. Thus,

f(z2)d + pd−1(z
2)f(z2)d−1 + · · ·+ p1(z

2)f(z2) + p0(z
2) = 0 (102.13)

as well.

Using f(z2) = f(z)− z, we rewrite (102.13) as

(f(z)− z)d + pd−1(z
2)(f(z)− z)d−1 + · · · = 0. (102.14)

In (102.14), expand each term (f(z)−z)j by the binomial theorem and rewrite the expression in terms
of the power of f(z) to get

f(z)d + (pd−1(z
2)− dz)d(z)d−1 + · · · = 0. (102.15)
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Now consider the difference of the expressions in (102.12) and (102.15). This yields an algebraic
relation for f(z) of degree ≤ d−1, and this must be identically 0 by the minimality of d. In particular,

pd−1(z
2)− dz = pd−1(z). (102.16)

So, let

pd−1(z) =
A(z)

B(z)
(102.17)

for gcd(A(z), B(z)) = 1 as polynomials. Thus, (102.16) can be written as

A(z2)

B(z2)
− dz =

A(z)

B(z)
.

This is equivalent to
A(z)B(z2) = A(z2)B(z)− dzB(z)B(z2). (102.18)

Note that (102.18) implies that
B(z2) | A(z2)B(z)

and therefore
B(z2) | B(z) (102.19)

since gcd(A(z2), B(z2)) = 1. Now, by comparing degrees, we conclude that B(z) =: b is a nonzero
constant polynomial (it’s nonzero because it’s a denominator in (102.17)).

Thus (102.18) can be rewritten as
A(z) = A(z2)− bdz. (102.20)

By comparing degrees again, we must have that A(z) =: a is a constant. This forces b = 0 in order for
(102.20) to be valid. This is a contradiction. Therefore, f(z) is a transcendental function. �

Theorem 102-M: (Mahler, 1929) Let

f(z) :=

∞∑

n=0

z2
n

for |z| < 1. Then, f(α) is transcendental for all algebraic α 6= 0 with |α| < 1.

Exercise: Show that ∞∑

n=1

z2
n

1− z2n+1

is actually an algebraic function. Use this to evaluate

∞∑

n=0

1

F2n

as an explicit algebraic number. Fn is the nth Fibonacci number.



Chapter 15

Uniform Distribution

15.1 Basic Theorems

Recall: If ab 6= p
q are distinct rationals, then

0 6=
∣∣∣∣
a

b
− p

q

∣∣∣∣ =
|aq − bp|

bq
≥ 1

bq
.

Thus, if θ = a
b ∈ Q, then if |qθ − p| 6= 0, then

|qθ − p| ≥ 1

b

is bounded away from 0. Thus if θ ∈ R and there exists an infinite sequence of integer pairs such that

0 6= |qnθ − pn| → 0 (103.1)

as n→ ∞, then θ is irrational.

Dirichlet’s Theorem: Given θ ∈ R and N > 0 arbitrarily large, there exists an integer q satisfying

‖qθ‖ < 1

N
, 0 < q ≤ N.

Recall that ‖qθ‖ is the distance between q and the nearest integer.

In particular, if θ is irrational, then there are infinitely many solutions to the inequality

‖qθ‖ < 1

q
,

i.e., ∣∣∣∣θ −
p

q

∣∣∣∣ <
1

q2
.

Remark: We may interpret (103.1) as saying that the sequence of fractional parts {nθ} will have either 0
or 1 as a cluster. Kronecker extended this significantly.

Theorem 103: (Kronecker, 1884) If θ is irrational, then the sequence {nθ} of fractional parts of multiples
of θ is dense in [0, 1].

138
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Remark: This property characterizes the irrationals because if θ ∈ Q, say θ = a
b , then {nθ} is one of

the values
0

b
,
1

b
,
2

b
, . . . ,

b− 1

b

and so clustering can only occur around these points.

Equivalently, given ǫ > 0 and N > 0 and any α ∈ [0, 1), there exist integers n and p such that

nθ − p− α| < ǫ., n > N. (103.2)

Proof 1: Given irrational θ, by Dirichlet’s Theorem there exists an integer q > N such that

0 < {qθ} < ǫ, or,
1− ǫ < {qθ} < 1.

(103.3)

Now consider the sequence
{qθ}, {2qθ}, {3qθ}, . . . .

Note that the sequence of fractional parts satisfies a linearity condition. In view of the linearity, the
sequence in (103.4) provides a “mesh” in [0, 1) with gaps no bigger than ǫ. Thus, there exists at least
one member of the sequence that is of distance < ǫ from α, i.e., there exists n = mq and p integers,
such that

|nθ − p− α| < ǫ

which is (103.2). �

Proof 2: This proof does not rely on Dirichlet’s Theorem. If θ is irrational, then the sequence
{nθ} consists of distinct numbers, all in [0, 1). Thus there is at least one cluster point for this sequence
in [0, 1]. If we denote {nθ} by Pn, then given ǫ > 0, there are pairs Pn, Pn+r with r arbitrarily large
such that the difference

|Pn − Pn+r| < ǫ. (103.5)

Let |−−−−−→PnPn+r| denote a vector from Pn to Pn+r, which could wrap around 1, in which case we define

|−−−−−→PnPn+r| = |1− Pn|+ |Pn+r|. (103.6)

By the linearity property of Pn, we can say that

|−−−−→P1P1+r| < ǫ. (103.7)

Now, consider the sequence −−−−→
P1P1+r,

−−−−−−−→
P1+rP1+2r,

−−−−−−−−→
P1+2rP1+3r, . . . (103.8)

which yields a mesh in [0, 1] with gaps < ǫ. The proof is completed as in Proof 1. �

Proof 3: To avoid the discussion of crossings, we consider points on a circle of unit radius, i.e., we
map

[0, 1) −→ ©.

Let S =
{
{nθ}

}∞
n=1

. We are claiming that

S =
⊙

. (103.7)

Suppose not. Then, there exists α on the circle and an interval around α with null intersection with
S, i.e., there exists δ, δ′ > 0 such that

(α− δ, α+ δ′) ∩ S 6= ∅. (103.8)

From all such intervals, choose the maximal one and denote this by I(α). Again by linearity, we see
that I(α) and I(α− θ) are congruent, i.e.

I(α) ≡ I(α− θ). (103.9)
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So, consider the sequence of intervals

I(α), I(α − θ), I(α − 2θ), . . . . (103.10)

So, two of these intervals must intersect. This immediately will yield an interval around α with a
larger δ or δ′ and null intersection with S, which contradicts the maximality of I(α). Thus, S =

⊙
.

�

We have the following quantitative version of Dirichlet’s Theorem:
Theorem: Given an irrational θ, there exist infinitely many pairs of integers (p, q) such that

0 6= |qθ − p| < 1

q
. (104.1)

Is there a quantitative version of Kronecker’s Theorem comparative to Dirichlet’s Theorem? Yes.

Theorem 104: (Kronecker’s Theorem - Quantitative Version) Let θ be irrational and let α ∈ R. Then for
each N > 0 (arbitrarily large) there exist integers n and p such that

|nθ − p− α| < 3

n
, n > N. (104.2)

Remark: It is not required that α ∈ (0, 1] since we may shift p by an integer if necessary.

Remark: Note that the inequality has an absolute constant 3 for all θ and α, which is bigger than
the constant in Dirichlet’s Theorem, but has the advantage of not depending on α.

Proof: Given N , by Dirichlet’s Theorem, there exist integers q and r such that

0 6= |qθ − r| < 1

q
, q > 2N. (104.3)

Next, given α, define Q to be the integer nearest to qα, i.e.,

|qα−Q| ≤ 1

2
(104.4)

but there are two choices of Q is (104.4) has equality. Pick either one.

In (104.3), we may assume without loss of generality that gcd(r, q) = 1. Thus there exist integers
u, v ∈ Z such that

Q = vr − uq. (104.5)

Since shifts v 7→ v + λq and u 7→ u+ λr yield the same value in (104.5) with λ ∈ Z, we may choose v
such that

|v| ≤ q

2
. (104.6)

With these choices,

q(vθ − u− α) = v(qθ − r) − (qα−Q). (104.7)

So by (104.5), we have that

|q(vθ − u− α)| ≤ |v||qθ − r|+ |qα−Q|

<
q

2
· 1
q
+

1

2

=
1

2
+

1

2
= 1,
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by (104.3) - (104.7). So,

|vθ − u− α| < 1

q
.

Now take
n = q + v and p = r + u. (104.9)

Then,

N <
q

2
≤ n ≤ q +

q

2
=

3q

2
. (104.10)

Hence,

|nθ − p− α| = |(q + v)θ − (r + u)− α|
= |(vθ − u− α) + (qθ − r)|
≤ |vθ − u− α|+ |qθ − r|

<
1

q
+

1

q
=

2

q
<

3

N
.

Since this is true for all n > N , the proof is complete. �
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15.2 An Application of Kronecker’s Theorem to Geometry

The Problem of the Reflected Ray

Consider a square whose sides are reflecting mirrors. From a point inside the square, a ray of light emanates.
What is the path of this light?

Theorem 105: (König & Szücs, 1913) The path is either periodic or is dense in the square. It is periodic if
the slope is rational and dense when the slope is irrational.

Proof: For simplicity (and without loss of generality), we take the square to be the unit square, with
the center of the square as the origin. Let the light emanate from a point P = (a, b). Note that the
set of images of P reflected over all mirrors repeatedly consists of

(A) {a+ 2ℓ, b+ 2m},
(B) {a+ 2ℓ,−b+ 2m+ 1},
(C) {−a+ 2ℓ+ 1, b+ 2m},
(D) {−a+ 2ℓ+ 1,−b+ 2m+ 1}.
Observe that in each square there is precisely one image of P . Also, see that if the ray of light
emanating from P is extended infinitely as a straight line, then the segments of this line in each square
correspond bijectively with the segments between mirrors of the ray bounding around the original
square. With λ, µ representing the direction cosines of the line, any point on the line is given by

x = a+ λt, y = b+ µt, slope =
µ

λ
, t ∈ R. (105.1)

Note that the path of the ray of light is periodic if the line passes through an image of P of the type
(A), i.e., there exists t ∈ R such that

λt = 2ℓ, µt = 2m. (105.2)

Therefore,
µ

λ
=
m

ℓ
∈ Q.

This proves one part of the theorem.

Now let the slope be irrational. Pick any point (ξ, η) in the square. We want to show that the ray gets
arbitrarily close to (ξ, η). This is equivalent to saying that the straight line of the ray is arbitrarily
close to an image of (ξ, η) of type (A). So, we want to show that

|a+ λt− ξ − 2ℓ| < ǫ, |b+ µt− η − 2m| < ǫ, (105.3)

for all ǫ > 0. First, choose

t =
η + 2m− b

µ

which makes the second inequality in (105.3) zero and hence satisfies.

With this choice of t, we have

a+ λt− ξ − 2ℓ = a+ λ

(
η + 2m− b

µ

)
− ξ − 2ℓ

= 2m
λ

µ
+ (a− ξ) +

λ(ν − b)

µ
− 2ℓ. (105.4)

Thus,
|a+ λt− ǫ− 2ℓ| < ǫ
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and hence
|mθ − ω − ℓ| < ǫ

2

where

θ =
λ

µ
6∈ Q, ω =

(b − η)λ

2µ
=
a− ξ

2
∈ R. (105.5)
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15.3 Simultaneous Approximation of Real Numbers

We are given n real numbers θ1, θ2, . . . , θn. Note that it is trivial to find integers q1, q2, . . . , qn such that

‖q1θ1‖, ‖q2θ2‖, . . . , ‖qnθn‖

are all small, because each qi exists by Dirichlet’s Theorem. This, the real interesting case is:

Problem: Determine a single integer q such that

‖qθi‖ < ǫ (106.1)

for some ǫ > 0 and for all i. How effectively can this be done?

Theorem 106: (Dirichlet’s Theorem in n Dimensions) Give n real numbers θ1, θ2, . . . , θn and an integer N
arbitrarily large, there exists an integer q satisfying the following:

0 < q < Nn (106.2a)

and

‖qθi‖ <
1

N
(106.2b)

Note that we can rewrite (106.1) as ∣∣∣∣θi −
pi
q

∣∣∣∣ <
ǫ

q
(106.3a)

and we can rewrite (106.2b) as ∣∣∣∣qθi −
pi
q

∣∣∣∣ <
1

qN
. (106.3b)

It is important to see that we are not assuming that any of the θi are irrational.

Remark: Clearly, (106.2) implies (106.1) with N >
1

ǫ
. Additionally, if θi is rational for some i, we

do permit ‖qθi‖ = 0, and so (106.2) could be trivially valid for this θi.

Proof: We establish this proof by using the Pigeon Hole Principal in n dimensions. Divide the n-
dimensional cube [0, 1)n into Nn subcubes, where each subcube has side length 1

N . Now consider the
Nn + 1 points in [0, 1)n given by

({mθ1}, {mθ2}, . . . , {mθn}) (106.4)

where m = 0, 1, . . . , Nn. Note we are using {r} to mean the fractional part of r.

Now, by the Pigeon Hole Principal, at least two of these points lie in the same subcube, i.e., there
exist integers 0 ≤ m < m′ ≤ Nn such that

|{mθi} − {m′θi}| <
1

N
(106.5)

for i = 1, 2, . . . , n. Thus we set

q = m−m′ (106.6a)

and

pi = [m′θi]− [mθi] (106.6b)

and note that (106.2) is satisfied and 0 < q < Nn. �
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Example: Consider θ1 := 4
5 and θ2 :=

√
2. Then, we can first make

∣∣∣
√
2− p

q

∣∣∣ small by Dirichlet’s

Theorem. Now we can approximate 4
5 by ∣∣∣∣

4

5
− 4q

5q

∣∣∣∣

and subsequently actually approximate
√
2 by

∣∣∣∣
√
2− 5p

5q

∣∣∣∣ .

We have the same denominator for both approximations, which is what we need. Granted, this approximation
is not as strong as the case with

√
2 on its own, but this is the price paid for approximating multiple real

numbers simultaneously.

Remark: If each θi is irrational, then ‖qθi‖ 6= 0 for all i, and so we can make N larger to require a new q
an infinite number of times. (If the norm could equal zero, then we could find a q where this happens and
never need a new q.) So, as N → ∞ in (106.2), we are guaranteed that infinitely many qs will be generated.
Hence we arrive at the following:

Theorem 107: Let θ1, θ2, . . . , θn be irrational. Let N be arbitrarily large. Then, there exists an integer q
and integers p1, p2, . . . , pn such that

0 <

∣∣∣∣θi −
pi
q

∣∣∣∣ <
1

qN
(107.1)

for i = 1, 2, . . . , n. In particular

0 <

∣∣∣∣θi −
pi
q

∣∣∣∣ <
1

q1+1/n
(107.2)

has infinitely many simultaneous solutions pi/q. Setting n = 1 gives us the classical Dirichlet Theorem.

Remark: Recall that Kronecker took the fact from Dirichlet that the points ‖qθ‖ cluster near either 0
or 1, and then proved that in fact they cluster everywhere, i.e., they are dense in [0, 1]. Motivated by
this, we will ask the same question on the n-dimensional cube. The above theorem tells us that the points
({qθ1}, . . . , {qθn}) cluster around at least one corner of [0, 1)n. So we ask: When is ({qθ1}, . . . , {qθn})q∈N

dense in [0, 1)n?

Observations: If any θi is rational and equals a
b , then {qθi} can take only the values

0

b
,
1

b
, . . . ,

b− 1

b
.

So clearly, we will not have a dense distribution in the case of θi rational. Thus it is necessary that the θi
are all irrational. Suppose θ1 and θ2 satisfy a linear relation over Q, such as

aθ1 + bθ2 = c (108.1)

for a, b, c ∈ Z (they are actually rational, but we can clear denominators). Then

aqθ1 + bqθ2 = qc

for all q ∈ Z, and so
a{qθ1}+ b{qθ2} = qc− a[qθ1]− b[qθ2] =: d ∈ Z. (108.2)

Note that
|d| < |a|+ |b| (108.3)

since the fractional terms are less than 1. Thus, a{qθ1}+ b{qθ2} must be within [0, 1)2 but on a finite set of
lines segments

ax+ by = d (108.4)
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and so the distribution cannot be dense. If we require that 1, θ1, . . . , θn are linearly independent over Q, then
this is actually sufficient to guarantee the n-dimensional version of Kronecker’s Theorem.

Theorem 108: (Kronecker’s Theorem in k Dimensions) Let 1, θ1, θ2, . . . , θk be linearly independent over Q.
Let α1, α2, . . . , αk be arbitrary real numbers and let ǫ > 0 be arbitrarily small and N > 0 arbitrarily large
be given. Then, there exists an integer q and integers p1, p2, . . . , pk such that

|qθi − pi − αi| < ǫ (108.5)

for all i = 1, 2, . . . , k and q > N .

Remark: 1, θ1, θ2, . . . , θk linearly independent over Q implies that all θi are irrational. Additionally, we do
not require that αi ∈ [0, 1), since we may shift pi by [αi]. Lastly, there is a version of this theorem where the
hypotheses are weaker and the result is weaker, but the two are actually equivalent. This theorem is:

Theorem 108’: Let θ1, θ2, . . . , θk be linearly independent over Q. (Note we have dropped that 1, so up to
one of the θi may be rational.) Let α1, α2, . . . , αk be arbitrary real numbers, with ǫ > 0 and T > 0 given.
Then, there exists t > T (not necessarily an integer) and integers p1, p2, . . . , pk such that

|tθi − pi − αi| < ǫ (108.6)

and t > T .

Proof that Theorem 108’ =⇒ Theorem 108: We assume without loss of generality that all θi ∈ [0, 1)
and that ǫ < 1. Given θ1, θ2, . . . , θk and α1, α2, . . . , αk as in the hypothesis of Theorem 108, we apply
Theorem 108’ to the sets of k + 1 numbers

θ1, θ2, . . . , θk, 1 and α1, α2, . . . , αk, 0 (108.7)

and with ǫ/2 in the place of ǫ in Theorem 108’. As per Theorem 108, the numbers, 1, θ1, θ2, . . . , θk are
linearly independent, which means we are applying Theorem 108’ to the k + 1 numbers θ1, θ2, . . . , θk, 1,
which are linearly independent. Now, by Theorem 108’, one can find a real number

t > N + 1 (108.8)

such that
|tθi − pi − αi| <

ǫ

2
, for i = 1, 2, . . . , k

|t− pk+1 − 0| = |t− pk+1| <
ǫ

2



 . (108.9)

Note that by (108.9) and (108.8), we have that

pk+1 > N. (108.10)

This is the integer q(:= pk+1) that will work in Theorem 108. That is, by (108.9), we have that

|pk+1θi − pi − αi| = |tθi − pi + αi + pk+1θi − tθi|
≤ |tθi − pi − αi|+ |θi||pk+1 − t|
≤ ǫ

2
+
ǫ

2
= ǫ, (108.11)

for i = 1, 2, . . . , k, which is the assertion of Theorem 108. �

Proof that Theorem 108 =⇒ Theorem 108’: We make the preliminary observation that both forms
of Kronecker’s Theorem enjoy an “additive” property. To be more precise, if θ1, θ2, . . . , θk are given
satisfying the respective hypothesism, and if either theorem works for choices α1, α2, . . . , αk and β1, β2, . . . , βk
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of reals, namely that the differences in (108.5) and (108.8) can be made arbitrarily small with the αs and
βs respectively, and so can be made less than ǫ/2, then the differences of the k real numbers α1 + β1, α2 +
β2, · · · , αk + βk can be made less than ǫ, because

|qθi − pi − αi| <
ǫ

2
, |q′θi − p′i − βi| <

ǫ

2
, i = 1, 2, . . . , k (108.12)

implies
|(q + q′)θi − (pi + p′i)− (αi + βi)| < ǫ, i = 1, 2, . . . , k. (108.13)

Similarly,

|tθi − pi − αi| <
ǫ

2
, |t′θi − p′i − βi| <

ǫ

2
, i = 1, 2, . . . , k (108.14)

implies
|(t+ t′)θi − (pi + p′i)− (αi + βi)| < ǫ, i = 1, 2, . . . , k. (108.15)

We note in addition that both Theorems 108 & 108’ are valid for k = 1.

Now consider θ1, θ2, . . . , θk+1 (with k + 1 ≥ 2), fitting the hypothesis of Theorem 108’ which means that
they are linearly independent over Q. This means that the set

θ1
θk+1

,
θ2
θk+1

, . . . ,
θk
θk+1

, 1 (108.16)

are linearly independent over Q. We now apply Theorem 108 to the numbers in (108.16), given
α1, α2, . . . , αk and N . Thus, there exists q > N and integers p1, p2, . . . , pk such that

∣∣∣∣q
θi
θk+1

− pi − αi

∣∣∣∣ < ǫ, i = 1, 2, . . . , k, q > N. (108.17)

We may think of (108.17) as
|tθi − pi − αi| < ǫ, i = 1, 2, . . . , k (108.18)

with t =
q

θk+1
> N .

Note that trivially, due to (108.18), we have that

|tθk+1 − q| = 0 < ǫ (108.19)

and so q =: pk+1 is the choice pk+1. Thus (108.18) and (108.19) show that Theorem 108’ is valid for the
case

θ1, θ2, . . . , θk, θk+1, and α1, α2, . . . , αk, 0. (108.20)

Simiarly, Theorem 108’ is valid for the case

θ1, θ2, . . . , θk, θk+1, and 0, 0, . . . , 0, αk+1. (108.21)

So from (108.20) and (108.21) we see by the additive property that Theorem 108’ holds for θ1, θ2, . . . , θk+1

and α1, α2, . . . , αk+1 arbitrary. �
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15.4 Kronecker’s Theorem in Two Dimensions

We will prove the first version of Kronecker’s Theorem, namely Theorem 108 in the case k = 2. This
then can be extended to higher dimensions.

Proof: (Lettenmeyer) Lettenmeyer’s proof given here with the case k = 1 was Proof (ii) of
Kronecker’s Theorem given above.

So, let θ1, θ2 be reals such that 1, θ1, θ2 are linearly independent over Q. In particular, both θ1, θ2 are
irrationals. Without loss of generality, we assume

0 < θ1, θ2 < 1. (108.22)

Consider the points Pn in the unit square whose coordinates are

Pn = ({nθ1}, {nθ2}). (108.23)

We need to show that the set of points Pn is dense in [0, 1)× [0, 1). Note that the Pn are all distinct
points and no Pn lies on the side of the square because {nθi} cannot be 0 or 1. As before, we construct

the directed line segment connecting Pn and Pn+r as a vector and write
−−−−−→
PnPn+r for this vector.

By linearity, we note that given
−−−−−→
PnPn+r, if we take any Pm and draw a line segment from Pm equal in

length and parallel to
−−−−−→
PnPn+r to get an end point Q, then Q is indeed Pm+r, with the same convention

being adopted.

Since Pn is an infinite sequence of distinct points in the unit square, the sequence has a cluster point.

Thus for each ǫ > 0, there are vectors
−−−−−→
PnPn+r with r arbitrarily large and with

|−−−−−→PnPn+r| < ǫ. (108.24)

To avoid anomalies, we choose
ǫ < min{θ1, 1− θ1, θ2, 1− θ2}. (108.25)

Thus, any vector of length less than ǫ emanating from P1 will not cross any side of the square. There
are now two cases to consider:

Case 1: There are two vectors of length less than ǫ which are not parallel.

In this case, by linearity, we may make these vectors emanate from P1 and draw a lattice with
these two vectors with the convention as before. This provides a mesh within [0, 1)× [0, 1) such
that every point in the unit square is within ǫ distance of an end point of this mesh. That proves
the theorem in this case.

Case 2: All vectors of length less than ǫ are parallel.

By linearity all ǫ-vectors emanating from P1 will be parallel. This means there are integers r
and s arbitrarily large such that the points, P1, Pr, Ps are collinear. This means

0 = det




θ1 θ2 1
{rθ1} {rθ2} 1
{sθ1} {sθ2} 1


 = det




θ1 θ2 1
rθ1 − [rθ1] rθ2 − [rθ2] 1
sθ1 − [sθ1] sθ2 − [sθ2] 1


 . (108.25)

Now, (108.25) implies that

det




θ1 θ2 1
[rθ1] [rθ2] r − 1
[sθ1] [sθ2] s− 1


 = 0. (108.26)
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By expanding this determinant, we may write it as

aθ1 + bθ2 + c = 0 (108.27)

where a, b, c ∈ Z with

a = det

(
[rθ2] r − 1
[sθ2] s− 1

)
, b = − det

(
[rθ1] r − 1
[sθ1] s− 1

)
. (108.28)

Since 1, θ1, θ2 are linearly independent, we must have

a = b = c = 0. (108.29)

In particular,

det

(
[rθ2] r − 1
[sθ2] s− 1

)
= 0 = [rθ2](s− 1)− [sθ2](r − 1), (108.30)

which is the same as
[sθ2]

s− 1
=

[rθ2]

r − 1
(108.31)

with r and s arbitrarily large. If we keep s fixed and let r alone tend to ∞, we get

lim
r→∞

[rθ2]

r − 1
= lim
r→∞

rθ2 − {rθ2}
r − 1

= θ2 (108.32)

which is irrational, forcing
[sθ2]

s− 1
= lim
r→∞

[rθ2]

r − 1
= θ2 (108.33)

to be irrational, which is impossible because the left-hand side of (108.33) is rational. Thus, this
case cannot hold, and so only case 1 holds, which means Theorem 108 for k = 2 is true. �

Remark: Lettenmeyer’s proof for k = 2 (and k = 1) extends to all k ≥ 2 by considering linearly
independent/dependent ǫ-vectors and (k + 1)× (k + 1) determinants. But what we will do now is to deduce
the result for all k by induction on k. This proof is due to Estermann.

Proof of Kronecker’s Theorem in Multiple Dimensions: (Estermann)

For a certain k ≥ 2, we assume that the theorem is true for dimension k − 1. For the purpose
of induction, it is useful to note that one can actually establish a stronger version of the theorem,
namely: If 1, θ1, θ2, . . . , θk are linearly independent and α1, α2, . . . , αk are arbitrary real numbers, then
given any ǫ > 0 (arbitrarily small), and ω > 0 (arbitrarily large) and λ 6= 0, there exist integers
n, p1, p2, . . . , pk such that

|nθi − pi − αi| < ǫ i = 1, 2, . . . , k, sgn(n) = sgn(λ), |n| > ω. (108.34)

For the induction to work, we will have to show that the truth of (108.34) for k − 1 implies its truth
for k¡ and that (108.34) holds for k = 1.

For the case of dimension k, first note that Dirichlet’s Theorem in k dimensions (Theorem 106)
guarantees that there exists an integer q > 0 and integers, b1, b2, . . . , bk such that

|qθi − bi| <
ǫ

2
, i = 1, 2, . . . , k. (108.35)

Since θi are irrational, each qθi − bi 6= 0. Thus we consider the numbers

ϕi =
sθi − bi
sθk − bk

, i = 1, 2, . . . , k (108.36)
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of which ϕk = 1. Note that ϕ1, ϕ2, . . . , ϕk are linearly independent, because a linear dependence
between them would imply one for θ1, θ2, . . . , θk, which cannot be. Thus we apply the theorem in the
stronger form (108.34) to

ϕ1, ϕ2, . . . , ϕk−1, ϕk = 1 (108.37)

which is the k-dimensional case, with the choices

βi = αi − αkϕk, i = 1, 2, . . . , k − 1
ǫ/2 in place of ǫ

λ(qθk − bk) in place of λ
Ω = (ω + 1)|qθk − bk|+ |αk| in place of ω.

(108.38)

Thus by the induction hypothesis, there are integers c1, c2, . . . , ck such that

|ckϕi − ci − βi| <
ǫ

2
, i = 1, 2, . . . , k − 1, |ck| > Ω, sgn(ck) = sgn(λ(qθk − bk)). (108.39)

Substituting the values ϕi as in (108.36) and βi as in (108.38) into (108.39), we may rewrite it as

∣∣∣∣
(ck + αk)

qθk − bk
(qθi − bi)− ci − αi

∣∣∣∣ <
ǫ

2
, i = 1, 2, . . . , k, (108.40)

where we have included i = k in (108.40) because in that case, the inequality is trivially true because
the left-hand side of (108.40) is zero.

Note that when k = 1, (108.40) is trivially true, and (108.39) holds as well when k − 1 = 1.

Now choose an integer N such that ∣∣∣∣N − ck + αk
qθk − bk

∣∣∣∣ < 1. (108.41)

Set n := Nq and pi := Nbi + ci. Then, we have that

|nθi − pi − αi| = |N(qθi − βi)− ci − αi|

≤
∣∣∣∣
ck + αk
qθk − bk

(qθi − bi)− ci − αi

∣∣∣∣+ |qθi − bi|

<
ǫ

2
+
ǫ

2
= ǫ, i = 1, 2, . . . , k, (108.42)

by virtue of (108.39) and (108.40).

Note that by (108.38) and (108.39),

ck + αk
qθk − bk

≥ |ck| − |αk|
|qθk − bk|

>
Ω− |αk|
|qθk − bk|

= ω + 1 (108.43)

and so by (108.41) and (108.43)

|N | > ω and |n| = |N |q ≥ N > ω. (108.44)

Also,

sgn(n) = sgn(N) = sgn

(
ck

qθk − bk

)
= sgn(λ),

which means that (108.34) has been proved for the k-dimensional case. Thus, Theorem 108 in the
strong form has been established by induction. �
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15.5 Uniform Distribution Modulo 1

The theory of uniform distribution was ushered in by Hermann Weyl in a class paper “Über die
Gleichverteilung von Zahlen modulo Eins”, published in Math. Ann. 77 (1916), pgs. 313-352. A good
reference of this material is “Uniform Distribution of Sequences” by L. Kuipers and H. Niederreiter, published
in 1976.

Definition: Given a sequence ω = {xn}n∈N of real numbers and E ⊆ [0, 1), consider the counting function

A(E,N, ω) =
∑

n≥N
{xn}∈E

1. (109.1)

We will focus on E = [a, b), i.e., intervals. We say that ω is uniformly distributed modulo 1 if for every
[a, b) ⊆ [0, 1) we have

lim
N→∞

A([a, b), N, ω)

N
= b− a. (109.2)

Remark: Since

[a, b) = [0, b)r [0, a) (109.3)

and since

A([a, b), N, ω) = A([0, b), N, ω)−A([0, a), N, ω) (109.4)

it suffices to define “uniformly distributed” by

lim
N→∞

A([0, a), N, ω)

N
= a. (109.5)

Definition: Define the characteristic function of an interval by

χ[a,b)(x) :=

{
1, x ∈ [a, b)
0, otherwise

. (109.6)

Remark: Now note that

b− a =

∫ 1

0

χ[a,b)(x) dx, (109.7)

and so (109.2) can be rewritten as

lim
N→∞

1

N

∑

1≤n≤N
χ[a,b)(xn) =

∫ 1

0

χ[a,b)(x) dx. (109.8)

This reformulation helps us extend (109.8) to step functions, and then to continuous functions. More precisely,
we formulate the following theorem.

Theorem 110: A sequence ω = {xn}n∈N is uniformly distributed modulo 1 if and only if

lim
N→∞

1

N

N∑

n=1

f(xn) =

∫ 1

0

f(x) dx (110.1)

for all continuous functions on [0, 1].
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Proof: Let ω = {xn}n∈N be uniformly distributed modulo 1. Then by (109.8), we see by linearity
that (110.1) holds for all step functions

ψ(x) =

k∑

i=1

ciχ[ai,ai+1)(x) (110.2)

where 0 = a0 < a1 < · · · < ak+1 = 1.

If f ∈ C ([0, 1]) and ǫ > 0 are given, then there exist two step functions ψ1, ψ2 satisfying

ψ1(x) ≤ f(x) ≤ ψ2(x) (110.3)

and

0 <

∫
(ψ2(x)− ψ1(x)) dx < ǫ. (110.4)

Therefore,

∫ 1

0

f(x) dx− ǫ ≤1
0 ψ1(x) dx

= lim
N→∞

1

N

N∑

n=1

ψ1(xn)

≤ lim inf
N→∞

1

N

N∑

n=1

f(xn)

≤ lim sup
N→∞

1

N

N∑

n=1

f(xn)

≤ lim
N→∞

1

N

N∑

n=1

ψ2(xn)

=

∫ 1

0

ψ2(x) dx

≤
∫ 1

0

f(x) dx+ ǫ. (110.5)

We may let ǫ→ 0 in (110.5) and conclude that (110.1) holds for f .

Conversely, assume that (110.1) holds for all f ∈ C ([0, 1]). Let χ[a,b) be given. Given ǫ > 0, we may
choose continuous functions f1, f2 such that

f1(x) ≤ χ[a,b) ≤ f2(x) (110.6)

and

0 <

∫
(f2(x)− f1(x)) dx < ǫ. (110.7)
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Thus,

(b− a)− ǫ <

∫ 1

0

f1(x) dx

= lim
N→∞

1

N

N∑

n=1

f1(xn)

≤ lim inf
N→∞

1

N

N∑

n=1

χ(xn)

≤ lim sup
N→∞

1

N

N∑

n=1

χ(xn)

≤ lim
N→∞

1

N

N∑

n=1

f2(xn)

=

∫ 1

0

f2(x) dx

≤ (b− a) + ǫ.

We may now let ǫ→ 0 to conclude that (110.1) holds for χ[a,b). Then, {xn}n∈N is uniformly distributed
modulo 1. �

Corollary 110-1: ω := {xn}n∈N is uniformly distributed modulo 1 if (110.1) holds for all Riemann integrable
functions on [0, 1).

Remark: Note that in the above corollary we are assuming that the Riemann integrable functions are
bounded. If they are unbounded functions (which are still Riemann integrable), then the improper integral
is defined in the normal way on bounded functions, by

∫ b

a

f(x) dx = lim
d1b
c%a

∫ d

c

f(x) dx, (110.9)

where f is necessarily bounded in the compact interval [c, d].

Corollary 110-2: Let ω := {xn}n∈N be a real sequences. Then, ω is uniformly distributed modulo 1 if and
only if (110.1) holds for all real continuous functions on R which are periodic of period 1.

Proof: Saying that f is periodic of period 1 is equivalent to

f(x) = f({x}). (110.10)

We may then approximate any continuous f on [0, 1] by a periodic continuous function g such that

∫ 1

0

((f(x)− g(x))dx < ǫ. � (110.11)

Corollary 110-3: ω := {xn}n∈N is uniformly distributed modulo 1 if and only if (110.1) holds for all complex
valued functions on R which are periodic of period 1.
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15.6 The Weyl Criterion

Theorem 111: The sequence ω := {xn}n∈N is uniformly distributed modulo 1 if and only if

lim
N→∞

1

N

N∑

n=1

e2πihxn = 0 (111.1)

for every h ∈ Z r {0}.
Remark: For h = 0,

lim
N→∞

1

N

N∑

n=1

e2πi(0)xn = 1 =

∫ 1

0

e2πi(0)x dx =

∫ 1

0

1 dx.

Therefore, (110.1) is true in the case h = 0.

Proof: Let h 6= 0 and let ω = {xn}n∈N be uniformly distributed modulo 1. In this case, by one of the
corollaries to Theorem 110, we have that

lim
N→∞

1

N

N∑

n=1

e2πihxn =

∫ 1

0

e2πihx dx =
e2πihx

2πih

∣∣∣∣
1

0

= 0. (111.2)

Therefore, (110.1) holds for all functions of the form fh(x) = e2πihx, for h ∈ Z. Additionally, this
means that (110.1) is true for all linear combinations of fh(x), which is precisely the set of trigonometric
polynomials.

Given any continuous periodic function f of period 1, by the Weierstrass Approximation
Theorem, we know that f can be approximated by trigonometric polynomials. So, given ǫ > 0,
there exists a trigonometric polynomial ψ(x) such that

sup
0≤x≤1

|f(x)− ψ(x)| < ǫ

2
. (111.3)

Therefore,
∣∣∣∣∣

(
1

N

N∑

n=1

f(xn)

)
−
∫ 1

0

f(x) dx

∣∣∣∣∣ ≤
1

N

∣∣∣∣∣

N∑

n=1

(f(xn)− ψ(xn))

∣∣∣∣∣+
∣∣∣∣∣

(
1

N

N∑

n=1

ψ(xn)

)
−
∫ 1

0

ψ(x) dx

∣∣∣∣∣

+

∣∣∣∣
∫ 1

0

(ψ(x) − f(x))dx

∣∣∣∣

≤ ǫ

3
+
ǫ

3
+
ǫ

3
.

for N ≥ N(ǫ), for the middle term. (The first and last terms on the right in (111.4) are each < ǫ
3 by

virtue of (111.3).) Since this is true for every ǫ > 0, we let ǫ → 0 and N = N(ǫ) → ∞ to conclude
that (110.1) is valid for all periodic f of period 1. Hence ω is uniformly distibuted modulo 1. �

Theorem 112: (Consequence of Theorem 111) Let θ be irrational. Then, {nθ}n∈N is uniformly distributed
modulo 1.

Proof: We need to check that

lim
N→∞

1

N

N∑

n=1

e2πihnθ = 0 (112.1)

for all 0 ∈ h ∈ Z. But then

1

N

N∑

n=1

e2πihnθ =
e2πihθ

N
· e

2πhNθ − 1

e2πihθ − 1
. (112.2)
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Observe that if h 6= 0, then
e2πihθ − 1 6= 0.

Thus the right-hand side of (112.2) is

Oh

(
1

n

)
→ 0

as N → ∞. Hence by the Weyl Criterion, we have that Theorem 112 follows. �

Remark: Using the Weyl Criterion, one can establish the uniform distribution of other sequences. A
particularly deep example is

ω := {pθ}
for a prime p. This uses a method of trigonometric sums due to I. M. Vinogradov.
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15.7 Similar results on Q

Remark: Clearly, Theorem 112 characterizes the irrationals. A natural question is whether we can find
similar results for the rationals. Consider Q ∩ [0, 1) ordered lexicographically as such:

0

1
,
0

2
,
1

2
,
0

3
,
1

3
,
2

3
,
0

4
,
1

4
,
2

4
,
3

4
, . . . (113.1)

where the mth block is
0

m
,

1

m
, . . . ,

m− 1

m
.

For now, we keep the repetitions.

Theorem 113: The sequence of rationals lexicographically ordered as in (113.1) is uniformly distributed
modulo 1.

Proof: First observe that the number of members of the sequence ω up to the mth block is

1 + 2 + · · ·+m =
m(m+ 1)

2
= Tm. (113.2)

Recall that Tm is the mth triangular number.

Given N ∈ Z large, determine m such that

Tm ≤ N < Tm+1. (113.3)

Now,

0 ≤ N − Tm < O(
√
n). (113.4)

The number of members of the sequence in the kth block that lie within [a, b) is exactly

∑

a≤j/k<b
1 =

∑

ka≤j<kb
1 = k(b− a) +O(1). (113.5)

Thus,

A([a, b), Tm, ω) =

m∑

k=1

(k(b− a) +O(1)) = (b− a)Tm +O(m). (113.6)

But then,

A([a, b), N, ω) = A([a, b), Tm, ω) + (A([a, b), N, ω)−A([a, b), Tm, ω))

= (b− a)Tm +O(m) +O(m)

= (b− a)N +O(
√
N). (113.7)

Therefore,
A([a, b), N, ω)

N
= (b − a) +O

(
1√
N

)
. (113.8)

This tends to b− a as N → ∞. Therefore, ω is uniformly distributed modulo 1. �

Remark: Clearly, the case of real interest is when we remove duplicates from the sequence of rationals. We
want to lexicographically order the rationals ignoring duplications:

0

1
,
1

2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
, . . . . (114.1)
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This sequence will be called F , after Farey. (Note that this sequence does not have the same ordering as the
Farey fractions we studied earlier.) The number of fractions in the mth block is ϕ(m), where ϕ is the Euler
function. So, the number of terms of F up to the mth block is

Φ(m) =

m∑

n=1

ϕ(n). (114.2)

Lemma 114.1:

Φ(m) =
3m2

π2
+O(m log(m)). (114.3)

Proof: The Euler function satisfies the fundamental relation

∑

d|n
ϕ(d) = n (114.4)

and so by Möbius inversion, we have that

ϕ(n) =
∑

d|n
µ(d)

n

d
. (114.4)

Therefore,

Φ(m) =
m∑

n=1

ϕ(m)

=

m∑

n=1

∑

d|n
µ(d)

n

d

=
∑

d≤m


µ(d)

∑

k≤m
d

k




=
∑

d≤m

(
µ(d)

([
m
d

] [
m
d

]
+ 1

2

))

=
∑

d≤m

(
µ(d)

(
m2

d2 +O
(
m
d

)

2

))

=
m2

2

∑

d≤m


µ(d)

d2
+O


∑

d≤m

m

d






=
m2

2

[ ∞∑

d=1

µ(d)

d2
−

∞∑

d=m+1

µ(d)

d2

]
+O(m log(m))

=
3

π2
m2 +O(m log(m)), (114.6)

because
∞∑

n=1

µ(n)

ns
=

1

ζ(s)
, ℜ(s) > 1 (114.7)

and we know

ζ(2) =
π2

6
. (114.8)
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Additionally,

∣∣∣∣∣

∞∑

d=m+1

µ(d)

d2

∣∣∣∣∣ ≤
∑

d=m+1

1

d2

= O

(∫ ∞

m+1

1

t2
dt

)

= O

(
1

m

)
. (114.9)

We need a generalization of the Euler function. Define

ϕ(n, x) :=
∑

k≤x
gcd(k,n)+1

1. (114.10)

Note that ϕ(n, n) = n.

Lemma 114.2: For all x > 0,

ϕ(n, x) =
x

n
ϕ(n) +O(d(n))

where d(n) is the number of divisors of n.

Proof: By either Möbius Inversion or by the Inclusion-Exclusion Principle, we have that

ϕ(n, x) =
∑

m≤x

∑

d | gcd(m,n)
µ(d)

=
∑

d|n


µ(d)

∑

m≤x
m|d

1




=
∑

d|n
µd
[x
d

]

=
∑

d|n
µd
x

d
−
∑

d|n
µ(d)

{x
d

}

= x
ϕ(n)

n
+O(d(n)). � (114.11)

Remark: The function ϕ(n, x) is the fundamental counting function in Sieve questions. For example, a
typical Sieve question is: Given a set A and a set P of primes p, and y large, estimate

S(A,P, y) =
∑

n∈A
n≤x

gcd(n,Py)=1

1

where
Py =

∏

p∈P
p≤y

p.

Theorem 114: The sequence of fractions F is uniformly distributed in [0,1).

Proof: Given a large N , we determine m such that

Φ(m) ≤ N < Φ(m+ 1). (114.12)
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Thus, analogous to (113.3), we have

0 ≤ N − Φ(m)

< Φ(m+ 1)− Φ(m) = ϕ(m+ 1)

≤ m

= O(
√
N). (114.13)

Next, given 0 ≤ α < β < 1, we consider the number of fractions in the kth block that lie in [α, β).
This is given by

∑

α≤ j
k
<β

gcd(j,k)=1

1 =
∑

αk≤j<βk
gcd(j,k)=1

1

= ϕ(k, βk) − ϕ(k, αk) +O(1)

= βϕ(k) − αϕ(k) +O(d(k)). (114.14)

Thus,

A([α, β),Φ(m),F ) = (β − α)

m∑

k=1

ϕ(k) +O

(
m∑

k=1

d(k)

)

= (β − α)Φ(m) +O(m log(m)). (114.15)

Now,

A([α, β), N,F ) = A([α, β),Φ(m),F ) +A([α, β), N,F ) −A([α, β),Φ(m),F )

= (β − α)Φ(m) +O(m log(m)) +O(m)

= (β − α)N +O(
√
N log(N)). (114.16)

Thus,
A([α, β), N,F )

N
= (β − α) +O

(
log(N)√

N

)
(114.17)

and this goes to β − α as N → ∞. Therefore, F is uniformly distributed in [0, 1). �

Remark: The sum of d(k) is

m∑

k=1

d(k) = m log(m) + (2γ − 1)m+O(
√
m). (114.18)

This can be proved by the “hyperbola method”. For our purpose in (114.15), the simpler estimate

∑

k≤m
d(k) =

∑

k≤m

∑

e|k
1

=
∑

e≤m
1
∑

k≤m
k|e

≤
∑

e≤m

m

e

= m
∑

e≤m

1

e

= O(m log(m)).
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Theorem 115: Let ρ = {ρn} be the rationals in [0, 1), written lexicographically with repetition allowed.
Then, for every 0 6= h ∈ Z, we have that

N∑

n=1

e2πihρn = O

(
σ(h) +

√
N

h

)
(115.1)

for N > h2.

Proof: Given N large, as before choose M such that

Tm ≤ N < Tm+1. (115.2)

Consider the Weyl sum over the kth block:

k∑

j=0

e2πih
j
k =

{
0, k ∤ h
k, k | h . (115.3)

Thus the sum in (115.1) yields

N∑

n=1

e2πihρn =

Tm∑

n=1

e2πihρn +

N∑

n=Tm+1

e2πihρn

=: Σ1 +Σ2. (115.4)

Now,

Σ1 =

m∑

k=1

k−1∑

j=0

e2πih
j
k =

∑

k≤m
k|h

k ≤ O(σ(h)). (115.5)

Regarding Σ2, we have

Σ2 =

N−Tm∑

j=0

e2πih
j

m+1 =
ζhν − 1

ζh − 1
= O

(
1

ζh − 1

)
. (115.6)

where
ζ = e2πi/(m+1)

and
ν = N − Tm + 1.

At this stage, we get that
|ez − 1| >> |z|

for z 6= 0 and z ∈ C. Thus,

Σ2 = O

(
m+ 1

h

)
= P

(√
N

h

)
.

This completes the theorem. �

Theorem 116: Let F = {fn} be the sequence of all reduces rationals in lexicographic order as before.
Then, for any nonzero h ∈ Z, we have

SN :=
N∑

n=1

e2πihfn = O(
√
Nd(h)) (116.1)

where d(h) is the divisor function. Consequently, by the Weyl Criterion, we have that {fn} is uniformly
distributed in [0, 1).
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Remark: In deriving an estimate for SN , the role of the “Ramanujan Sums” will be crucial

Proof: Given large N , we determined the integer m for which

Φ(m) ≤ N < Φ(m+ 1), (116.2)

where Φ(m) =
∑

k≤m
ϕ(k), the sum of the Euler function. With m as above, we may write

SN =
∑

n≤Φ(m)

e2πihfn +
∑

Φ(m)+1≤n≤N
e2πihfn =: Σ1 +Σ2. (116.3)

Clearly,
|Σ2| ≤ N − Φ(m) < Φ(m+ 1) < m = O(

√
N) (116.4)

by Lemma 114-1. Now, write Σ1 as

Σ1 =

m∑

k=1

∑

1≤j≤k
gcd(j,k)=1

e2πih
j
k (116.5)

=

m∑

k=1

c(h, k),

where
c(h, k) :=

∑

1≤j≤k
gcd(j,k)=1

e2πij
j
k =

∑

1≤j≤k
gcd(j,k)=1

(
ζj
)h

(w)

here ζ = e2πi/k. Note that

c(h, k) =
∑

d|gcd(h,k)
dµ

(
k

d

)
. (116.7)

In particular,
c(1, k) = µ(k). (116.8)

For convenience we introduce a new function

M(x) =
∑

n≤x
µ(n). (116.9)

We can use (116.7) to evaluate Σ1. More precisely, we have

Σ1 =

m∑

k=1

c(h, k)

=
∑

k≤m

∑

d|gcd(h,k)
dµ

(
k

d

)

=
∑

d|h
d
∑

n≤m
d

µ(n)

=
∑

d|h
dµ
(m
d

)
. (116.10)

We can find a bound for Σ1 as

|Σ1| =
∑

d|k
d
m

d
= m

∑

d|k
1 = md(h) = O(

√
Nd(h)) (116.11)

and the theorem follows from (116.11) and (116.4). �
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Remark: The Prime Number Theorem is equivalent to M(x) = O(x). More precisely, we know that

M(x) = O

(
x

e
√

log(x)

)
(116.12)

which if employed in (116.10) would yield

Σ1 = O

(
σ(h)

√
N

he
√

log(N)/k

)
(116.13)

which would sharpen Theorem 116 to

SN = O

(
σ(h)

√
N

he
√

log(N)/k
+
√
N

)
(116.14)

which is uniform in h.

Remark: The Ramanujan sums c(h, k) are multiplicative in h and k and are worth of independent study.
See Apostal, pg. 160, for a discussion of c(h, k).
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15.8 Uniform Distribution of Sequences Using Weyl’s Criterion

Remark: We have shown that {nθ} is uniformly distributed modulo 1 using Weyl’s Criterion, as long as θ
is irrational. I.M Vinogradov showed that {pθ} for θ irrational and p prime is uniformly distributed modulo
1 using his method of exponential sums combined with the Weyl Criterion. Using this method, Vinogradov
showed that every sufficiently large odd integer is a sum of three primes.

Remark: Other interesting example is that if ω(n) is the number of prime divisors of n (either distinctly or
with multiplicity, either way works) and if θ is irrational, then {ω(n)θ} is uniformly distributed modulo 1.
The Weyl sum for this problem is

1

N

N∑

n=1

e2πihω(n)θ.

This of this as

1

N

N∑

n=1

zω(n)

where
z := e2πihθ 6= 1.

Note that ω(n) is an additive function, i.e., ω(mn) = ω(m) + ω(n). Thus, zω(n) is multiplicative. In the
1950s, Adle Selberg evaluated such sums.

Theorem 117: (van der Corput) Let {f(n)}n∈N be a sequence of real number with the properties that the
first differences ∆f(n) := f(n+ 1)− f(n) are monotone and that satisfies

lim
n→∞

∆f(n) = 0, (117.1)

and
lim
n→∞

n|∆f(n)| = ∞. (117.2)

Then, {f(n)}n∈N is uniformly distributed modulo 1.

Proof: Begin by considering the following for u, v ∈ R, using integration by parts:
∫ u−v

0

(u− v − w)e2πiw dw =
e2πiw(u− v − w)

2πi

∣∣∣∣
u−v

0

+
1

2πi

∫ u−v

0

e2πiw dw

=
−(u− v)

2πi
− e2πi − 1

4π2
(117.3)

Rewrite (117.3) as

4π2

∫ u−v

0

(u − v − w)e2πiw dw = 2πi(u− v)− e2πi(u−v) + 1. (117.4)

Thus,

4π2

∣∣∣∣
∫ u−v

0

(u− v − w)e2πiw dw

∣∣∣∣ =
∣∣∣2πi(u− v)− e2πi(u−v) + 1

∣∣∣

=
∣∣e2πiu − e2πiv − 2πi(u− v)e2πiv

∣∣ . (117.5)

On the other hand,

4π2

∣∣∣∣
∫ u−v

0

(u − v − w)e2πiw dw

∣∣∣∣ ≤ 4π2

∣∣∣∣
∫ u−v

0

(u− v − w) dw

∣∣∣∣

= 4π2

∣∣∣∣
∫ u−v

0

w dw

∣∣∣∣

= 2π2(u − v)2. (117.6)
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Thus, (117.5) and (117.6) yield

∣∣e2πiu − e2πiv − 2πi(u− v)e2πiv
∣∣ ≤ 2π2(u− v)2. (117.7)

Given h ∈ Z with h 6= 0, put
u := hf(n+ 1) and v := hf(n). (117.8)

So, by (117.6) - (117.8), we have that

∣∣∣∣
e2πhf(n+1)

∆f(n)
− e2πihf(n)

∆f(n)
− 2πihe2πihf(n)

∣∣∣∣ ≤ 2π2h2∆f(n). (117.9)

Thus,

∣∣∣∣
e2πhf(n+1)

∆f(n+ 1)
− e2πihf(n)

∆f(n)
− 2πihe2πihf(n)

∣∣∣∣ ≤ 2π2h2∆f(n) +

∣∣∣∣
e2πihf(n+1)

∆f(n+ 1)
− e2πif(n+1)

∆f(n)

∣∣∣∣ . (117.10)

Now consider the Weyl sum

2πih

N−1∑

n=1

e2πihf(n) =

N−1∑

n=1

(
2πihe2πihf(n) − e2πihf(n+1)

∆f(n+ 1)
+
e2πihf(n)

∆f(n)

)
+

(
e2πihf(n+1)

∆f(n+ 1)
− e2πihf(n)

∆f(n)

)
.

(117.11)
Hence,

∣∣∣∣∣2πih
N−1∑

n=1

e2πihf(n)

∣∣∣∣∣ ≤
N−1∑

n=1

∣∣∣∣2πihe
2πihf(n) − e2πihf(n+1)

∆f(n+ 1)
+
e2πihf(n)

∆f(n)

∣∣∣∣+
∣∣∣∣
e2πihf(N)

∆f(N)
− e2πihf(1)

∆f(1)

∣∣∣∣

≤
N−1∑

n=1

∣∣∣∣2πihe
2πihf(n) − e2πihf(n+1)

∆f(n+ 1)
+
e2πihf(n)

∆f(n)

∣∣∣∣+
1

∆f(N)
+

1

∆f(1)
. (117.12)

Thus from (117.9) - (117.12) we get that

∣∣∣∣∣2πih
N−1∑

n=1

e2πihf(n)

∣∣∣∣∣ ≤ 2π2h2
N−1∑

n=1

∆f(n) +

N−1∑

n=1

∣∣∣∣
1

∆f(n+ 1)
− 1

∆f(n)

∣∣∣∣+
1

|∆f(N)| +
1

|∆f(1)| .

(117.13)
Observe that since ∆f(n) is monotone:

N−1∑

n=1

∣∣∣∣
1

∆f(n+ 1)
− 1

∆f(n)

∣∣∣∣ =
∣∣∣∣∣

N−1∑

n=1

1

∆f(n+ 1)
− 1

∆f(n)

∣∣∣∣∣

=

∣∣∣∣
1

∆f(N)
− 1

∆f(1)

∣∣∣∣

≤
∣∣∣∣

1

∆f(N)

∣∣∣∣+
∣∣∣∣

1

∆f(1)

∣∣∣∣ . (117.14)

Thus (117.13) and (117.14) yield

1

N − 1

∣∣∣∣∣

N−1∑

n=1

e2πihf(n)

∣∣∣∣∣ ≤
2πh

N

∣∣∣∣∣

N−1∑

n=1

∆f(n)

∣∣∣∣∣+
1

πh

1

(N − 1)2
−
(

1

|∆f(N)| +
1

|∆f(1)|

)
. (117.15)

Since ∆f(n) = O(1) as n → ∞, the first term on the right-hand side of (117.15) is O(1) (and goes
to zero as N → ∞). Since n∆f(n) → ∞, the second term goes to zero as well. Thus, f(n) satisfies
Weyl’s Criterion, Hence the fraction sequence {{f(n)}}n∈N is uniformly distributed modulo 1. �
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Corollary 117.1: (Fejer’s Theorem) Let f(x) be differentiable for x ≥ x0. If f ′(x) → 9 monotonically as
x→ ∞ and if

lim
x→∞

x|f ′(x)| = ∞. (117.16)

then {f(n)}n∈N is uniformly distributed modulo 1.

Corollary 117.2: Let α ∈ R be nonzero and let 0 ≤ σ < 1, and let τ ∈ R. Then, f(n) := αn (log(n))τ is
uniformly distributed modulo 1.

Theorem 118: The sequence {log(n)}n∈N is not uniformly distributed modulo 1.

Remark: f(n) = log(n) satisfies ∆f(n) is monotone and ∆f(n) % 0 as n→ ∞. But (117.2) is violated.

Proof: (version 1, using Weyl criterion) Let F be a smooth function. Consider

N∑

n=1

F (n) =

∫ N+

1−
F (t)d[t]

=

∫ N

1

F (t)dt −
∫ N+

1−
F (t)d{t}

=

∫ N

1

F (t)dt −
∣∣F (t){t}

∣∣N+

1−
+

∫ N

1

{t}F ′(t)dt

=

We take
F (t) := e2πi log(t). (118.2)

Now,
F ′(t) = 2πit2πi−1

∫
F (t)dt =

t2πi+1

2πi+ 1



 (118.3)

With this choice, we have

1

N

N∑

n=1

e2πi log(n) =
1

N

N∑

n=1

F (n)

=
1

N

∫ N

1

t2πidt+
F (1)

N
+

2πi

N

∫ N

1

{t}t2πi−1dt

=
∣∣ t2πi+1

N(2πi+ 1)

∣∣N
1
+
F (1)

N
+O

(
log(N)

N

)

=
N2πi

2πi+ 1
− 1

N(2πi+ 1)
+
F (1)

N
+O

(
log(N)

N

)
(118.4)

Note that the first term in (118.4) is not convergent as n→ ∞ but it is bounded, whereas the remaining
three terms converge to zero. Thus,

lim
N→∞

1

N

N∑

n=1

e2πi log(n) 6= 0

and hence it violates Weyl’s criterion with h = 1. Therefore, {log(n)}n∈N is not uniformly distributed
modulo 1. �



166 CHAPTER 15. UNIFORM DISTRIBUTION

Remark: The above proof works for f(n) = c log(n) where c ∈ Rr {0}. Taking c = h ∈ Z r {0}, we
see that the Weyl criterion is violated for every h.

Proof: (version 2, by direct computation) Given 0 ≤ a < b < 1, when is

a ≤ {log(n)} < b? (118.5)

This happens precisely when
ek+a ≤ n < ek+b (118.6)

where k ∈ Z. Now, choose N ∈ Z large, and then we can find an m such that

em+b ≤ N < em+1. (118.7)

Then, the number of members of the sequence ω := {log(n)}n∈N whose fractional part lies in [a, b) is

A([a, b), N, ω) =

m∑

k=1

((ek+b − ek+a) +O(1)) = (eb − ea)
em+1 − 1

e− 1
+O(m). (118.8)

Thus,
A([a, b), N, ω)

N
=
eb − ea

e− 1

(
em+1 − 1

N

)
+O

(m
N

)
. (118.9)

Clearly, m = O(log(N)) and so the second term on the right in (118.9) goes to zero, whereas the first
term on the right in (118.9) foes not tend to any limit at n→ ∞. Hence, {log(n)}n∈N is not uniformly
distributed modulo 1. �

Theorem 119: Suppose {f(n)}n∈N is uniformly distributed modulo 1. Then,

lim sup
n→∞

n|∆f(n)| = ∞. (119.1)

We will establish this using a fundamental theorem.

Theorem T: (see Hardy’s Divergent series, AMS Chelsea (1991), p. 121, Theorem 63) Let {an}n∈N

be a sequence such that ∑
an = A (C, 1) (119.2)

(i.e., it is Cesaro summable). Suppose that

an = O

(
1

n

)
. (119.3)

Then,
∑

an is convergent (to A, of course).

Remark: Let An = a1 + · · ·+ an. We say that
∑
an is (C,1) summable to A if

A1 + A2 + · · ·+An
n

→ A

as n→ ∞.

Proof: Define
g(n) = e2πif(n) (119.4)

and
an = ∆g(n) = e2πif(n+1) − e2πif(n). (119.5)
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The differences of the exponential function satisfy

|e2πiu − e2πiv| =
∣∣∣∣2πi

∫ v

u

e2πitdt

∣∣∣∣ ≤ 2π|u− v|. (119.6)

Thus,
an = ∆g(n) = O(|f(n + 1)− f(n)|) = O(∆f(n)). (119.7)

Suppose that
lim sup
n→∞

n|∆f(n)| <∞. (119.8)

Then,

|∆f(n)| = O

(
1

n

)
. (119.9)

Therefore,

an = O

(
1

n

)
. (119.10)

We now apply Theorem T with this choice of an. So the sequence of partial sums is

An = a1 + a2 + · · ·+ an

=
n∑

m=1

∆g(m)

= g(n+ 1)− g(1)

= e2πif(n+1) − g(1). (119.11)

Hence

lim
N→∞

A1 + · · ·+An
N

=

(
lim
N→∞

1

N

N∑

n=1

e2πif(n+1)

)
− g(1). (119.12)

Since {fn}n∈N is uniformly distributed modulo 1, the first term on the right is zero. Thus,

∑
an = −g(1) (C, 1).

Thus by Theorem T, ∑
an = −g(1)

converges. This clearly is false as seen by (119.11). Hence the theorem follows. �
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15.9 A Theorem of van der Corput

Lemma 120: (van der Corput’s Fundamental Inequality) Let u1, u2, . . . , uN be complex numbers and 1 ≤
H ≤ N , where H is arbitrary but fixed). Then,

H2

∣∣∣∣∣

N∑

n=1

un

∣∣∣∣∣

2

≤ H(N +H − 1)

[
N∑

n=1

|un|2
]
+ 2(N +H − 1)

[
H−1∑

h=1

(H − h)Re

(
N−h∑

n=1

unun+h

)]
. (120.1)

Proof: If we set un = 0 for n ≤ 0 and n > N , then we may write

H

N∑

n=1

un =

N+H−1∑

m=1

H−1∑

h=0

um−h. (120.3)

By applying the Cauchy-Schwartz inequality to (120.3), we get

H2

∣∣∣∣∣

N∑

n=1

un

∣∣∣∣∣

2

≤
(
N+H−1∑

m=1

12

)

N+H−1∑

m=1

∣∣∣∣∣

H−1∑

h=1

um−h

∣∣∣∣∣

2



= (N +H − 1)
N+H−1∑

m=1

(
H−1∑

h=1

um−h

)(
H−1∑

h=1

um−h

)

= (N +H − 1)

[
N+H−1∑

m=1

H−1∑

h=1

|um−h|2
]
+ 2(N +H − 1)Re



N+H−1∑

m=1

H−1∑

r,s=0
s<r

um−rum−s




= (N +H − 1) (Σ1 + 2Re(Σ2)) . (120.4)

By an argument similar to (120.3), we have

Σ1 = H

N∑

n=1

|un|2. (120.5)

With regard to Σ2, we are summing terms of the form

unun+h (120.6)

with h = r − s > 0. But, the only contribution comes from values

1 ≤ n ≤ N − h.

With a little rearranging, we see that

Σ2 =
H−1∑

h=1

[
(H − h)

N−h∑

n=1

unun+h

]
. (120.7)

The Lemma follows form the values in (120.5) and (120.7). �

Theorem 120: (van der Corput’s Difference Theorem) Let ω = {xn}n∈N be a sequence of reals such that
for each h ∈ N, the sequence {xnh

− xn}n∈N is uniformly distributed modulo 1. Then, {xn}n∈N is uniformly
distributed modulo 1.

Proof: Let m be an arbitrary but fixed nonzero integer. Apply Lemma 120 with

un = e2πimxn , |un| = 1 (120.8)
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and divide both sides of (120.1) by H2N2 to get

∣∣∣∣∣
1

N

N∑

m=1

e2πimxn

∣∣∣∣∣

2

≤ N +H − 1

HN
+ 2

H−1∑

h=1

[
(N +H − 1)(H − h)(N − h)

H2N2
·
∣∣∣∣∣

1

N − h

N−h∑

n=1

e2πim(xn−xn+h)

∣∣∣∣∣

]

(120.9)
because Re(z) ≤ |z| for all z ∈ C.

Since {xn+h − xn}n∈N is uniformly distributed modulo 1 for each h, if we let N → ∞ in (120.9) but
keep H fixed, we get that

lim sup
N→∞

1

N

∣∣∣∣∣

N∑

n=1

e2πimxn

∣∣∣∣∣ ≤
1√
H.

(120.10)

But, H is arbitrary! Hence, letting H → ∞ in (120.10), we get that

lim
N→∞

1

N

N∑

n=1

e2πimxn = 0 (120.11)

for m ∈ Zr{0}. Thus by the Weyl Criterion the sequence {xn}n∈N is uniformly distributed modulo
1. �

Theorem 121: (Hermann Weyl)

p(x) = α0 + α1x+ · · ·+ αmx
m

be a polynomial such that at least one of the coefficients αj for j > 0 is irrational. Then, {p(n)}n∈N is
uniformly distributed modulo 1.

Remark: Herman Weyl proved this in his classic paper of 1916, but his proof was quite complicated.
We will provide a simpler proof due to van der Corput.

Proof: (van der Corput) The case m = 1 is

p(x) = α1x+ α0

where α1 irrational. Therefore,

{p(n)}n∈N = {α1n+ α0}n∈N. (121.1)

We know that {α1n}n∈N is uniformly distributed modulo 1, and hence so is {p(n)}n∈N for all α0 ∈ R.

We now prove the theorem by induction on m := deg(p). Let m ≥ 2. We first consider the simpler
case, namely

α1 irrational, and α2, α3, . . . , αm ∈ Q. (121.2)

(We don’t really care about α0.) In this case, write

p(x) = P (x) + α1x+ α0. (121.3)

where P (x) has only rational coefficients. Let L be defined to be the least common multiple of the
denominators of α2, . . . , αm. It then follows that

{P (kL+ d)} = {P (d)}, (121.4)
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for k ≥ 0 and any d. So, let h ∈ Zr {0} and consider the Weyl sum for p(m):

1

N

N∑

n=1

e2πihp(m) =
1

N

[N/L]−1∑

k=0

L∑

d=1

e2πih{P (kL+d)+α1(kL+d)+α0} +
1

N

N∑

n=([N/L]−1)·L
e2πihp(n).

=
1

N

L∑

d=1

[N/L]−1∑

k=0

e2πih{p(kL+d)+α1(kL+d)+α0} +O

(
L

N

)

=

(
L∑

d=1

e2πih{P (d)+α1d+α0}
)
 1

N

[N/L]−1∑

k=0

e2πihα1Lk


+O

(
L

N

)
, (121.5)

where the last equality is by virtue of (121.4).

Observe that in (121.5) the second term on the right is (ever better than) a Weyl sum for the sequence
{α1Lk}k∈N with integer h ∈ Z r {0}. Therefore, the second factor in (121.5) tends to 0 as N → ∞.
The first fact is a finite sum, and therefore the product also goes to 0 as N → ∞. Hence, {p(n)}n∈N

is uniformly distributed modulo 1 in this case, by the Weyl Criterion.

Now we consider the case where αj is also irrational for some j ≥ 2. Define q to be the largest integer
for which αq is irrational. We know the truth of the theorem for q = 1, and so we now argue by
induction on q. For a fixed h ∈ N+ consider

p(x+ h)− p(x) =
∑

βjx
j .

So, the largest j for which βj is irrational is a value j < q. So, by the induction hypothesis, the
sequence {p(n + h) − p(n)}n∈N is uniformly distributed modulo 1 for n = 1, 2, . . .. But, h ∈ Z+ is
arbitrary. So, by the van der Corput Difference Theorem, the sequence {p(n)}n∈N is uniformly
distributed modulo 1. �

Corollary: If p(x) ∈ Z[x] with degree ≥ 1, then {p(n)θ}n∈N is uniformly distributed modulo 1 for each
irrational θ.

Remark: The above methods can be combined to form more general theorems, one of which we prove now.

Theorem 122: Let ω := {xn}n∈N be a sequence of reals such that

∆xn := xn+1 − xn → θ (122.1)

as n→ ∞, where θ is irrational. Then, {xn}n∈N is uniformly distributed modulo 1.

Remark: van der Corput’s Theorem 117 does not apply to {nθ}∞n=1 with θ irrational, because that
result required ∆xn → 0, whereas here ∆xn = θ.

Remark: Theorem 122 generalizes Weyl’s original theorem on the uniform distribution modulo 1
of {nθ}n∈N.

Proof: From the definition of ∆xn we have

xn − xm − (n−m)θ =

n−1∑

j=m

(∆xj − θ). (122.2)

In view of (122.1), given q ∈ Z+ large, there exists m0 = m0(q) such that

|∆xj − θ| < 1

q2
, j ≥ m0(q). (122.3)



15.9. A THEOREM OF VAN DER CORPUT 171

Then,

|xn − xm − (n−m)θ| ≤
n−1∑

j=m

|∆xj − θ| ≤ n−m

q2
, for n ≥ j ≥ m0(q). (122.4)

For an arbitrary but fixes nonzero integer h, we therefore have

|e2πihxn − e2πih(xm+(n−m)θ)| ≤ 2πh(n−m)

q2
, for n ≥ m ≥ m0(q). (122.5)

Thus, ∣∣∣∣∣

m+q−1∑

n=m

e2πihxn

∣∣∣∣∣ ≤
∣∣∣∣∣

m+j−1∑

n=m

e2πih(xn+(n−m)θ)

∣∣∣∣∣+
m+q−1∑

n=m

2πh(n−m)

q2
. (122.6)

Note that
∣∣∣∣∣

m+q−1∑

n=m

e2πih(xn+(n−m)θ)

∣∣∣∣∣ =
∣∣∣∣∣

m+q−1∑

n=m

e2πihnθ

∣∣∣∣∣

=

∣∣e2πiqθ − 1
∣∣

|e2πihθ − 1|

≤ 2

|e2πihθ − 1| . (122.7)

Now, from (122.5), (122.6), and (122.7), we get that

∣∣∣∣∣

m+q−1∑

n=m

e2πihxn

∣∣∣∣∣ ≤
2

|e2πihθ − 1| + πh. (122.8)

By breaking the range of summation into blocks of length q, we get

∣∣∣∣∣

N∑

n=m

e2πihxn

∣∣∣∣∣ ≤
N −M

q

(
2

|e2πihθ − 1| + πh

)
+ q. (122.9)

Hence, ∣∣∣∣∣

N∑

n=1

e2πihxn

∣∣∣∣∣ ≤ m− 1 +O

(
N −m

q
· g
)
+ q (122.9)

yielding ∣∣∣∣∣
1

N

N∑

n=1

e2πihxn

∣∣∣∣∣ ≤
m− 1

N
+O

(
h

q

)
+

q

N
. (122.10)

In (122.10) let N → ∞ (keeping h and q arbitrary but fixed). Thus

lim
N→∞

∣∣∣∣∣
1

N

N∑

n=1

e2πihxn

∣∣∣∣∣ = O

(
h

q

)
. (122.11)

Now since q can be chosen arbitrarily large, (122.11) implies that

lim
N→∞

1

N

N∑

n=1

e2πihxn = 0. (122.12)

This holds for every h. Hence by the Weyl Criteron, the sequence {xn}n∈N is uniformly distributed
modulo 1. �
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15.10 Successive Differences

Define
∆xn := xn+1 − xn

and
∆2xn = ∆(∆xn) = ∆xn+1 −∆xn = xn+2 − 2xn+1 + xn.

More generally, with ∆kxn := ∆(∆k−1xn) we have by induction that

∆kxn =

k∑

j=1

(−1)j
(
k

k

)
xn+k−j .

Theorem 123: (van der Corput) Let ω := {f(n)}n∈N be a sequence of reals such that for some k ∈ Z+,
∆kf(n) is monotone,

∆kf(n) → 0 as n→ 0, (123.1)

and
lim
n→∞

n|∆kf(n)| = ∞. (123.2)

Then, the sequence {f(n)}n∈N is uniformly distributed modulo 1.

Proof: We establish this by induction on k. We have already proved this for k = 1 in Theorem 117.
So, assume the result is true for a certain k. Consider ω := {f(n)}n∈N satisfying the hypothesis for
k + 1 for an arbitrary but fixed positive integer h. Consider

f(n+ h)− f(n) =

h−1∑

j=0

∆f(n+ j). (123.3)

So,

∆k(f(n+ h)− f(n)) =
h−1∑

j=0

∆k+1f(n+ j). (123.4)

Since ∆k+1f is monotone, so is ∆kf(n+ j). Now since (123.1) holds for k + 1, we have from (123.4)
that

∆k(f(n+ h)− f(n)) → 0 as n→ ∞. (123.5)

Note also that
∣∣∆k(f(n+ h)− f(n))

∣∣ =
h−1∑

j=0

∣∣∆k+1f(n+ h)
∣∣ (123.6)

due to the monotone property. Multiplying both sides by n, we get that the left-hand side goes to
infinity by (123.2) for k + 1. Thus, by the induction hypothesis, {f(n + h) − f(n)}n∈N is uniformly
distributed modulo 1. But recall that h is arbitrary, and so {f(n)}n∈N is uniformly distributed modulo
1 as well. �

Corollary: The sequence {nσ}n∈N for any nonintegral σ > 0 is uniformly distributed modulo 1.
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15.11 Metric Theorems on Uniform Distribution

Theorem 124: (Koksma’s Metric Theorem) Let ω := {an}n∈N be a sequence of distinct integers. Then, for
almost all real θ, the sequence {anθ}n∈N is uniformly distributed modulo 1.

Remark: We are not assuming that {an}n∈N is monotone (eventually), only that the an are distinct,
i.e.,

|an − am ≥ 1|
if m 6= n.

Proof: Clearly it suffices to show that {anθ}n∈N is uniformly distributed modulo 1 for almost all
θ ∈ [0, 1], because the θ ∈ [N,N + 1] for N ∈ Z are just translates of the θ ∈ [0, 1] by N .

For nonzero h ∈ Z arbitrary but fixed, denote

Sh(N, θ) :=
1

N

N∑

n=1

e2πihanθ (124.1)

for 0 ≤ θ ≤ 1. Then

|Sh(N, θ)|2 =
1

N2

N∑

m=1

N∑

n=1

e2πih(am−an)θ = Sh(N, θ)Sh(Nθ). (124.2)

Hence,

∫ 1

0

|Sh(Nθ)|2dθ =
1

N2

N∑

m=1

N∑

n=1

∫ 1

0

e2πih(am−an)θdθ

=
1

N2
·N

=
1

N
, (124.3)

since the integrals are nonzero only when m = n and and in this case each such integral has value 1.

In particular, ∫ 1

0

|Sh(N2, θ)|2dθ = 1

N2
. (124.4)

This means that ∞∑

n=1

∫ 1

0

|Sh(N2, θ)|2dθ =
∞∑

N=1

1

N2
<∞. (124.5)

Since the series is absolutely convergent, we may reverse the integration and summation by Fatou’s
Lemmato get that ∫ 1

0

[ ∞∑

N=1

∣∣Sh(N2, θ)
∣∣2
]
dθ <∞. (124.6)

The integral ∫ 1

0

∞∑

N=1

∣∣Sh(N2, θ)
∣∣ dθ

is defined as a Lebesgue integral, and so the convergence implies that

∞∑

N=1

∣∣Sh(N2, θ)
∣∣2 <∞, almost everywhere. (124.7)
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Thus,

lim
N→∞

∣∣Sh(N2, θ)
∣∣2 = 0 = lim

N→∞
Sh(N

2, θ) (124.8)

for almost all θ ∈ [0, 1]. Now, given an integer M arbitrarily large, determine N such that

N2 ≤M < (N + 1)2. (124.9)

Then,

Sh(M, θ) =
1

M

M∑

n=1

e2πihanθ

=
N2

M
· 1

N2

N2∑

n=1

e2πihanθ +
1

M

M∑

n=N2+1

e2πihanθ. (124.10)

Therefore,

|Sh(M, θ)| ≤ N2

M

∣∣Sh(N2, θ)
∣∣+ N

M
. (124.11)

Since N = O
(√

M
)

and N2 ∼ M , the expression in (124.11) tends to zero as M → ∞ almost

everywhere in [0, 1]. Since the countable intersection of almost everywhere sets in [0, 1] is an almost
everywhere set in [0, 1], by applying this for h = ±1,±2, · · · , we reach the theorem. �

Corollary 125: If p(x) ∈ Z[x] with deg(p) ≥ 1, then {p(n)θ}n∈N is uniformly distributed modulo 1 for
almost all θ ∈ R.

Remark: We know by van der Corput’s Theorem that the set of θ is the set of irrationals.



Chapter 16

Diophantine Approximations and
Transcendence

16.1 Koksma’s General Metric Theorem

Remark: If ω := {an}n∈N is given, define uω to be the set of all θ for which {anθ} is uniformly distributed
modulo 1. Then, Koksma’s Metric Theorem says that

µ(Rr uω) = 0.

Remark: If ω := {bm}n∈N for b ∈ Z and b > 1, then (it will be shown later) uω is the set of reals
whose expansion to base b is normal to base b. So, by Koksma’s Metric Theorem, almost all numbers
are normal to base b. Thus, almost all numbers are normal to every base (we call these numbers simply
“normal”). Despite the preponderance of normal numbers, we have yet to produce a single one.

We extrapolate the principle ideas in the proof of Koksma’s Metric Theorem to get the following
generalization.

Theorem 126: Let {un(θ)}n∈N be an infinite sequence (of functional values depending on a parameter θ,
Let

Sh(N, θ) =
1

N

N∑

n=1

e2πihun(θ) (126.1)

and the integrals

Ih(N, a, b) = Ih(N) =

∫ n

a

|Sh(N, θ)|2 dθ (126.2)

where the un(θ) are Lebesgue measurable functions on [a, b]. If the series

∞∑

N=1

Ih(N)

N
<∞ (126.3)

for each nonzero h ∈ Z, then the sequence {un(θ)}n∈N is uniformly distributed modulo 1 for almost all
θ ∈ [a, b].

Proof: Let nonzero h ∈ Z be arbitrary but fixed. In view of (126.3), we can find a function λ(N) =
λh(N) such that

λ(N) is increasing, λ(N) → ∞, (126.4)

175
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and yet
∞∑

N=1

Ih(N)λ(N)

N
<∞. (126.5)

(Proving this uses some ǫ-δ arguments. It is non-obvious, but not too tricky.)

Using the λ(N), define a strictly increasing sequence of integers Mr by

Mr+1 =

[
λ(Mr)

λ(M1)− 1
·Mr

]
+ 1. (126.6)

We note immediately that since λ(N) → ∞, we have

Mr+1

Mr
→ 1 as r → ∞. (126.7)

These Mr will play the role of N2 in the proof of Koksma’s Metric Theorem.

So, we decompose [M,∞) as

(M,∞) =

∞⋃

r=1

(Mr,Mr+1]. (126.8)

Consider an integer Nr ∈ (Mr,Mr+1], so that

Mr < Nr ≤Mr+1 (126.9)

for which I(N) attains its least value. We then have that

I(Nr) ≤
1

Mr+1 −Mr

Mr+1∑

N=Mr+1

I(N)

=
1

Mr+1 −Mr

Mr+1∑

N=Mr+1

N · I(N)

N

≤ Mr+1

Mr+1 −Mr

Mr+1∑

N=Mr+1

I(N)

N
. (126.10)

From the definition of Mr+1 in (126.6) it follows that

Mr+1 −Mr

Mr+1
< λ(Mr). (126.11)

Hence (126.10) and (126.11) yield

I(Nr) ≤ λ(Mr)

Mr+1∑

N=Mr+1

I(N)

N
≤

Mr+1∑

N=Mr+1

I(N)λ(N)

N
(126.12)

because λ is increasing. By (126.12) and (126.5) we deduce that

∞∑

r=1

I(Nr)M∞. (126.13)

When combined with (126.2), this yields

∫ b

a

( ∞∑

r=1

|Sh(Nr, θ)|2
)
dθ <∞. (126.14)
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Thus,
∞∑

r=1

|Sh(Nr, θ)|2 <∞ (126.15)

almost everywhere in [a, b]. In particular,

lim
r→∞

Sh(Nr, θ) = 0 (126.16)

almost everywhere in [a, b]. This is true for each h 6= 0 and hence for all h ∈ Z+. In view of (126.7)
and (126.9) it follows that

lim
r→∞

Nr+1

Nr
= 1.

Now given a large integer N , determine r such that

Nr ≤ N < Nr+1 (126.17)

and note that

|Sh(N, θ)| ≤ |Sh(Nr, θ)|+
Nr+1 −Nr

Nr
→ 0 (126.18)

as r → ∞. Thus, {unθ}n∈N is uniformly distributed modulo 1 almost everywhere in [a, b]. �

Remark: Koksma’s Metric Theorem assumes that the members of the integer sequence {an}n∈N are all
distinct. Theorem 126 allows us to handle the case where repetition occurs infinitely often. So, let S(N)
denote the number of pairs (m,n) with 1 ≤ m,n ≤ N for which am = an. Then,

Ih(N) = I(N) =

∫ a

0

|Sh(N, θ)|2dθ =
S(N)

N2
. (127.1)

Thus
∞∑

N=1

I(N)

N
=

∞∑

N=1

S(N)

N3
. (127.2)

This leads to the following theorem.

Theorem 127: Let {an}n∈N be a sequence of integers such that there are S(N) pairs (m,n) with 1 ≤ m,n ≤
N satisfying an = am. If the series

∞∑

N=1

S(N)

N3
<∞

then {anθ}n∈N is uniformly distributed modulo 1 for almost all θ.

Remark: Theorems 126 & 127, which generalized Koksma’s Metric Theorem, can be generalized
further to deal with a wider class of sequences. For example, we will prove:

Theorem 128: (Koksma’s General Metric Theorem) Let {un(x)}n∈N be a sequence of real numbers defined
for all x ∈ [a, b]. Let un(x) be continuously differentiable on [a, b]. Suppose for m 6= n that u′m(x) = u′n(x)
is monotone in x and that

|u′m(x)− u′n(x)| ≥ k > 0 (128.1)

where k is a constant which is independent of m,n, x. Then, {un(x)} is uniformly distributed modulo 1 for
almost all x ∈ [a, b].

Remark: To prove Theorem 128, we will need to prove the following lemma:
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Lemma 128: Let f be a real-valued function such that f ′ is monotone on [a, b]. Also, let

f ′(x) ≥ λ > 0 or f ′(x) ≤ −λ < 0 (128.2)

for a constant λ. Let

J :=

∫ b

a

e2πif(x) dx. (128.3)

Then,

|J | < 1

λ
. (128.4)

Proof of Lemma: First rewrite J as

J =
1

2πi

∫ b

a

f ′(x)2πie2πif(x)

f ′(x)
dx =

1

2πi

∫ b

a

1

f ′(x)
de2πif(x). (128.5)

Thus by the Mean Value Theorem, there exists x0 ∈ (a, b) such that

J =
1

2πi

(
1

f ′(a)

∫ x0

a

de2πif(x) +
1

f ′(b)

∫ b

x0

de2πif(x)

)
. (128.6)

Hence,

|J | =
∣∣∣∣∣
1

2πi

(
1

f ′(a)

∫ x0

a

de2πif(x) +
1

f ′(b)

∫ b

x0

de2πif(x)

)∣∣∣∣∣

≤ 1

2π

(
2

|f ′(a)| +
2

|f ′(b)|

)

≤ 2

πλ

<
1

λ
. (128.7)

This proves the Lemma. �

Proof of Theorem: For an arbitrary but fixed nonzero integer k, consider that

Sh(N, x) =
1

N

N∑

n=1

e2πihuN (x), (128.8)

for x ∈ [a, b]. Then,

Ih(N) =

∫ b

a

|Sh(N, x)|2dx

=
1

N2

N∑

m=1

N∑

n=1

∫ b

a

e2πih(um(x)−un(x)dx

≤ 1

N2

N∑

m=1

N∑

n=1

∣∣∣∣∣

∫ b

a

e2πih(um(x)−un(x))dx

∣∣∣∣∣

≤ b− a

N
+

2

N2

N∑

m=2

m−1∑

n=1

∣∣∣∣∣

∫ b

a

e2πih(um(x)−un(x))dx

∣∣∣∣∣ , (128.9)

where the first term on the right-hand side of (128.9) is from the diagonal terms m = n and the last
term is from m 6= n. By Lemma 128 and (128.1), we have that

∣∣∣∣∣

∫ b

a

e2πih(um(x)−un(x))dx

∣∣∣∣∣ ≤
1

|h| max

(
1

|u′m(a)− u′n(a)|
,

1

|u′m(b)− u′n(b)|

)
(128.10)
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by the monotone property. Thus by (128.9) and (128.10), we get that

Ih(N) ≤ b− a

N
+

2

|h|N2

N∑

m=2

m−1∑

n=1

(
1

|u′m(a)− u′n(a)|
+

1

|u′m(b)− u′n(b)|

)
, (128.11)

where in (128.11) we have used
max(α, β) ≤ |α|+ |β|.

From (128.1) we see from the inner term that

|u′m(a)− u′n(a)| ≥ |m− n| · k, (128.12)

owing to the monotonicity, and because

|u′m(a)− u′n(a)| = |(u′m(a)− u′m−1(a) + u′m−1(a)− u′m−2(a) + · · ·+ u′n+1(a)− u′n(a)|
= |u′m(a)− u′m−1(a)|+ |u′m−1(a)− u′m−2(a)|+ · · ·+ |u′n+1(a)− u′n(a)|
≥ k + k + · · ·+ k︸ ︷︷ ︸

m− n times

= |m− n| · k. (128.13)

We have a similar lower bound for |u′m(b)− u′n(b)|. Thus (128.11) and (128.12) yield

Ih(N) ≤ b− a

N
+

2

N2

N∑

m=2

m−1∑

j=1

1

jk

≤ b− a

N
+

2

kN2

N∑

m=2

log(m)

= O

(
b− a

N
+

log(N)

kN

)
. (128.14)

This upper bound for Ih(N) implies
∞∑

N=1

Ih(N)

N
<∞ (128.15)

and so Theorem 128 follows from Theorem 126. �

Remark: Theorem 128 has several striking corollaries.

Corollary 128-1: Let {γn}n∈N be a sequence of reals such that for some δ > 0,

|λm − λn| ≥ δ > 0 for m 6= n.

Then, {γnx}n∈N is uniformly distributed modulo 1 for almost all x ∈ R.

Proof: Apply Theorem 128 to un(x) := λnx with x ∈ [k, k+1], with k ∈ Z arbitrary but fixed. This
shows that {λnx}n∈N is uniformly distributed modulo 1 for almost all x ∈ [r, r + 1]. Thus, {λnx}n∈N

is uniformly distributed modulo 1 for almost all x ∈ R. �

Corollary 128-2: The sequence {xn}n∈N is uniformly distributed modulo 1 for almost all x > 1.

Proof: Set un(x) := xn is uniformly distributed modulo 1 for almost all x > 1. Thus u′n(x) = nxn−1

and this is clearly monotone in the differences

u′n+1(x) = u′n(x) = (n+ 1)xn − nxn−1 = nxn−1(x− 1) + xn. (128.16)

Also,
|u′n+1(x)− u′n(x)| > x > 0.

Thus by Theorem 128, {un(x)}n∈N = {xn}n∈N is uniformly distributed modulo 1 for almost all
x > 1. �
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Remark: Corollary 128-2 can be extended easily as follows.

Corollary 128-3: Let δ > 0 be constant and F (n) for n = 1, 2, . . . be a sequence of values > 1 satisfying
|F (m) − F (n)| ≥ δ for m 6= n. Let λ 6= 0 be an arbitrary constant. Then, {λxF (n)}n∈N is uniformly
distributed modulo 1 for almost all x > 1.

Proof: We concentrate on the interval [k, k + 1] with k ∈ Z+ and k ≥ 1 arbitrary but fixed. Set

un(x) = λxF (m).

Then,

u′m(x) − u′n(x) = λ
(
F (m)xF (m)−1 − F (n)xF (n)−1

)
(128.17)

and
u′′m(x)− u′′n(x) = λ

(
F (m)(F (m) − 1)xF (m)−2 − F (n)(F (n)− 1)xF (n)−2

)
. (128.18)

Note that (128.18) implies

sgn (u′′m(x)− u′′n(x)) = sgn (λ(F (m) − F (n))) (128.19)

and so u′m(x)− u′n(x) is monotone for x ∈ [k, k + 1]. Also, (128.17) yields

|u′m(x) − u′n(x)| = |λ|x−1xmin{F (m),F (n)}
(
F (m)xF (m)−min{F (m),F (n)} − F (n)xF (n)−min{F (m),F (n)}

)
.

(128.10)
Clearly one of F (m)−min{F (m), F (n)} or F (n)−min{F (m), F (n)} is 0. Say that that first one is 0.
Then, the expression in (128.20) is

|u′m(x) − u′n(x)| = |λ|xF (m)−1
∣∣∣F (m)− F (n)xF (n)−F (m)

∣∣∣ . (128.21)

Now, x ≥ 1 since x ∈ [k, k + 1] and so we have that

∣∣∣F (m)− F (n)xF (n)−F (m)
∣∣∣ = F (n)xF (n)−F (m) − F (m)

(in this case) attains its minimum value at x = k, and this values is ≥ the value at x = 1. Thus,

∣∣∣F (m)− F (n)xF (n)−F (m)
∣∣∣ ≥ |F (m)− F (n)| , x ∈ [k, k + 1] (128.22)

which combined with (128.21) and the hypothesis |F (m)− F (n)| ≥ δ for m 6= n yields,

|u′m(x)− u′n(x)| ≥ |λ|δ, x ∈ [k, k + 1]. (128.23)

So, by Theorem 128, we see that {un(x)}n∈N is uniformly distributed modulo 1 for almost all
x ∈ [k, k + 1] and hence for almost all x > 1, by writing [1,∞) as a countable union of [k, k + 1] for
k = 1, 2, 3, . . .. �
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16.2 The Pisot-Vijayaraghavan Numbers

Definition: An algebraic integer α is called a Pisot-Vijayaraghavan number, or PV for short, if α > 1 but
all of its conjugates have absolute value < 1.

Example: The golden mean
1 +

√
5

2
has conjugate

1−
√
5

2
, and so is PV.

Example: The silver mean 1 +
√
2 has conjugate 1−

√
2 and so is PV.

Theorem 129: If θ is a PV number, then ‖θn‖ → 0 as n→ ∞. I.e., {θn} clusters around 0.

Proof: Let θ2, θ3, . . . , θd be the conjugates of θ =: θ1. Since θ is an algebraic integers, we have for
each n ∈ Z+,

θn1 + θn2 + · · ·+ θnd =: f(n) ∈ Z. (129.1)

Since |θj | < 1, we must have that

|θnj → 0 (129.2)

as n→ ∞. Hence,

θn2 + · · ·+ θnd → 0 (129.3)

as n→ ∞. Hence we will have that

‖θn‖ → 0 (a)

s n→ ∞. �

Remark: Both 0 and 1 can occur as cluster points for a given θ. Indeed with

θ := α =
1 +

√
5

2

we have

−1 < θ′ =
1−

√
5

2
< 0

and so

θ′n → 0

but alternates in sign. Thus 0 and 1 are both cluster points of {αn}. The same is true for 1−
√
2.

History and Nomenclature: The first person to discover these numbers was Axel Thue in 1912 , and
he was aware of Theorem 129. G. H. Hardy discussed these numbers in 1919 quite independently, but
from the point of view of Diophantine Approximations. (J. Indian Math. Soc., 1919). Then, Charles Pisot
proved a partial converse:

Theorem 129-P: If α is an algebraic number greater than 1 for which there is λ ∈ R such that

‖λθn‖ → 0 (129.3)

as n→ ∞. Then, θ is a PV number.

Remark: Pisot “extended” this to all complex numbers, i.e., he dropped the assumption that α was algebraic,
subject to a slightly stronger convergence condition.
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Theorem 129-P*: If θ ∈ R and θ > 1 for which there is a 0 6= λ ∈ R such that

∞∑

n=1

‖λθn‖2 <∞ (129.4)

then θ is a PV number.

Remark: In view of Theorem 129-P*, it is conjectured that in Theorem 129-P the assumption that
θ is algebraic can be dropped. It is still an open problem whether a transcendental τ > 1 exists for which
‖τn‖ → 0 as n→ ∞.
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16.3 Normal Numbers

Motivation: Normal numbers were first studied by Emil Borel. Given ω = 〈bn〉, where b ≥ 2 is an integer.
We know that

uω = {θ ∈ R | 〈bnθ〉 is uniformly distributed modulo 1}
is almost all of R (from Koksma).

Question: Determine uω. Given an integer base b, the b-adic expansion of any real α to the base b is

α = [α] + {α} = [α] +

∞∑

n=1

an
bn

(130.1)

where

an ∈ Z, 0 ≤ an ≤ b− 1 (130.2)

and

an < b− 1 infinitely often. (130.3)

Remark: Condition (130.3) is to confirm uniqueness of the decimal expansion and also to be consistent with
{α} ∈ [0, 1).

Definition: A real number α is simply normal if

lim
N→∞

νb(a;N)

N
=

1

b
(130.4)

where

νb(a;N) := the number of ai for i ≤ N satisfying ai = a. (130.5)

If different α are to be considered simultaneously, we need to write νb(a;N ;α).

Definition: More generally, consider any block Bk of k digits b1b2 · · · bk and

νb(Bk;N ;α) := the number of occurrences of Bk among the first N digits of α. (130.6)

We say that α is normal to base b if

lim
N→∞

νb(Bk;N ;α)

N
=

1

bk
(130.7)

for every block of k digits.

Example: An example of a number which is simply normal to base 10 but not normal is

.0123456789

This is clearly simply normal, but it’s not noaml because, for example, the block 22 never occurs.

Theorem: If α is normal to base b, then α is irrational.

Remark: Simply normal numbers can be both rational and irrational.
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Theorem 131: α is normal to base b if and only if 〈bnα〉 is uniformly distributed modulo 1.

Proof: Let the b-adic expansion of α be given by (130.1). So, the series has value {α}. Consider any
block Bk of k digits

Bk : b1 · · · bk. (131.1)

This block coincides with a block of k digits of α, namely

b1 · · · bk = amam+1 · · · am+k−1 (131.2)

if and only if

α = [α] +

[
m−1∑

n=1

an
bn

]
+
b1
bm

+
b2

bm+1
+ · · ·+ bk

bm+k−1
+

[ ∞∑

n=m+k

an
bn

]
. (131.3)

Multiplying (131.3) by bm−1 we obtain

{bm−1α} =
b1
b
+
b2
b2

+ · · ·+ bk
bk

+

∞∑

n=m+k

an
bn−m+1

=
b1b

k−1 + b2b
k−2 + · · ·+ bk
bk

+
∞∑

n′=k+1

an′+m−1

bn′ , (131.4)

where n′ = n−m+ 1. Thus,

0 ≤
∞∑

n=k+1

an′+m−1

bn′ <

∞∑

n′=k+1

b− 1

bn′ =
b− 1

bk+1
(1− 1

δ
) =

1

bk
. (131.5)

Thus

{bm−1α} ∈
[
b1b

k−1 + · · ·+ bk
bk

,
b1b

k−1 + · · ·+ bk + 1

bk

]
= Ik. (131.6)

Thus, (131.6) implies that

A(I(Bk);N − k + 1;ω) = νb(Bk;N ;α). (131.7)

If {{bnα}}n∈N is uniformly distributed modulo 1, then

lim
N→∞

νb(Bk;N ;α)

N
= lim

N→∞

A(I(Bk);N − k + 1;ω)

N
= |I(Bk)| =

1

bk
, (131.8)

by (131.6). Since this holds for every Bk, we conclude that α is normal to base b.

Conversely if α is normal to base b, then (131.8) holds in the following manner:

lim
N→∞

A(I(Bk);N − k + 1;ω)

N
= lim

N→∞

νb(Bk;N + k − 1;α)

N
=

1

bk
. (131.9)

This means that

lim
N→∞

A([a, b);N ;ω)

N
= b− a

holds for [a, b) of type I(Bk). So, it holds for all finite unions of such I(Bk) and these will yield
all intervals [a, b) with rational endpoints. Every subinterval [a, b) ⊆ [0, 1) can be approximated by
intervals with rational endpoitns. Hence (131.9) holds for all subintervals. Thus, {bnα}n∈N is uniformly
distributed modulo 1. �
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Corollary: (Borel) Almost all numbers are normal to base b.

Corollary: (Borel) Almost all numbers are normal to every base. Such numbers are called normal, or
absolutely normal.

Remark: An example of a normal number to base 10 is

α = .01234567891011121314 . . . . (131.10)

If we construct such a number to base 9, we would get

α′ = .012345678101121314 . . . , (131.11)

but α 6= α′ and α′ is normal to base 9.

Remark: It is an open problem to construct a number which is normal to all bases. It is conjectured that
e, π, and

√
2 are such numbers.

Remark: Normal numbers were first studies by E. Borel in 1914 before Weyl’s paper on uniform distibution
modul 1. Theorem 131 is due to Wall in his PhD thesis.
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16.4 Uniform Distribution of Integer Sequences

Remark: This subject was studied comparitively recently, first by I. Niven.

Definition: An integer sequence {an}n∈N is uniformly distributed modulo m (for m ∈ Z+ with m ≥ 2) if

lim
N→∞

A(j;m;N)

N
=

1

m
(132.1)

where j = 1, 2, . . . ,m− 1 and

A(j;m;N) =
∑

1≤i≤N
ai≡j (mod m)

1. (132.2)

We say that {an}n∈N is uniformly distributed in Z if {an}n∈N is uniformly distributed modulo m for all
m ∈ Z+ with m ≥ 2.

Remark: We begin with a Weyl-type criterion for uniform distribution in Z.

Theorem 132: A necessary and sufficient condition that {an}n∈N is uniformly distributed modulo m is

lim
N→∞

1

N

N∑

n=1

e2πihan/m = 0 (132.3)

for h = 1, 2, . . . ,m− 1.

Proof: We begin by noting that

1

N

N∑

n=1

e2πihan/m =
1

N

m−1∑

j=0

∑

1≤n≤N
an≡j (mod m)

e2πihan/m. (132.4)

If {an}n∈N is uniformly distributed modulo m, then by (132.4) we have

lim
N→∞

1

N

N∑

n=1

e2πihan/m =

m−1∑

j=0

e2πihj/m
[
lim
N→0

A(j;m;N)

N

]
=

1

m

m−1∑

j=0

(
e2πih/m

)j
=
ζm − 1

ζ − 1
= 0,

(132.5)
where ζ := e2πih/m 6= 1, and so the necessity of (132.3) follows.

To prove sufficiency, we use inversion ideas, namely

m−1∑

h=0

e2πih(ai−j)/m =

{
1, ai ≡ j (mod m)
0, ai 6≡ j (mod m)

(132.6)
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So, (132.6) yields for a fixed j:

A(j;m;N)

N
=

1

N

∑

1≤n≤N
ai≡j (mod m)

1

=
1

N

∑

1≤i≤N

1

m

m−1∑

h=0

e2πih(ai−j)/m

=
1

m

m−1∑

h=0

e−2πihj/m

N

∑

1≤i≤N
e2πihai/m

=
1

m
+

1

m

m−1∑

h=1

e−2πihj/m 1

N

∑

1≤i≤N
e2πihai/m. (132.7)

As N → ∞, the inner sum on the right tends to 0 by view of (132.3). Thus as N → ∞, (132.1) holds.
Thus, {an}n∈N is uniformly distributed modulo m. �
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16.5 Connection Between Uniform Distribution Mod 1 of Reals

and Uniform Distribution Mod m of Integer Sequences

Theorem 133: Let {xn}n∈N be a sequence of reals such that for some fixed m ∈ Z with m ≥ 2 the sequence
ω := {xn/m}n∈N is uniformly distribued modulo 1. Then, {[xn]}n∈N is uniformly distributed modulo m.

Proof: For m ≥ 2 and any integer j satisfying 0 ≤ j ≤ m− 1, we have

[xn] ≡ j (mod m) ⇐⇒ [xn] = mk + j, for some k ∈ Z

⇐⇒ xn = mk + j + α, with α ∈ [0, 1)

⇐⇒ xn
m

= k +
j

m
+
α

m
, with α ∈ [0, 1)

⇐⇒
{xn
m

}
∈
[
j

m
,
j + 1

m

)
. (133.1)

Thus,

A(j;m;N) = A

([
j

m
,
j + 1

m

)
;n;ω

)
. (133.2)

Hence

lim
N→∞

A(j;m;N)

N
= lim

N→∞

A

([
j

m
,
j + 1

m

)
;N ;ω

)

N
=

1

m
. (133.3)

Therefore, [xn] is uniformly distributed modulo m. �

Theorem 133*: If {xn}n∈N is a sequence of reals such that for every integer m ≥ 2 the sequence {xn

m }n∈N

is uniformly distributed modulo 1, then {[xn]}n∈N is uniformly distributed in Z.

Theorem 134: (Niven) Let θ be irrational. Then, {[nθ]}n∈N is uniformly distributed in Z.

Proof: Let xn := nθ. Since θ is irrational, so is θ
m for all integers m. So by Weyl’s theorem, the

sequence {n θ
m}n∈N is uniformly distributed modulo 1, i.e., {xn

m }n∈N is uniformly distributed with m
arbitrary. So, by Theorem 133*, we conclude that {[nθ]}n∈N is uniformly distributed in Z.

Corollary 134: Let θ be irrational and let |θ| < 1. Define an increasing sequence of integers {an}n∈N such
that there is an integer between anθ and (an + 1)θ, for all n. Then, {an}n∈N is uniformly distributed in Z.

Proof: Without loss of generality, we have that 0 < θ < 1. Consider the sequence, {jθ j ∈ N of all
integral multiples of θ. Since θ is irrational, the sequence has the following two properties:

- Every integer n ≥ 1 occurs between two consecutive members of the sequence.

- Between two consecutive numbers there is at most one integer.

Then, for all n ∈ N, we can determine an ∈ Z uniquely such that

anθ < n < (an + 1)θ. (136.3)

The correspondence n↔ an is a bijection, rewrite (134.3) as

an < nθ−1 < an + 1 (134.4)

and so
an = [nθ−1].

Thus, {an} = {[nθ−1]} is uniformly distributed in Z. �
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Theorem 135: For θ ∈ R, {[nθ]}n∈N is uniformly distributed in Z if and only if θ is irrational or θ = 1
d for

0 6= d ∈ Z.

Proof: We only need to discuss the θ ∈ Q case. So, let θ = a
b for a, b ∈ Z and gcd(a, b) = 1 with

b ≥ 1. Write

a = bq + r, where 0 ≤ r < b. (135.1)

Then,

nθ = n
a

b
= nq +

nr

b

and so

[nθ] = nq +
[nr
b

]
. (135.2)

Replacing n by n+ b in (135.2), we get

[(n+ b)θ] = nq + bq +

[
(n+ b)r

b

]

= nq + bq + r +
[nr
b

]

= a+ nq +
[nr
b

]

= a+ [nθ]. (135.3)

Thus, b is a period (modulo |a|) for this sequence. If we now assume that {[nθ]}n∈N is uniformly
distributed in Z, then this forces

|a| | b
But, gcd(a, b) = 1 and therefore a = 1, i.e., θ = 1

d for d ∈ Z.

Conversely, if θ = 1
d , then without loss of generality, d ∈ Z+, and so

{[nθ]}n∈N = 0, 0, . . . , 0︸ ︷︷ ︸
d times

, 1, 1, . . . , 1︸ ︷︷ ︸
d times

, 2, 2, . . . , 2︸ ︷︷ ︸
d times

, . . . ,

and this is clearly uniformly distributed in Z. �

Remark: If {xn}n∈N is uniformly distributed moduloe 1, then for all m ∈ Z+, {mxn}n∈N is uniformly
distributed modulo 1 because {mxn}n∈N is uniformly distributed modulo 1 if and only if for each 0 6= h ∈ Z
we have

lim
N→∞

1

N

∞∑

n=1

e2πih(mxn) = 0.

But then

lim
N→∞

1

N

∞∑

n=1

e2πih(mxn) = lim
N→∞

1

N

∞∑

n=1

e2πi(hm)xn = 0

by applying the Weyl Criterion to {xn}n∈N with h 7→ hm.

But, the converse is not true. For example, let xn := {nθ} with θ irrational This is uniformly distributed
modulo 1 and xn ∈ [0, 1). But,

xn
m

∈
[
0,

1

m

)

which is clearly not uniformly distributed modulo 1 for m ≥ 2 because not all of (0, 1) is covered.

Theorem 134-P: Let θ be irrational. Then, {[pθ]}p prime is uniformly distributed in Z.
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Proof: Set xp := pθ. Since θ
m ∈ R rQ, we have

〈xp
m

〉 = 〈p θ
m
〉,

which is uniformly distributed modulo 1. �

Question: Analogous to Theorem 135, we may ask whether {[pθ]} is uniformly distributed in Z for any
rational θ. The answer is “no”.

Example: Let θ =
1

2
. Then, [pθ] =

p− 1

2
for p = 3, 5, . . ..

Question: If {ak}k∈N is unformly distirbuted modulo m and uniformly distributed modulo n, with
gcd(m,n) = 1, then is {ak}k∈N uniformly distributed modulo mn? Again, the answer is “no”.

Example: Let m = 2 and n = 3. Define:

ak :=





k, k ≡ 0, 1, 2, 5 (mod 6)
k − 2, k ≡ 3 (mod 6)
k + 2, k ≡ 4 (mod 6)

(136.1)

Then,

{ak}k∈N = (0, 1, 2, 1, 6, 5)

and this is uniformly distributed modulo 2 and 3, but not modulo 6.

Remark: This sequence actually has the stronger property that it is uniformly distributed modulo pα for
every power of a prime p, but is not uniformly distributed modulo Z.

Theorem 136: A sequence ω := {xn}n∈N of reals is uniformly distributed modulo 1 if and only if the
sequence {[mxn]}n∈N of integers is uniformly distributed modulo m for each m ≥ 2.

Proof: Define the sequence ωm by

ωm := {mxn}n∈N

for m = 2, 3, . . .. So, for a given m, the statement {xn}n∈N is uniformly distributed modulo 1 is the
same as saying that

1

m
ωm =

{
mxn

m

}

n∈N

is uniformly distributed modulo 1. Thus by Theorem 133, we get that {[mxn]}n∈N is uniformly
distributed modulo m. This holds for each m ≥ 2.

Conversely, let {[mxn]}n∈N be uniformly distributed modulo m for each m ≥ 2. For an arbitrary but
fixed m, we know (see (133.2)) that

lim
N→∞

A

([
j

m
,
j + 1

m

]
;N ;ω

)

N
= lim

N→∞

A(j;m;N)

N
=

1

m
=

∣∣∣∣
[
j

m
,
j + 1

m

)∣∣∣∣ (136.1)

for j = 0, 1, 2, . . . ,m− 1.

So, by taking finite unions over m ≥ 2 and j, we see from (136.1) that

lim
N→∞

A([α, β);N ;ω)

N
= β − α (136.2)

for all subintervals of [0, 1) with rational end points α and β. Since every subinterval of [0, 1) can
be approximated by intervals with rational end points, we see that (136.2) holds for all subintervals.
Hence ω is uniformly distributed modulo 1. �
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Theorem: 137 (A Quantitaive Version of Theorem 132) For any sequence of integers {an}n∈N, and any
pairs of integers m,N , we have that

m∑

h=1

−1

∣∣∣∣∣
1

N

N∑

n=1

e2πijan/m

∣∣∣∣∣

2

= m

m−1∑

j=0

(
A(j;m;N)

N
− 1

m

)2

. (131.7)

Corollary: Theorem 132 is a corollary, letting N → ∞ in (137.1).

Proof: Begin by expanding the left-hand side of (137.1) to get

m−1∑

n=1

∣∣∣∣∣
1

N

N∑

n=1

e2πihan/m

∣∣∣∣∣

2

=
1

N2

m−1∑

h=1

[
N∑

n=1

N∑

ℓ=1

e2πih(an−aℓ)/m
]

=
1

N2

∑

1≤n≤N
1≤ℓ≤N

an 6≡aℓ (mod m)

[
m−1∑

h=1

e2πih(an−aℓ)
]
+

1

N2

∑

1≤n≤N
1≤ℓ≤N

an≡aℓ (mod m)

[
m−1∑

h=1

e2πih(an−aℓ)
]

=
1

N2
(Σ1 +

(137.2)

respectively. Note that

Σ2 = (m− 1)
∑

1≤n≤N
1≤ℓ≤N

an≡aℓ (mod m)

1 (137.3)

and that the inner sum in Σ1 is

m−1∑

h=1

e2πih(an−aℓ)/m =

[
m−1∑

h=0

e2πih(an−aℓ)/m
]
− 1 = −1. (137.4)

So, (137.2), (137.3), and (137.4) yield

m−1∑

h=1

∣∣∣∣∣
1

N

N∑

n=1

e2πihan/m

∣∣∣∣∣

2

=
1

N2



−

∑

1≤n≤N
1≤ℓ≤N

an 6≡aℓ (mod m)

1 + (m− 1)
∑

1≤n≤N
1≤ℓ≤N

an≡aℓ (mod m)



=

1

N2



−

∑

1≤n≤N
1≤ℓ≤N

1 +m
∑

1≤n≤N
1≤ℓ≤N

an≡aℓ (mod m)

1.




(137.5)
The second sum in (137.5) is

∑

1≤n≤N
1≤ℓ≤N

an≡aℓ (mod m)

1 =

m−1∑

j=0

1
∑

1≤n≤N
an≡j (mod m)

1
∑

1≤ℓ≤N
aℓ≡an (mod N)

1 =

m−1∑

j=0

A2(j;m;N). (137.6)

Therefore,

m−1∑

j=0

∣∣∣∣∣
1

N

N∑

n=1

e2πihan/m

∣∣∣∣∣

2

= −1 +m
m−1∑

j=0

A2(j;m;N)

N2
. (137.7)
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Expanding the right-hand side of (137.1), we get

m

m−1∑

j=0

(
A(j;m;N)

N
− 1

m

)2

= m

m−1∑

j=0

(
A2(j;m;N)

N2
− 2A(j;m;N)

Nm
+

1

m2

)

= m
m−1∑

j=0

A2(j;m;N)

N2
− 2

N

m−1∑

j=0

A(j;m;N) + 1

= m

m−1∑

j=0

A2(j;m : N)

N2
− 1 (137.8)

which is the same as (137.7). �

Theorem 138: Let α be irrational and θ ∈ R. Then

(i) If 0 6= θ ∈ Q, then {[nθ]α}n∈N is uniformly distributed modulo 1.

(ii) If θ is irrational, then {[nθ]α}n∈N is uniformly distributred modulo 1 if and only if 1, θ, θα are linearly
independent over Q.

Proof of (i) Let θ := r/s for r 6= 0 and r, s ∈ Z with s ≥ 1 and gcd(r, s) = 1. Define

M :=

[
N

s

]

where N is a large positive integer. So, for 0 6= h ∈ Z, we have

N∑

n=1

e2πih[nθ]α =

Ms∑

n=1

e2πih[nθ]α +O(1)

=

M−1∑

k=0

s∑

m=1

e
2πih





ks+m

s
· r


α

+O(1)

=

s∑

m=1

e
2πih

[mr

s

]

α
M−1∑

k=0

e2πihkrα +O(1). (138.1)

Note that hrα is irrational, and so the inner sum in (138.1) is

M−1∑

k=0

e2πihkrα =
e2πiMhrα − 1

e2πihrα − 1
= O(1) (138.2)

because the denominator is never equal to zero. Thus by Weyl’s Criterion, we get that {[nθ]α}n∈N

is uniformly distributed modulo 1. �

Proof of (ii): Let θ be irraional. Suppose that 1, θ, θα satisfy the linear dependence relation

u+ vθ = wθα (138.4)

for u, v, w ∈ Z not all zero. Note that in (138.4), we have w 6= 0 because w = 0 implies that θ ∈ Q,
which is not true. With this non-zero w ∈ Z, we will show that

lim
N→∞

1

N

N∑

n=1

e2πiw[nθ]α 6= 0 (138.5)
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i.e., the Weyl criterion fails for this choise of h = w. Hence, {[nθ]α}n∈N will not be uniformly distributed
modulo 1. From (138.4), we infer that

e2πiw[nθ]α = e2πiw(nθ−{nθ})α

= e2πi(n(wθ)α−w{nθ}α)

= e2πi(n(u+vθ)−w{nθ}α)

= e2πi(v−wα){nθ}

= g({nθ}), (138.6)

where

g(x) := e2πi(v−wα){x}. (138.7)

Clearly, g is periodic of period 1 and therefore

lim
N→∞

1

N

N∑

n=1

e2πiw[nθ]α = lim
N→∞

1

N

N∑

n=1

g(nθ)

=

∫ 1

0

g(x)dx

=

∫ 1

0

e2πi(v−wα)xdx

=
e2πi(v−wα)−1

2πi(v − wα)
(138.8)

provided that v−wα 6= 0. Next, if 0 6= v−wα ∈ Z, then θ = −u/(v−wα) ∈ Q, which is a contradiction.
Hence the limit in (138.8) is nonzero. So, the Weyl criterion is isolated and so [nθ]α is not uniformly
distributed modulo 1.

FInally, suppose that 1, θ, θα are linearly independent over Q. For 0 6= h ∈ Z, write

e2πih[nθ]α = e2πihnθ−h{nθ}α =: f(nθ, nθα) (138.9)

where

f(x, y) := e2πi(hy−h{x}α). (138.10)

Analogous to Kronecker’s Theorem, we have that the sequence {(nθ, nθα)} is uniformly distributed
modulo the unit square and therefore by a 2-dimensional version, we have

lim
N→∞

1

N

N∑

n=1

e2πih[nθ]α = lim
N→∞

1

N

N∑

n=1

f(nθ, nθα)

=

∫ 1

0

∫ 1

0

f(x, y)dxdy

=

∫ 1

0

∫ 1

0

e2πi(hy−hxα)dxdy

=

[∫ 1

0

e2πihydy

] [∫ 1

0

e−2πihxαdx

]

= 0 ·
[∫ 1

0

e−2πihxαdx

]
= 0, (138.11)

because h 6= 0. Hence, {[nθ]α}n∈N is uniformly distributed modulo 1. �
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Lemma 139-1: If {xn}n∈N is a real sequence that is uniformly distributed modulo 1, and if {yn}n∈N is a
sequence such that

lim
n→∞

(xn − yn) = α, (139.1)

then {yn}n∈N is uniformly distributed modulo 1.

Proof: Exercise.

Remark: This lemma includes the situation

xn − yn = ǫn → 0 as n→ ∞. (139.2)

Lemma 139-2: Let {xn}n∈N be a real sequence that is uniformly distributed modulo 1, and let {[xn]}n∈N

be uniformly distributed modulo m for some integer m ≥ 2. Let {yn} be a real sequence such that (139.2)
holds. Then, {[yn]}n∈N is uniformly distributed modulo m. Thus, if {[xn]}n∈N is uniformly distributed in Z,
so is {[yn]}n∈N.

Remark: A condition like {xn}n∈N is uniformly distributed modulo 1 is necessary because if no condition
is assumed on {xn}n∈N, we can construct a counterexample: let xn = n for n ∈ N. Then, xn = [xn], which
is uniformly distributed in Z. In particular, it is uniformly distributed modulo 2. Define

yn :=





n+
1

n+ 1
, n > 0 odd

n− 1

n+ 1
, n > 0 even

.

Then,
[yn] : 1, 1, 3, 3, 5, 5, . . . .
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16.6 An Application

Theorem: 139 Let Fn be the Fibonacci sequence:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2.

Then,

(i) ω := {{log(Fn)}}n∈N is uniformly distributed modulo 1.

(ii) σ := {[log(Fn)]}n∈N is uniformly distributed in Z.

Proof: We use Binet’s formula

Fn =
αn − βn

α− β
, (139.3)

with

α :=
1 +

√
5

2
, β :=

1−
√
5

2
, α− β =

√
5.

We know that α is a PV number because |β| < 1. Hence,

log(Fn) = log(αn − βn)− log(
√
5)

= log(αn) + log

(
1− βn

αn

)
− log(

√
5)

= n log(α) + log

(
1− βn

αn

)
− log(

√
5). (139.4)

Since α 6= 0 is algebraic, log(α) is transcendental and hence irrational. Thus,

xn := n log(α) (139.5)

is uniformly distributed modulo 1. Hence yn := log(Fn) satisfies (139.1). Hence log(Fn) is uniformly
distributed modulo 1.

Next with xn as above, we know that {xn}n∈N is uniformly distributed modulo 1, and {[xn]}n∈N is
uniformly distributed in Z. Additionally, yn − xn converges to some limit, and so by the lemma and
(139.2),

[yn] = [log(Fn)]

is uniformly distributed in Z. �



Appendix A

Frank Patane: Irrationality Measure

Recall: Let α be irrational, written in simple continued fraction form as α = [a0; a1, a2, · · · ], and define
M(α) = lim sup

n∈N

([an+1; an+2, . . .] + [0; an, an−1, . . . , a0]).

Theorem: There are uncountably many real numbers α with M(α) = 3.

Proof: We will write 1j for a succession of j terms each 1. Similarly, we write 2j for j successive
terms of 2. Let r1, r2, · · · be a strictly increasing sequence of positive integers and consider

α := [1; 1r1, 2, 2, 1r2, 2, 2, 1r3, 2, 2, . . .].

Define

βk := αk+1 +
qk−1

qk
= [ak+1; ak+2, . . .] + [0; ak, . . . , a0].

If ak+1 = 1, then

αk+1 < 2 and
qk−1

qk
< 1.

So, in this case, βk < 3.

If k runs through indices such that ak = ak+1 = 2, then

βk = [2; 1, 1, . . .] + [0; 2, 1, 1, . . .].

So,

lim
k→∞

βk = [2; 1] + [0; 2, 1] =



2 +

1[
1 +

√
5

2

]




+
1

2 +
1[

1 +
√
5

2

]
= 3.

In the last case, if ak = ak+1 = 2, then we have

βk = [2; 2, 1, 1, . . .] + [0; 1, 1, . . .],

which equals the same sum as above with the two terms switched.

Thus for any sequence of strictly increasing positive integers {ri}, we get M(α) = 3, where
α = [1; 1r1, 2, 2, 1r2, 2, 2, 1r3, 2, 2, . . .]. So, we have a bijection between these sequences and irrational
numbers α with M(α) = 3.
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Let α, α′ be of the previous form for sequences ri and r
′
i, respectively. Then, we have α ∼ α′ if and

only if ri and r
′
i have the same tails at some point (perhaps with a different starting point from each

sequence).

Suppose toward a contradiction that the inequivalent sequences (among all strictly increasing sequences
at positive integers) can be listed as R1, R2, . . ., and take R1 = 1, 2, 3, · · · . If i > 1, then Ri 6∼ R1, and
so Ri misses infinitely many positive integers (otherwise R1 and Ri would eventually agree).

For each Ri, for i > 1, we form the complement Si, which is the strictly increasing sequence of integers
not occuring in Ri. Define the sequence T = {T1, T2, . . .}. Pick T1 ∈ S2, and pick T2 ∈ S3 so that
T1 < T2. Pick

1 + T2 < T3 ∈ S2, T3 < T4 ∈ S3, T4 < T5 ∈ S4,
1 + T5 < T6 ∈ S2, T6 < T7 ∈ S3, T7 < T8 ∈ S4, T8 < T9 ∈ S5,
1 + T9 < T10 ∈ S2, · · ·

Clearly, T is a strictly increasing sequence of positive integers, and T has infinitely many Ti which are
contained in Sk for all k ≥ 2. Therefore, T has infinitely many terms Ti that are not in Rk, for all
k ≥ 2. So, T 6∼ Rk, for k ≥ 2. By forcing T3 > 1 + T2, T6 > 1 + T5, etc, we ensure that T 6∼ R1, since
T misses infinitely many positive integers, because for each T i(i+1)

2
, this term is more than 1 above its

predecessor. Thus T is not in our list, hence we have a contradiction, thus the number of irrationals
with Markov constant 3 is uncountable. �

If α 6∼ 1 +
√
5

2
(i.e., the tail of α is not all 1s) and α 6∼

√
8 (i.e., the tail of α is not all 2s), then how small

can M(α) be? Such an α must have infinitely many . . . , 2, 1, . . . appearing in the expansion. If we have
infinitely many . . . , 2, 1, 2, . . ., then we can make the appropriate cut so that M(α) ≥ 3. Similarly for the
pattern . . . , 1, 2, 1, . . ..

In general, if we have . . . , 1, 22k+1, 1, . . . or . . . , 2, 12k+1, 2, . . ., appearing, then M(α) ≥ 3.

In the remaining cases, we have . . . , 2, 2, 1, 1, . . . infinitely often, so M(α) ≥ [2; 1, 1, . . .]+ [0; 2, . . .]. Minimum

of all these possibilities is , . . . , 1, 1, 2, 2, 1, 1, 2, 2, . . . , in which caseM(α) =

√
221

5
, which the smallest possible.



Appendix B

Todd Molnar: Periodic Continued
Fractions

Definition: A periodic continued fraction is a simple continued fraction x = [a0, a1, a2, . . .] in which
aℓ = aℓ+k for a fixed positive k ∈ Z and all ℓ ≥ L. The set of partial quotients aL, aL+1, . . . , aL+k−1 is
called the period. We will write this as [a0, a1, . . . , aL−1, aL, aL+1, . . . , aL+k−1].

Theorem 1: (Euler, 1737) A period continued fraction is a quadratic irrational, i.e., the irrational root of
some quadratic equation with integers coefficients.

Proof: Let x := [a0, a1, . . . , aL−1, aL, aL+1, . . . , aL+k−1]. Let

a′L := [aL, aL+1, · · · ]
= [aL, aL+1, · · · , aL+k−1, aL, aL+1, · · · ]
= [aL, aL+1, · · · , aL+k−1, a

′
L].

By a result from class,

a′L =
p′a′L + p′′

q′a′L + q′′

where
p′

q

′
and

p′′

q′′
are the last two convergents of

[aL, aL+1, . . . , aL+k−1].

So,
q′ + a′2L + (q′′ − p′)a′L − p′′ = 0.

But,

x =
pL−1a

′
L + pL−2

qL−1a′L − qL−2
,

and hence

a′L =
pL−2 − qL−2x

qL−1x− pL−1
,

and so

q′
(
pL−2 − qL−2x

qL−2x− pL1

)2

+ (q′′ − p′)

(
pL−2 − qL−2x

qL−2x− pL1

)
− p′′ = 0.

Thus, this is a solution to ax2 + bx+ c, with a, b, c ∈ Z and x 6∈ Q. Also observe that b2 − 4ac 6= 0.
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Theorem 2: (Lagrange, 1770 - Converse to Theorem 1) A simple continued fractions which represents a
quadratic irrational is periodic.

Proof: If x = [a0, a1, . . . , a
′
n], with a

′
n the “tail”, then since x is a quadratic irrational, we have that

ax2 + bx+ c = 0 for some a, b, c ∈ Z, where b2 − 4ac 6= 0. Furthermore,

x =
pn−1a

′
n + pn−1

qn−1a′n + qn−2
.

We see that Ana
′2
n +Bna

′
n + Cn = 0, where

An = ap2n−1 + bpn−1qn−1 + cq2n−1

Bn = 2apn−1pn−2 + b(pn−1qn−2 + pn−2qn−1) + 2cqn−1qn−2

Cn = ap2n−2 + bpn−2qn−2 + cq2n−2

Note that Cn = An−1 and An, Bn, Cn ∈ Z.

So, if An = 0, then ax2 + bx+ c = 0 has root pn−1/qn−1 which is a rational root and is not possible.
Hence An 6= 0. Therefore, we actually do have a quadratic equation. Furthermore, Any

2+Bny+Cn = 0
is an equation with at least one root equal to a′n. A straightforward but tedious calculation tells us
that

B2
n − 4AnCn = (b2 − 4ac)(pn−1qn−2 − pn−2qn−1)

2 = b2 − 4ac 6= 0.

(We used the fact that pn−1qn−2 − pn−2qn−1 = 1.)

Recall that since pn and qn are the convergents:
∣∣∣∣x− pn

qn

∣∣∣∣ <
1

q2n
.

Hence, there exists a real δn−1 with |δn−1| < 1, such that

pn−1 = xqn−1 +
δn−1

qn−1
.

Therefore,

An = a

(
xqn−1 +

δn−1

qn−1

)2

+ bq

(
xqn−1 +

δn−1

qn−1

)
+ cq2n−1

= (ax2 + bx+ c)q2n−1 + 2axδn−1 + a
δ2n−1

q2n−1

+ bδn−1

= 2axδn−1 + a
δ2n−1

q2n−1

+ bδn−1.

Thus, |An| < 2|ax|+ |a|+ |b|. Similarly, |Cn| < 2|ax|+ |a|+ |b|.
Now, B2

n − 4AnCn < 4(2|ax| + |a| + |b|)2 + |b2 − 4ac|, thus An, Bn, Cn are all bounded in absolute
value by numbers independent of n¿ There are only a finite number of different triples (An, Bn, Cn)
such that Any

2 +Bny + Cn = 0. We may find a triplet (A,B,C) which occurs three times, say as

(An1 , Bn1 , Cn1), (An2 , Bn2 , Cn2), (An3 , Bn3 , Cn3).

Substituting these values into an earlier equation gives that a′n1
, a′n2

, a′n3
are all roots of Ay2+By+C =

0. So, as numbers, two of those are the same, and by the uniqueness of expansion, we can say that
two of them are equal as continued fractions. Without loss of generality, say a′n1

= a′n2
, and therefore

[an1 , an1+1, . . .] = [an2 , an2+1, . . .].

Thus an2 = an1 , and an2+1 = an1+1, etc. Hence the continued fraction is periodic. �



Appendix C

Duc Huynh: Ford’s Theorem

[Some of talk missing.]

Ford’s Theorem: Given any irrational complex number α, there exists infinitely many rational complex

numbers
u

v
such that

∣∣∣α− u

v

∣∣∣ < 1√
3|v|2

=
1/

√
3

|v|2 .

Furthermore, the constant
√
3 is the best possible in the sense that the result becomes false for any larger

constant.

Proof will follow after some additional Theorems and Lemmas.

Theorem 4.1: Given any irrational complex number α, there exists infinitely many rational complex numbers
u
v such that ∣∣∣α− u

v

∣∣∣ < 2

|v|2 .

Proof: Let n ∈ N be a large positive integer. Let v run through the (n+ 1)2 complex integers a+ bi,
with 0 ≤ a ≤ n and 0 ≤ b ≤ n. For each v, we select u ∈ Z[i] such that αv − u = x+ yi, for 0 ≤ x < 1
and 0 ≤ y < 1. Assume toward a contradiction that the pairs are not distinct, i.e., αv1−u1 = αv2−u2,
which implies that α is not an irrational complex number, a contradiction. Hence the pairs are distinct.
Additionally, these pairs are all inside the unit square.

Dividing the unit square up into
1

n
× 1

n
squares, we see that only one pair can lie on a corner - if two

pairs did, then we could find a rational complex α. By construction, |(αv1 − u1)− (αv2 − u2)| <
√
2

n

for some two pairs. Now, |v1 − v2| ≤ n
√
2, and this is equivalent to n ≥ |v1 − v2|√

2
. Hence we get that

∣∣∣∣α− u1 − u2
v1 − v2

∣∣∣∣ <
√
2

n|v1 − v2|
<

2

|v1 − v2|2
.

Let u = u1 − u2 and v = v1 − v2. We have that

∣∣∣α− u

v

∣∣∣ <
√
2

|v|2 ,

and ∣∣∣α− u

v

∣∣∣ <
√
2

n|v| <
2

|v|2 .

200
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Suppose we have only finitely many
u

v
such that |α−u

v
| <

√
2

v
, we can choose

u0
v0

such that

∣∣∣∣α− u0
v0

∣∣∣∣ = ǫ

is smallest.

Claim: Let a1, . . . , ak ∈ R+, such that

k∑

i=1

ai = 1. Then,

m := min{Pi}ki=1 ≤
k∑

i=1

aiPi.

Proof: Since Pi ≥ m for each Pi. Now,

k∑

i=1

aiPi ≥
k∑

i=1

aim = m

k∑

i=1

ai = m. �

Lemma 4.2: Let a ∈ C. To each z1 ∈ C, there exists a homologous z such that

|z2 − a|2 ≤ 7

16
+ |a|2,

with equality only in the cases where
[
a = 3/4 and z1 homologous to

i

2

]
,

or [
a = −3/4 and z1 homologous to

1

2

]
.

Definition: We say that z, z1 ∈ C are homologous if and only if z − z1 ∈ Z[i].

Proof: Let a = α+ ib.

Case 1: (α ≥ 0)

To each z2, there exist infinitey many homologous z = x+ yi such that −1

2
< y <

1

2
, and from

these choose one satisfying

−1

2
+

(
1

4
− y2

)1/2

< x ≤ 1

2
+

(
1

4
− y2

)1/2

.

Define functions:

P = |z2 − a|2 − |a|2, Q = |(z − 1)2 − a|2 − |a|2, R = |(z + 1)2 − a|2 − |a|2.

Now,

P = |z2 − a|2 − |a|2

= (z2 − a)(z2 − a)− aa

= ((x + iy)2 − (α+ iβ))((x − iy)2 − (α− iβ))− (α+ iβ)(α− iβ)

= x4 + 2x2y2 + y4 − 2(x2 − y2)α − 4xyβ.

Hence,

(1− x)P + xQ = u− 3u2 + 2uv + v2 + 2(v − u)α, where u = x− x2 and v = y2.
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Similarly,

(1− x2 − y2)P +
1

2
(x2 + y2 + x)Q +

1

2
(x2 + y2 − x)R = y2 − 3x2 + 3y4 + 6y2x2 + 3x4.

Looking at subintervals of the original interval, consider:

1

2
−
(
1

4
− y2

)1/2

< x <

(
1

4
− y2

)1/2

+
1

2
.

Now,

0 ≤
(
x− 1

2

)2

≤ 1

4
− y2,

and so x− x2 ≤ 1

4
.

Similarly,

0 ≤ y2 ≤ x− x2 ≤ 1

4
,

which gives 0 ≤ v ≤ u ≤ 1

4
.

In this case

min(P,Q) ≤ (1 − x)P + xQ = u− 3u2 + 2uv + v2 + 2(u− v)α

≤ u− 3u2 + 2u2 + u2

= u

≤ 1

4

<
7

16
.

Consider the subinterval on the other side

−1

2
+

(
1

4
− y2

)1/2

< x ≤ 1

2
−
(
1

4
− y2

)1/2

.

Now,

|x| ≤ 1

2
and

(
1

2
± x

)2

≥ 1

4
− y2, hence x2 + y2 ± x ≥ 0.

Also,

1− x2 − y2 ≥ 0, since |x| ≤ 1

2
and |y| ≤ 1

2
.

Combining all these facts, min(P,Q,R) ≤ 7

16
− 3

2
x2(1 − 2x2). We have possible equality here

only if x = 0 and z = x+ iy and z = iy and y =
1

2
.

[Missing remainder of talk.]



Appendix D

Jay Pantone: History of π

Some Early Estimates for π:

Perhaps the earliest estimate for π came from the Old Testament (translated around 550 BC):

And he made a molten sea, ten cubits from the one brim to the other: it was round all

about, and his height was five cubits: and a line of thirty cubits did compass it round about.

- I Kings 7:23

which effectively estimates π as 3.

In fact, as early as 2000 BC, the Babylonians and the Egyptians already had reasonable estimates
for π. While the method of estimation isn’t known, they probably arose through construction of a
circle with a fixed diameter, followed by measuring the circumference as accurately as possible. The
Babylonians used the value π = 3 1

8 = 3.125, which was found on a tablet excavated in 1936 about 200

miles from Babylon. Meanwhile, the Egyptians used the value π =
(
16
9

)2
= 256

81 ≈ 3.1605 . . ., which
was written on the famous Ahmes Papyrus and discovered in an abandoned building in 1858.

Despite only having estimations for the value of π, the ancients knew the formula for the area of a
circle to be πr2. Here is the most probable way they discovered this:

b 2rπ

The circumference of a circle with radius r is 2rπ
by the definition of the constant π. We start with
such a circle.

We take a second identical circle, split each up into
four parts, and align them as shown. The length
along the top and bottom is the circumference of
the original circle. r

r

b

2rπ

2rπ

203
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b

2rπ
b

2rπ

r
r

If we instead split each circle into eight equal
parts and align them as shown, then the
length along the top and bottom is still the
circumference of the original circle, but the
shape is closer to a rectangle.

Splitting the circle up into more and more parts, the resulting
shape is closer and closer to a rectangle. This implies that the
area of the two circles is r · 2rπ = 2r2π, and hence the area of

each circle is πr2.

In the search for π’s true value, Archimedes is thought to be the first to apply purely mathematical
methods. In On the Measurement of the Circle he uses the following geometric construction to obtain
bounds for π:

Construction by the Archimedean Method starts with a circle along with both an inscribed and
circumscribed hexagon.

b

t
s

2 r

θ

Observe that s = 2r sin θ and t = 2r tan θ. Using 2πr as the circumference of the circle, and
noting that the circumference of the circle lies between the circumferences of the inscribed and
circumscribed polygons, we now have that

2rn sin θ < 2πr < 2rn tan θ, and hence
n sin θ < π < n tan θ.

In the hexagonal case, as above, we have n = 6 and θ = π
6 . As we double the number of sides

k times, we have that:

2kn sin
θ

2k
< π < 2kn tan

θ

2k
.

As k is increases toward infinity, the bounds get closer to the actual value of π because the
difference in circumference of the inscribed and circumscribed polygons gets closer to zero.
Archimedes and others knew that for the starting hexagon, we have sin θ = 1

2 and tan θ = 1√
3
.

To increase k, they used various versions of the half-angle formulas.



205

For a millennium and a half, the Archimedean Method of estimating π reigned supreme. All that was
needed to reach better and better estimates was the time and dedication to carry the computation
further and further. Some of the estimates during this era are:

(380 AD) One of the Indian Siddhantas gives the value of π as 3 177
1250 = 3.1416.

(450 AD) Chinese Mathematician Tsu Chung-Chih and his son Tsu Keng-Chih found

3.1415926 < π < 3.1415927.

It is likely that the Chinese were able to obtain such a high accuracy because they’re knowledge
of the digit 0 made them better equipped for calculation. An estimate of this level of accuracy
would not be discovered in Europe for over 1000 years.

(598 AD) The Hindu mathematician Brahmagupta used π =
√
10 ≈ 3.1623 . . .. He likely observed

that the perimeters of polygons with 12, 24, 48, and 96 sides inscribed in a circle of diameter 10,
are given by the sequence

√
965,

√
981,

√
986,

√
987, and assumed that the sequence approached√

1000 = 10
√
10.

(1220 AD) Leonardo of Pisa - aka Fibonacci (literally, Son of Bonaccio) - used his era’s new decimal
arithmetic to obtain an estimation π = 846

275 = 3.1418.

The New Age of π

François Viète:

After centuries of repeated applications of the Archimedean Method, the 16th century finally
marked new progress. French mathematician François Viète (1540-1603) was primarily a
lawyer, but did his most important mathematical work while in exile for his suspected sympathies
toward the Protestant cause. It was in his famous Analytical Art that he coined some words
we still use today, such as “negative”, “coefficient”, and “analytical”. Viète used a method
similar to the following to find the first ever analytical expression of π as a sequence of algebraic
operations.

In the spirit of the Archimedean Method, Viète compared an n-gon to a 2n-gon, but rather
than comparing their perimeters, he compared their areas. Let the below diagram be one
triangular section of the n-gon of radius r. Let 2β be the angle formed by this section, so that
β = π/n.

β

r

s
2

x

Observe that the area of this triangle equals 1
2sx = (r sinβ)(r cosβ) = r2 sinβ cosβ. Hence,

the area of the n-gon is nr2 sinβ cosβ. Similarly, the area of the 2n-gon is 2nr2 sin β
2 cos β2 =

nr2 sinβ.



206 APPENDIX D. JAY PANTONE: HISTORY OF π

Hence, denoting A(k) as the area of the k-gon, we have that:

A(n)

A(2n)
=
nr2 sinβ cosβ

nr2 sinβ
= cosβ.

Similarly,
A(n)

A(4n)
=

A(n)

A(2n)

A(2n)

A(4n)
= cosβ cos

β

2
.

Repeating this process:
A(n)

A(2kn)
= cosβ cos

β

2
· · · cos β

2k
.

Taking limits:

lim
k→∞

A(n)

A(2kn)
= cosβ cos

β

2
cos

β

4
cos

β

8
· · · .

Since A(2kn) approaches the area of the circle with radius r as k → ∞, we have that

nr2 cosβ sinβ

πr2
= cosβ cos

β

2
cos

β

4
cos

β

8
· · · .

Hence

π =
n cosβ sinβ
∞∏

k=0

cos
β

2k

.

Viète started with a square, setting n = 4 and β = π/4. Applying a half-angle formula

cos
θ

2
=

√
1

2
+

1

2
cos θ,

our formula above yields

π = 2 · 1

√
1
2 ·
√

1
2 + 1

2

√
1
2 ·
√

1
2 + 1

2

√
1
2 + 1

2

√
1
2 · · ·

.

This convergence was proved formally by Ferdinand Rudio (1856-1929) in 1891.

This formula converges slowly, and so it isn’t useful for calculating digits. Viète himself used
the Archimedean Method to calculate π to 9 digits. Not many mathematicians wasted their time
with the Archimedean Method after this calculation, principally because it served no practical
purpose. Knowing π to 40 digits provides enough accuracy to compute the circumference of the
Milky Way to within the radius of a proton!

John Wallis:

In 1655, British Mathematician John Wallis (1616-1703), considered the area under a circular
arc - for which he had a formula due to Descartes - and used very tedious methods to derive

π = 2 · 2 · 2 · 4 · 4 · 6 · 6 · · · ·
3 · 3 · 5 · 5 · 7 · 7 · · · · .

This was the first expression of π to have only rational quantities.

Lord Brouncker:

As discussed in class, British Mathematician Lord William Brouncker (1620-1684) used
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Wallis’ formula to compute a general continued fraction for π:

π

4
=

1

1 +
12

2 +
32

2 +
52

2 +
72

. . .

.

James Gregory:

The Scottish mathematician and astronomer James Gregory (1638-1675) made the next giant
leap in the history of π. In 1671, he proved the equivalent of:

arctan(x) = x− 1

3
x3 +

1

5
x5 − 1

7
x7 + · · · .

Setting x = 1, we have the formula

π = 4

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
.

Though convergence is very slow (it takes over 300 terms to get two decimal places of accuracy),
this is recognized as the first infinite series representation of π.

Isaac Newton:

The well-known British physicist, mathematician, astronomer, philosopher, and alchemist Isaac
Newton could not resist spending some time working with π. He was aware of the Gregeory
series, and knew that it converged far too slowly to be useful. Instead, he used the following
derivation:

Through his study of “fluxions” (derivatives) and “Flowing Quantities” (integrals), Newton
knew the equivalent of ∫

dx√
1− x2

= arcsin(x).

Using his own generalized binomial theorem, he also knew that

∫
dx√
1− x2

=

∫ (
1 +

1

2
x2 +

1 · 3
2 · 4x

4 +
1 · 3 · 5
2 · 4 · 6x

6 + · · ·
)
dx.

Setting these two equal and integrating term-by-term, Newton found:

arcsin(x) = x+
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+ · · · .

Substituting x = 1
2 :

π = 6

(
1

2
+

1

2 · 3 · 22 +
1 · 3

2 · 4 · 5 · 25 + · · ·
)
.

This is another infinite series for π. However, it converges incredibly faster than the Gregory
series. Newton himself used this method to calculate 15 correct decimal places for π, but later
admitted in a letter “I am ashamed to tell you to how many figures I carried these computations,
having no other business at the time.”
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John Machin:

Though he was a Professor of Astronomy at Gresham College in London, John Machin (1680-
1750) is best known for his work with π, which came in 1706.

Let β be such that tan(β) = 1/5. By the double angle formula:

tan(2β) =
2 tan(β)

1− tan2(β)
=

2/5

24/25
=

5

12
.

tan(4β) =
2 tan(2β)

1− tan2(2β)
=

5/6

119/144
=

120

119
.

We now notice that 120
119 is just 1

119 away from 1, which is tan
(
π
4

)
. Using the formula for

subtraction of angles inside of tangent:

tan
(
4β − π

4

)
=

tan(4β)− tan
(
π
4

)

1 + tan(4β) tan
(
π
4

) =
tan(4β)− 1

1 + tan(4β)
=

1/119

239/119
=

1

239
.

From this, we find the formula:

arctan(1/239) = 4β − π

4
= 4 arctan(1/5)− π

4
.

Hence,
π

4
= 4 arctan(1/5)− arctan(1/239),

and thus,

π

4
= 4

(
1

5
− 1

3 · 53 +
1

5 · 55 − · · ·
)
−
(

1

239
− 1

3 · 2393 +
1

5 · 2395 − · · ·
)
.

This expansion is so useful because the terms in the first infinite sum are easy to calculate
and the terms in the second sum converge extremely fast. Machin used the formula soon after
discovering it to calculate π to 100 decimal places. In the very same year, the symbol “π” was
first used by William Jones to denote the “periphery” of a circle of diameter 1.

Leonhard Euler:

It goes without saying that Leonhard Euler (1707 - 1783) found many formulas for π. It was
one of these formulas that helped him make his name as a mathematician among the rest of
Europe’s mathematicians. At the age of 28, Euler solved the famous Basel Problem: finding
the sum of the squares of the reciprocals of the natural numbers. Here’s how he did it:
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Euler knew the formula

sin(x) = x− 1

3!
x3 +

1

5!
x5 − · · · .

Solving for the equation sin(x) = 0 , we have roots x = 0, ±π, ±2π, · · · . So, making the
assumption that we can treat this infinite polynomial like a finite polynomial, we can write
sin(x)/x as:

sin(x)

x
=
(
1 +

x

π

)(
1− x

π

)(
1 +

x

2π

)(
1− x

2π

)
· · · .

Multiplying this out and collecting all terms with the coefficient x2, we find that the x2 term
of sin(x)/x has coefficient:

−
(

1

π2
+

1

4π2
+

1

9π2
+ · · ·

)
= − 1

π2

∞∑

n=1

1

n2
.

Since the coefficient of x2 in sin(x)/x is −1/3! = −1/6 as shown in the first formula (before
factoring out an x), we conclude that:

−1

6
= − 1

π2

∞∑

n=1

1

n2
, and hence:

π2

6
=

∞∑

n=1

1

n2
.

Johann Zacharias Dase:

Johann Dase (1824-1861) is the most well-known example of a “human calculator”. Though
he was completely unable to comprehend even basic mathematical theory, he could calculate
large quantities in his head extremely rapidly. He used a formula derived similarly to Machin’s
Formula

π

4
= arctan

(
1

2

)
+ arctan

(
1

5

)
+ arctan

(
1

8

)

to calculate 200 digits of π in his head, over the span of two months. After going on tour
around Europe showcasing his ability, he calculated the log of the first million numbers to seven
decimal places, created a table of the hyperbolic functions, and was halfway through factoring
the numbers 7,000,000 - 10,000,000 when he died.

Johann Heinrich Lambert:

Despite all the attention π received over thousands years, it wasn’t until 1767 it was proved that
π was irrational, by Johann Heinrich Lambert (1728-1777). His theorem actually proved
that if x is rational and nonzero, then tan(x) is irrational. Since tan

(
π
4

)
= 1, which is rational,

it follows that π
4 and hence π are irrational. In 1794, Adrien-Marie Legendre (1752-1833)

made the proof more rigorous, and additionally proved that π2 is irrational.

Carl Louis Ferdinand von Lindemann:

In 1882, von Lindemann (1852-1939) proved that π is a transcendental number, i.e., it is not
the root of any polynomial with integer coefficients. Lindemann extended ideas from Charles
Hermite (1822-1901) so that Euler’s Equation eiπ + 1 = 0 implied the transcendence of iπ.
Since i is algebraic, this implied the transcendence of π.

Circle Squarers:

The proof of the transcendence of π finally shut the book on the ancient problem of “squaring the
circle”. The challenge posed by the ancient Greeks was to construct a square with the same area as
a given circle in a finite number of steps using only a compass and ruler. It is shown in a typical
graduate-level algebra class that any constructible lengths under these restraints must be algebraic of
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degree a power of two. If it was possible to square the circle, then the length π would be constructible.
Since π is not algebraic, it is not possible to circle the square.

However, the fact that an act is impossible has never stopped those seeking fame and glory to try it,
and this is no different. Even to this day, mathematics departments occasionally get proofs from those
known as “circle-squarers” or “cyclometers” who claim to have successfully squared the circle.

In 1874, John A. Parker published The Quadrature of the Circle, in which he “proved” the value

π = 20612
6561 ≈ 3.14159427 . . .. This is closest to a value used by Valentinus Otho in 1573. The

argument set forth by Parker amounted to the claim that the circumference should be measured as
the length surrounding the outside of the circle, rather than the length of the boundary of the circle.

In 1897, the Indiana State Legislature almost passed a bill legislating an incorrect value of π.
The construction of π and other geometric claims was a gift from Edwin Goodwin, a physician. In
fact, the set of constructions gave two different values of π - the first was 4

5/4 = 3.2. The second,

though likely accidental, was 16√
3
≈ 9.2376 . . .. Dr. Goodwin promised that with the passing of the

bill, the state of Indiana would have free rights to the knowledge, while other states would have to
pay royalties to publish his findings. The bill was directed to the Committee on Swamp Lands (no
justification given in the legislative records), who then passed it on to the Committee on Education,
which recommended its passage. The bill immediately passed the House unanimously and went to the
Senate. Thankfully, on the day of the vote Professor C.A. Waldo was visiting the legislature on
behalf of the Department of Mathematics of Purdue University on separate business. Upon hearing
the bill read, he quickly intervened, giving the Senators a quick math lesson. The bill was tabled, and
has not been revisited since.

Perhaps the most egregious example of a circle-squarer is Carl Theodore Heisel, who published
The Circle Squared Beyond Refutation, in which he not only claims to square the circle, but also
proves that decimals are inexact, disproves Pythagorean’s Theorem as a special case, and shows the
square roots of the first 100 positive integers to be rational numbers. His claim is π = 3 13

81 = 256
81 , which

is the same value used in the Ahmes Papyrus over 4000 years ago. Heisel paid to have thousands of
copies printed, and he distributed copies of his work to libraries and universities across the country,
to aide in the education of mathematical students. Heisel did not think highly of mathematicians,
saying in his preface:

As a class modern mathematicians do not seem to possess any doubt. They do not question

anything. They blindly accept what is taught in the books as absolute and final. They learn

their mathematics as a parrot learns language by simple imitation.
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The Computer Era

From nearly the instant that the first computer was turned on in the 1950s, programmers and computer
enthusiasts have competed over who can calculate the most digits of π at the fastest speed. They do
however owe a great deal to the mathematicians that continued to develop more efficient means of
computing π. Many of the below algorithms use techniques such as the Fast Fourier Transform to help
speed up arithmetic. The popular algorithm through the 1970s involved Machin’s Formula at a high
precision. Although this was not remarkably efficient, it was the best algorithm of the time.

Srinivasa Ramanujan:

Although Srinivasa Ramanujan (1887-1920) was not alive to see the computer era, much of his
work was not discovered until this time period. Ramanujan had many absolutely astounding
formulas for π. One of the most famous of these, discovered around 1910, is:

1

π
=

2
√
2

9801

∞∑

k=0

(4k)!(1103 + 26390k)

(k!)43964k
.

This equation was used by American mathematician and programmer Bill Gosper (1943-) to
calculate 17 million digits of π in 1985. The use of this equation yields an average of eight
additional correct digits for each iteration of the sum. While this was certainly an advance, it
was still only a linear algorithm.

Arithmetic-Geometric Mean:

The Arithmetic-Geometric Mean (AGM) iteration - made popular by Gauss (1777-1855) -
provides a treasure trove of algorithmic methods to compute irrational numbers. In this section
we develop the AGM, and in the next section we’ll derive the Salamin-Brent Algorithm for
computing digits of π with quadratic convergence.

Between two numbers x and y, the arithmetic mean is
x+ y

2
and the geometric mean is

√
xy.

To find the Arithmetic-Geometric Mean of x and y, denoted AGM(x, y), we first set

a0 := max(x, y), b0 := min(x, y).

Now, we compute the sequences

an+1 :=
an + bn

2
, bn+1 :=

√
anbn.

Remarkably, the sequences {an} and {bn} not only converge but converge to the same limit -
we call this limit the Arithmetic-Geometric Mean of a0 and b0. To see this, first recall that the
geometric mean of two distinct numbers is always strictly less than their arithmetic mean. So:

bn+1 =
√
anbn ≥

√
b2n = bn.

Therefore, the sequence of geometric means is increasing. It is also bounded above by a0, and
therefore the sequence converges. Define AGM(a0, b0) := lim

n→∞
bn. Now, note that

b2n+1

bn
=

√
anbn

2

bn
=
anbn
bn

= an.
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Hence:

lim
n→∞

an = lim
n→∞

b2n+1

bn
=

(
lim
n→∞

bn+1

)2

lim
n→∞

bn
=

(AGM(a0, b0))
2

AGM(a0, b0)
= AGM(a0, b0).

Thus, the sequences {an} and {bn} both converge to the same limit. Since

an+1 =
an + bn

2
<
an + an

2
= an,

we have that
b0 ≤ b1 ≤ b2 ≤ · · · ≤ AGM(a0, b0) ≤ · · · ≤ a2 ≤ a1 ≤ a0.

Salamin-Brent Algorithm:

In 1976, Eugene Salamin (no dates found) and Richard Brent (1946-) independently found
an algorithm using the Arithmetic-Geometric Mean that could quadratically produce correct
digits of π. Here is that algorithm:

Set a0 = 1, b0 =
1√
2
, and s0 = 1

2 . For k = 1, 2, 3, . . ., compute

ak =
ak−1 + bk−1

2
,

bk =
√
ak−1bk−1,

c2k = a2k − b2k,

sk = sk−1 − 2kc2k,

pk =
2a2k
sk

.

Then, pk converges quadratically to π. Successive iterations of this algorithm give
1, 4, 9, 20, 42, 85, 173, . . . correct digits.

Of course, it is true that this algorithm requires the ability to perform high-precision square
root operations. However, using a method called Newton Iteration, we can perform a square
root in about the time it takes to perform three multiplications, making this algorithm must
faster than the previous linear methods.

Below is the proof that the pk sequence in the Salamin-Brent algorithm does converge to π.
The fact that the convergence is quadratic can be found in Salamin’s paper Computation of π
Using Arithmetic-Geometric Mean.

Consider the elliptic integrals:

K(k) =

∫ π/2

0

(
1− k2 sin2(t)

)−1/2
dt,

E(k) =

∫ π/2

0

(
1− k2 sin2(t)

)1/2
dt.
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If there exists k′ such that k2 + k′2 = 1, then we can define two more elliptic integrals:

K ′(k) := K(k′) = K
(√

1− k2
)
,

E′(k) := E(k′) = E
(√

1− k2
)
.

Now, we define symmetric versions of these last two:

I(a, b) =

∫ π/2

0

(
a2 cos2(t) + b2 sin2(t)

)−1/2
dt

=
1

a

∫ π/2

0

(
cos2(t) +

(
b

a

)2

sin2(t)

)−1/2

dt

=
1

a

∫ π/2

0

(
1− sin2(t) +

(
b

a

)2

sin2(t)

)−1/2

dt

=
1

a

∫ π/2

0

(
1−

(
1− b2

a2

)
sin2(t)

)−1/2

dt

= a−1K ′(b/a).

J(a, b) =

∫ π/2

0

(
a2 cos2(t) + b2 sin2(t)

)1/2
dt

= a

∫ π/2

0

(
cos2(t) +

(
b

a

)2

sin2(t)

)1/2

dt

= a

∫ π/2

0

(
1− sin2(t) +

(
b

a

)2

sin2(t)

)1/2

dt

= a

∫ π/2

0

(
1−

(
1− b2

a2

)
sin2(t)

)1/2

dt

= aE′(b/a).

The transformations given by English mathematician John Landen (1719-1790) yield:

I(an, bn) = I(an+1, bn+1),

J(an, bn) = 2J(an+1, bn+1)− anbnI(an+1, bn+1).

So, letting M := AGM(a0, b0),

I(a0, b0) = I(M,M) =
1

M
=
K ′(1)

M
=
K(0)

M
=

π

2M
.

In the Handbook of Mathematical Functions, by Abramowitz and Stegun, they derive

J(a0, b0) =


a20 −

1

2

∞∑

j=0

2jc2j


 I(a0, b0),

where c2n = a2n − b2n.
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The Legendre Relation of elliptic integrals tells us that

K(k)E′(k) +K ′(k)E(k) −K(k)K ′(k) =
π

2
.

Making substitutions and multiplying through by aa′, we have:

a2I(a, b)J(a′, b′) + (a′)2I(a′, b′)J(a, b)− a2(a′)2I(a, b)I(a′, b′) = aa′
π

2
.

Now, set a = a′ = 1 and b = b′ = 1/
√
2. Using the relations above, and defining M :=

AGM(1, 1/
√
2), we see:

π

2
= 2

( π

2M

)



1− 1

2

∞∑

j=0

2jc2j



( π

2M

)

− π2

4M2

π

2
=

(
π2

4M2

)
2


1− 1

2

∞∑

j=0

2jc2j


− 1




2M2

π
= 2


1− 1

2

∞∑

j=0

2jc2j


− 1

π =
2M2

2


1− 1

2

∞∑

j=0

2jc2j


− 1

=
2M2

1−
∞∑

j=0

2jc2j

=
2M2

1

2
−

∞∑

j=1

2jc2j

.

This formula matches the pk terms of the algorithm as k → ∞. Hence, the sequence {pk}
converges to π. �

Jonathan and Peter Borwein:

The brothers Jonathan Borwein (1951-) and Peter Borwein (1953-) together in 1985 found
methods similar to the Salamin-Brent Algorithm, but with faster convergence. The most notable
version is the quartic:

Set a0 = 6− 4
√
2 and y0 =

√
2− 1. For k = 1, 2, 3, . . ., compute

yk+1 =
1− (1− y4k)

1/4

1 + (1− y4k)
1/4

,

ak+1 = ak(1 + yk+1)
4 − 22k+3yk+1(1 + yk+1 + y2k+1).

Then, pk converges quartically to π.

The quartic algorithm was used by Yasumasa Kanada (no dates found) of the University of
Tokyo to set the at-the-time record of 6.4 billion digits. He would later use this method to
calculate up to 5 trillion digits.

It has since been shown that there are mth order approximations for all m. In the paper
Approximations to π via the Dedekind eta function (1996) by J. Borwein and F. Garvan,
they give the following example of a nonic algorithm:
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Set a0 = 1
3 , r0 = (

√
3−1)
2 , and s0 = (1− r30)

1/3. For k = 1, 2, 3, . . ., compute

t = 1 + 2rk

u = [9rk(1 + rk + r2k)]
1/3

v = t2 + tu+ u2

m =
27(1 + sk + s2k)

v

ak+1 = mak + 32k−1(1 −m)

sk+1 =
(1 − rk)

3

(t+ 2u)v

rk+1 = (1 − s3k)
1/3

Now, 1/ak converges nonically to π

It is worth noting that in terms of computer efficiency, the quartic algorithm is the most efficient
of these. Though higher order algorithms converge faster, they are vastly more expensive in
terms of computational time per stage.

The Chudnovsky Brothers:

In 1989, brothers David Chudnovsky (1947-) and Gregory Chudnovsky (1952-) discovered
a formula for π in the spirit of the Ramanujan formula above:

1

π
= 12

∞∑

k=0

(−1)k(6k)!(13591409+ 545140134k)

(3k)!(k!)36403203k+3/2
.

The Chudnovsky Brothers used this formula to calculate over 1 billion digits of π in the same
year. Each iteration produces an average of 14 additional correct digits.

The current record of just over 10 trillion (decimal) digits, set in October 2011 by Alexander
Yee and Shigeru Kondo, used this formula. The total computation time was 191 days on a
very powerful desktop computer. The computation required 44 terabytes of disk space. (For
comparison, it is often claimed that the Library of Congress contains roughly 10 terabytes of
uncompressed print text.)

Rabinowitz-Wagon Algorithm:

In 1990, Stanley Rabinowitz (1947-) and Stan Wagon (1951-) developed a “spigot
algorithm” for π. A “spigot algorithm” is one which can output the digits of π one at a
time (in order only), but which does not use the previous digits as part of the computation of
the new digits. However, an extraordinary amount of memory is needed to run the algorithm
for a large number of digits. Because of this, it is never used for record-breaking attempts.
It’s attractiveness is in the fact that it uses only integer operations (additions, multiplication,
reduction by a modulus), and therefore does not require high-precision floating point operations.

Computing Individual Digits of π:

After decades of finding and improving algorithms for computing π to high precision, all of which
necessitated computing the first d− 1 digits of π in order to compute the dth digit, it came as a great
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surprise in 1996 that it was actually possible to compute individual hexadecimal (i.e., base 16) digits
of π. This ability emerges from the amazing formula:

π =

∞∑

i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
.

The formula was found by Simon Plouffe (1956-) using an algorithm called Pari-Gp (slightly
modified) that searches for integer relations for real numbers. This is similar to the more famous
algorithm named PSLQ. After the formula was found, it was proved as follows:

It’s clear that
xk−1

1− x8
=

∞∑

i=0

xk−1+8i.

Now observe that

∫ 1/
√
2

0

xk−1

1− x8
dx =

∫ 1/
√
2

0

∞∑

i=0

xk−1+8idx =
∞∑

i=0

xk+8i

8i+ k

∣∣∣∣∣

1/
√
2

0

=
1

2k/2

∞∑

i=0

1

16i(8i+ k)
.

Hence,

∞∑

i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
=

∫ 1/
√
2

0

4
√
2− 8x3 − 4

√
2x4 − 8x5

1− x8

Substituting y :=
√
2x:

∫ 1/
√
2

0

4
√
2− 8x3 − 4

√
2x4 − 8x5

1− x8
= 16

∫ 1

0

4
√
2− 2

√
2y3 −

√
2y4 −

√
2y5

16− y8
dy√
2

= 16

∫ 1

0

4− 2y3 − y4 − y5

16− y8
dy = 16

∫ 1

0

(y − 1)(y2 + 2)(y2 + 2y + 2)

(y2 + 2y + 2)(y2 − 2y + 1)(y2 + 2)(y2 − 2)
dy

= 16

∫ 1

0

y − 1

y4 − 2y3 + 4y − 4
dy.

Using partial fraction decomposition:

16y − 16

y4 − 2y3 + 4y − 4
=

4y

y2 − 2
− 4y − 8

y2 − 2y + 2
.

So,

16

∫ 1

0

y − 1

y4 − 2y3 + 4y − 4
dy =

∫ 1

0

4y

y2 − 2
dy −

∫ 1

0

4y − 8

y2 − 2y + 2
dy

= 2 ln(y2 − 2)|10 − 2 ln(y2 − 2y + 2)|10 − 4 arctan(1− y)|10
= 2(iπ − (iπ + ln(2))) + 2 ln(2)− 4

(
0− π

4

)
= π. �

The key value in this formula is the “16i”. This allows us to use the following method to compute the
dth hexadecimal digit of π:
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Let

S :=

∞∑

i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
.

To find the dth hexadecimal digit of S, we can look at the first hexadecimal digit of the fractional part
of 16d−1S which will be denoted by frac(16d−1S).
Define

S1 :=

∞∑

k=0

1

16k(8k + 1)
, S2 :=

∞∑

k=0

1

16k(8k + 4)
,

S3 :=
∞∑

k=0

1

16k(8k + 5)
, S4 :=

∞∑

k=0

1

16k(8k + 6)
.

so that
S = 4S1 − 2S2 − S3 − S4.

Note that for S1:

frac(16d−1S1) = frac

( ∞∑

k=0

16d−1−k

8k + 1

)
= frac

(
d−1∑

k=0

16d−1−k

8k + 1
+

∞∑

k=d

16d−1−k

8k + 1

)

=

[
d−1∑

k=0

16d−1−k mod 8k + 1

8k + 1
mod 1 +

∞∑

k=d

16d−1−k

8k + 1
mod 1

]
mod 1.

A computer can very rapidly calculate the term sum on the left via repeated squaring, modular
reduction, and floating point division. Only a few terms need to be calculated of the sum on the right
to prevent rounding errors. The result is a fraction between 0 and 1. Repeat this process with S2, S3,
and S4, then calculate S from these four quantities, reducing once more mod1 if needed. Then, after
converting to hexadecimal, the first digit of the remaining fractional part is the dth hexadecimal digit
of π.

This scheme is not significantly faster at calculating all digits of π, but it does allow the calculation of
any specific digit in a much shorter time. In 1997, Fabrice Bellard (1972-) improved the algorithm
to yield a ∼43% increase in efficiency. An employee of “Yahoo!” used their distributed computational
abilities to calculate the two quadrillionth binary bit of π - which is 0. The calculation took 23 days
on over 1000 individual machines running in parallel.

At the time that this algorithm was published, the authors had no similar scheme that could compute
the decimal digits of π. They were not able to find any simple formula with “10” in the place of “16”.
However, later in the same year (1996), Plouffe devised a somewhat unrelated and more complicated
method of calculating an arbitrary decimal digit of π using low memory, but in O(n3 log3(n)) time,
which is highly inefficient. Again, Bellard refined the technique to obtain an O(n2) algorithm.
Additional refinements have been made in that time, though finding a specific decimal digit still
remains less efficient than the elegant process described above of finding a specific hexadecimal digit.
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Open Questions

Normality:

Despite thousands of years of investigation, there remain many unsolved questions about the
famous constant π. It took most of the last four millenium to discover that π is both irrational
and transcendental. The next logical step is to determine the normality of π, i.e. whether each
n-length string of digits occurs with limiting frequency b−n in all bases b. All calculations of
digits of π seem to suggest normality. However, in addition to the open question of whether π
is normal in any particular base, it hasn’t even been shown that any particular digit repeats
infinitely often!

The digit-extraction algorithms above have provided a new avenue for recent investigation. It
is thought that the normality of π is equivalent to a “plausible” conjecture in the field of chaos
theory.

Algebraic Independence:

Another famous open question is whether e and π are algebraically independent. It was shown
that {π, eπ,Γ(14 )} is an algebraically independent set over Q in 1996 by Yuri Nesterenko
(1946-).

Irrationality Measure:

The irrationality measure of a real number gives a sense of how closely the number can be
approximated by rationals. For example, algebraic numbers all have irrationality measure 2
(Roth, 1955). However, there are transcendental numbers that also have irrationality type 2:
for example, the constant e.

The first irrationality measure of π was given by Mahler in 1953:

∣∣∣∣π − p

q

∣∣∣∣ >
1

q42
, q ≥ 2.

In 1974, Mignotte improved this:

∣∣∣∣π − p

q

∣∣∣∣ >
1

q20.6
, q ≥ 2.

The Chudnovsky Brothers mentioned above refined this to:

∣∣∣∣π − p

q

∣∣∣∣ >
1

q14.65
, q large.

The current best measure was found by Salikhov in 2008:

∣∣∣∣π − p

q

∣∣∣∣ >
1

q7.6063...
, q large.
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However, in April Alekseyev showed that if the Flint Hills series

∞∑

n=1

csc2(n)

n3

converges, then this implies an irrationality measure

∣∣∣∣π − p

q

∣∣∣∣ >
1

q2.5
,

which is remarkably better than the current estimate. The Flint Hills series appears to converges
upon visual inspection, but this convergence has not been proven. The difficulty is that csc2(n)
can sporadically take very large values.

When considering the intricate and vast history of π - from the Ancient Babylonians and Egyptians all
the way through the computer age - it is not unthinkable that it could be hundreds if not thousands
of years before these open questions are finally settled.



Appendix E

Meng Liu: Certain Trigonometric
Values

Numbering follows “Irrational Numbers”, by Niven.

Definition: Define

Fn(x) =

n−1∏

k=0
gcd(k,n)=1

(
x− e2πik/n

)
. (3.2)

Theorem 3.4: For n ≥ 1, we have that

xn − 1 =
∏

d|n
Fd(x)

the product being over all divisors d of n.

Theorem 3.5: For n ≥ 1, Fn(x) is a monic polynomial of degree ϕ(n) with rational integral coefficients.

Lemma 3.6: Let ω be a primitive nth root of unity. Define f(x) to be the minimal polynomial of ω. If p is
any prime such that gcd(p, n) = 1 and if ρ is any root of f(x) = 0, then ρp is also a root.

Theorem 3.7: The cyclotomic polynomial Fn(x) is irreducible over the field of rational numbers.

Proof: (sketch) We know that f(x) is monic and irreducible. If we can prove that any primitive nth

root of unity is a root of f(x), then it follows that f(x) = Fn(x). Any primitive nth root of unity can
be written as a power of a particular root ω, say ωt, with gcd(t, n) = 1. We can factor t = p1p2 · · · ps
into (possibly not distinct) primes. Now, we have that ωp1 is a primitive nth root of unity, and hence
so is ωp1p2 = ωp1p2 , etc, and hence so is ωt.

By an extension of an earlier argument, we have that

xϕ(n)Fn(x
−1) = Fn(x).

Note that xj and xϕ(n)−j have the same coefficient. Also, for n > 2, we have that ϕ(n) = 2m for some
m ∈ N. Now,

x−mFn(x) = (xm + x−m) + a1(x
m−1 + x1−m) + · · ·+ am−1(x + x−1) + am.

By an identity
xk + x−k = (x+ x−1)(xk−1 + x1−k)− (xk−2 + x2−k).

220
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So, the polynomial x−mFn(x) is a monic polynomial in x+ x−1, which we denote

Ψ(x+ x−1).

This completes the proof. �

Lemma 3.8: Let n > 2 and let m =
ϕ(n)

2
. Then, x−mFn(x) is a monic polynomial in x + x−1, say

Ψn(x + x−1), with integral coefficients. Also, Ψn(x) is irreducible of degree m.

Proof: Suppose toward a contradiction that Ψn(x) = h1(x)h2(x), with deg(h1), deg(h2) > 1, then
denote r := deg(h1), and so deg(h2) = m− r. We have that

Fn(x) = xmΨn(x) = [xrh1(x)][x
m−rh2(x)]

for all n. This contradicts Theorem 3.7. �

Theorem 3.9: (D. H. Lehmer) If n > 2 and gcd(k, n) = 1, then 2 cos

(
2πk

n

)
is an algebraic integer of degee

ϕ(n)

2
. For positive n 6= 4, we have that 2 sin

(
2πk

n

)
is an algebraic integers of degree ϕ(n),

ϕ(n)

4
, or

ϕ(n)

2
,

according to whether gcd(n, 8) < 4, gcd(n, 8) = 4, or gcd(n, 8) > 4.

Proof: Since e2πik/n is a root of Fn(x), it follows that

2 cos

(
2πk

n

)
= e

2πik
n + e−

2πik
n

is a root of Ψn(x). Hence this number is an algebraic intger. By Lemma 3.8, the algebraic degree of
this number is ϕ(n)/2.

Now, observe that

2 sin

(
2πk

n

)
= 2 cos

(
2π(4k − n)

4n

)
.

We will now handle the different cases for
4k − n

4n
.

This fraction is in its lowest terms if n is odd. Otherwise, it reduces to a fraction with a denominator
2n if n ≡ 2 (mod 4) or it reduces to a fraction with denominator ≤ n if n ≡ 0 (mod 4). Let d denote
the degree of the algebraic integer

2 sin

(
2πk

n

)
.

Case 1: (n odd)

We find that d =
ϕ(4n)

2
= ϕ(n).

Case 2: (n ≡ 2 (mod 4))

We find that d =
ϕ(2n)

2
= ϕ(n).

Case 3 (n ≡ 0 (mod 4))

Subcase 3.1: (n ≡ 0 (mod 8))

Now, since k is odd (since n is even), we have that d =
ϕ(n)

2
.
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Subcase 3.2: (n ≡ 4 (mod 8))

Now, we have that the denominator of
4k − n

4n
will be reduced in lowest terms to n/4.

Hence we have d =
ϕ(n)

4
.

This covers all cases. �

Lemma 3.10: If Q is the field of rational numbers, then Q(cos(2θ)) is a subfield of Q(sin(θ)), Q(cos(θ)),
and Q(tan(θ)), for all θ for which tan(θ) exists.

Proof: Rewrite

cos(2θ) = 2 cos2(θ) − 2 = 1− 2 sin2(θ) =
2

1 + tan2(θ)
.

Now, the subfield condition is clear. �

Theorem 3.11: For n > 4 and gcd(k, n) = 1, the degree of tan

(
2πk

n

)
is ϕ(n),

ϕ(n)

2
or

ϕ(n)

4
, according to

whether gcd(n, 8) < 4, gcd(n, 8) = 4, or gcd(n, 8) = 8.



Appendix F

Ying Guo: Transcendence of

∞∑

n=0

α2
n

Definition: Let α ∈ C be algebraic of degree d and let α = α1, α2, . . . , αd be the conjugates of α, i.e. the
roots of the minimal polynomial of α, which we denote Pα(x). We define the house of α to be the positive
real number defined by

|α| := max
i∈[d]

|αi|.

Theorem 1: Let α and β be two algebraic numbers. Then,

|α+ β| ≤ |α|+ |β|,

|αβ| ≤ |α| |β|.

Theorem 2: Let α be a non-zero algebraic number of degree d. Then,

|α| ≥
(
|α|
)−d+1

· (den(α))−d

where den(α) is the smallest integer by which we can multiply α to get an algebraic integer. This exists by
a theorem from a previous class.
Lemma 1: Let Ω := {x ∈ X | |x| < 1}. Then, the function

f(x) =
∞∑

n=0

x2
n

,

which is analytic in Ω, is transcendental.

Theorem 3: Let α be a nonzero algebraic integer with |α| < 1. Then,

f(α) =
∞∑

n=0

α2n

is transcendental.

Proof: Consider f(x), (f(x))2, (f(x))3, . . ., which are power series with rational integer coefficients.
So, we can write

(f(x))k =

∞∑

n=0

bk,nx
n

223
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∞∑

n=0

α2n

with bk,n ∈ Z. Let m ∈ N ∪ {0} be fixed. We will choose a particular value for it later. Now, there
exist polynomials

Pi(x) :=

m∑

n=0

ai,nx
n ∈ Z[x], i = 0, 1, . . . ,m

which are not all zero. There also exists a power series gm(x) such that

Pm(x)(f(x))m + Pm−1(x)(f(x))
m−1 + · · ·+ P1(x)f(x) + P0(x) = xm

2

gm(x). (∗1)

Now, we have that
m∑

i=0

min{m,n}∑

k=0

ai,kbi,n−k = 0 (∗2)

for n = 0, 1, . . . ,m2 − 1. This gives us a set of equations with (m+1)2 unknown values, which is more
than the m2 solutions. Hence there is a nonzero solution in Q. We can multiply through the solution
to clear denominators and get a solution in Z.

Now we claim that gm is not identically zero. To see this, suppose toward a contradiction that it is.
Now, since the Pi are not all zero, we have that f would be algebraic, which contradictions Lemma
1. Hence, we have that

gm(x) = xσhm(x) (∗3)
with σ ≥ 0 and hm(0) 6= 0.

Suppose toward a contradiction that f(α) is algebraic. Let K = Q(α, f(α)) and denote d :=
[
K : Q

]
.

Let a := den(α) be the denominator of α, such that

α =
β

a

where β is an algebraic integer of K. Let b := den(f(α)), such that

f(α) =
r

b

where r is an algebraic integer of K as well.

For integers n ≥ 1, we have that

f
(
x2

n
)
= f(x)−

n−1∑

k=0

x2
k

. (∗4)

For all n ∈ N ∪ {0}, we see that

f
(
α2n
)
=

An
ba2n−1 ,

where An is an algebraic integer of K.

Replacing x by α2n in (∗1) and (∗3), we have that

m∑

i=0

Pi

(
β2n

a2n

)(
An

ba2n−1

)i
= α(m2+σ)2nhm

(
α2n
)
. (∗5)

Denote Bn to be the left-hand side of (∗5). Observe that Bn ∈ K.

Since the Pi have integer coefficients and since deg(Pi) ≤ m, we have that

den(Bn) ≤ am2nbmam2n−1 ≤ bmam2n+1

. (∗6)

Now let n→ ∞ in (∗5). Since hm(0) 6= 0, we have that

Bn ∼ hm(0)α(m2+σ)2n .
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So, for very large n, we have that Bn 6= 0. Additionally, there exists c1 > 0 independent of n such
that for any integer n ∈ N, we have

|Bn| ≤ c1|α|m
22n . (∗7)

By Theorem 2, we get

|Bn| ≤
m∑

i=0






m∑

j=0

(
|ai,j | |α|

j2n
)


(
|f (α2n) |

)i

 .

Let c2 := max
i,j

|ai,j | and c3 := max{2, |α|, |f(α)|}. Then,

|Bn| ≤ c2(m+ 1)2cm2n+1

3 .

(To see this, use (∗4) and Theorem 2.)

Since Bn 6= 0, we can use size inequality, and since Bn ∈ K, we have deg(Bn) ≤ d. Using (∗6) and
(∗7), we have

c1|α|m
22n ≥

(
c2(m+ 1)2cm2n+1

3

)−d+1 (
bmam2n+1

)−d
.

Next we take the logarithm of both sides. This yields

−md log(b) + (−d+ 1) log(c2(m+ 1)2) + 2n
(
−m2 log(α) + 2m(−d+ 1) log(c3)− d log(a)

)
≤ log(c1). (∗8)

Since |α| < 1, we can choose the value of m (which we said we would choose later) such that

−m2 log(|α|) + 2m
(
(−d+ 1) log(c3)− d log(a)

)
> 0.

We can see that as n → ∞, the left-hand side of (∗8) also goes to infinity, which is a contradiction
because it has an upper bound. Therefore, the assumption that f(α) is algebraic is false. This proves
the theorem. �



Appendix G

Ali Uncu: Ramanujan Sums

First we define the Mobius function µ.

Definition: Let n = pa11 · · · parr . Then, define

µ(n) :=

{
(−1)a1+···+ar , a1 = · · · = ar1

0, otherwise
.

Example: µ(2) = −1, µ(4) = 0, and µ(6) = 1.

Definition: An arithmetic function f is said to be periodic with period k if

f(n+ k) = f(n)

for all n ∈ N. The smallest such k is called the fundamental period.

Theorem: For some fixed k ≥ 1, we have

g(n) =

k−1∑

m=0

e2πimn/k =

{
0, k ∤ n
k, k | n .

Proof: Observe that

f(x) =

k−1∑

m=0

xm =





xk − 1

x− 1
, x 6= 1

k, x = 1
. �

Remark: We want to show that we can identify every periodic arithmetic function as a Fourier series.

Theorem: (Lagrange Interpolation Theorem) Let z0, . . . , zk−1 be all distinct complex numbers and let
w0, . . . , wk−1 ∈ C. Then, there exists a unique polynomial P (x) of degree ≤ k− 1 such that P (zm) = wm for
m = 0, 1, . . . , k − 1.

Proof: Consider

Am :=

k−1∏

n=0
m 6=n

(z − zn)

and

P (z) :=

k−1∑

m=0

wm
Am(z)

Am(zm)
.

226
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Thus existence is shown. Assume that Q(z) is a polynomial of degree ≤ k − 1 such that Q(zm) = wm
for allm. Then, P (z)−Q(z) = 0 at k points, and this implies that P = Q, hence uniqueness is shown. �

Remark: Now, we apply this, picking zm := e2πim/k.

Theorem: Given k complex numbers w0, . . . , wk−1, there exists k uniquely determined a0, . . . , ak−1 ∈ C
such that

wm =
k−1∑

m=0

ame
2πimn/k.

Moreover,

am =
1

k

k−1∑

m=0

wme
−2πimn/k.

Proof: The previous theorem gives us the first conclusion. Now, take the expressions for each wr,
multiply each by e−2πimr/k, and sum over m. This gives us

k−1∑

m=0

wme
−2πimr/k =

k−1∑

n=0

an

k−1∑

m=0

e2πim(n−r)/k

︸ ︷︷ ︸

=







0, k ∤ n− r
k, k | n− r

.

We also know |n− r| ≤ k − 1. So,

k−1∑

m=0

wme
−2πimr/k = kar. �

Corollary: Let f be an arithmetic function which is periodic with period k. Then, there exists a unique
arithmetic function g which is periodic with period k such that

f(n) =
∑

m mod k

g(m)e2πimn/k

and

g(m) =
1

k

∑

n mod k

f(n)e−2πimn/k.

Remark: We want to understand the Ramanujan Sum

ck(n) =
∑

m mod k
gcd(m,k)=1

e2πimn/k.

Observe that ck(1) = µ(k) and ck(k) = ϕ(k). We will prove that

ck(n) =
∑

d|gcd(n,k)
dµ

(
k

d

)
.

Theorem: Let

sk(n) :=
∑

d|gcd(n,k)
f(d)g

(
k

d

)
.
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Then, sk(n) is periodic with period k. So,

sk(n) =
∑

m mod k

ak(m)e2πimn/k

where

ak(m) =
∑

d|gcd(m,k)
g(d)f

(
k

d

)
· d
k
.

Proof: Consider (using n = dc)

ak(m) =
1

k

∑

n mod k

sk(n)e
−2πimn/k

=
1

k

k∑

n=1

∑

d|gcd(n,k)
f(d)g

(
d

k

)
e−2πimn/k

=
1

k

∑

d|k
f(d)g

(
k

d

) k/d∑

c=1

e−2πimdc/k

=
1

k

∑

d|k
f

(
k

d

)
g(d)

d∑

c=1

e−2πimc/d, when d | m,

=
1

k

∑

d|k
f

(
k

d

)
g(d)d when d | m. �

Corollary: ck(n) =
∑

d|gcd(n,k)
dµ

(
k

d

)

Proof: Define f(n) = n and g(k) = µ(k). Then,

∑

d|gcd(n,k)
dµ

(
k

d

)
=

k∑

m=1

ak(m)e2πimn/k

where

ak(m) =
∑

d|gcd(m,k)
µ(d) =

⌊
1

gcd(n, k)

⌋
=

{
1, gcd(n, k) = 1
0, gcd(n, k) > 1

.

Observe that ∑

d|n
µ(d) =

⌊
1

n

⌋
.

So,
∑

d|gcd(n,k)
dµ

(
k

d

)
=

∑

m mod k
gcd(m,k)=1

e2πimn/k = ck(m). �

Theorem: Define

sk(n) :=
∑

d|gcd(n,k)
f(d)g

(
k

d

)
.

If f and g are both multiplicative, then

(i) smk(ab) = sm(a)sk(b) whenever gcd(a, k) = gcd(b,m) = 1.
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(ii) sm(ab) = sm(a) if gcd(b,m) = 1.

(iii) smk(a) = sm(a)??? if gcd(n, k) = 1.

Proof: For (i), let gcd(a, k) = gcd(b,m) = 1. Then, we can say that

gcd(ab,mk) = gcd(a,m) gcd(b, k).

Now, we can write (with d = d1d2)

smk(ab) =
∑

d|gcd(ab,mk)
f(d)g

(
k

d

)

=
∑

d|gcd(a,m) gcd(b,k)

f(d)g

(
k

d

)

=
∑

d1|gcd(a,m)
d2|gcd(b,k)

f(d1d2)g

(
mk

d1d2

)

=




∑

d1|gcd(a,m)

f(d1)g

(
m

d1

)




∑

d2|gcd(b,k)
f(d2)g

(
k

d2

)


= sm(a)sk(b).

To see (ii), set k = 1 in (i) and the result follows. To see (iii), set b = 1 in (ii).
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Hongyan Hou: Bernoulli Coefficients

Recall the sums
N∑

n=1

n =
N(N + 1)

2
,

N∑

n=1

n2 =
N(N + 1)(2N + 1)

6
,

N∑

n=1

n3 =
N2(N + 1)2

4
.

This was generalized by Jacob Bernoulli as

(
x

j

)
=
x(x − 1) · · · (x − j + 1)

j!
.

Now, we define Ai,j by

xq =
∑

j≥0

Aq,j

(
x

j

)
(1)

for all q. We have that A0,0 = 1 and A0,j = 0 for all j > 0.

Set x = 0 and consider q ≥ 1. Then,

0 = Aq,0 +
∑

j≥1

Aq,j

(
0

j

)

and so Aq,0 = 0 for all q.

Observe that

Aq,q

(
x

q

)
= Aq,q

x(x− 1) · · · (x− q + 1)

q!

and so Aq,q = q!.

Now we find a general expression of Aq,j . In (1), let x = ℓ = 0, 1, 2, . . . , k ≤ q. Multiply both sides by

(−1)ℓ
(
k

ℓ

)
.
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Taking sums,

k∑

ℓ=0

(−1)ℓ
(
k

ℓ

)
ℓq =

k∑

ℓ=0

(−1)ℓ
(
k

ℓ

) q∑

j=0

Aq,j

(
ℓ

j

)

=

q∑

j=0

Aq,j

k∑

ℓ=0

(−1)ℓ
(
k

ℓ

)(
ℓ

j

)

=

q∑

j=0

Aq,j
∑

j≤ℓ≤k
(−1)ℓ

(
k

ℓ

)(
ℓ

j

)

=

q∑

j=0

Aq,j
∑

j≤ℓ≤k
(−1)ℓ

k!

ℓ!(k − ℓ)!

ℓ!

j!(ℓ− j)!

=

q∑

j=0

Aq,j
k!

j!(k − j)!

∑

j≤ℓ≤k
(−1)ℓ

(k − j)!

(k − ℓ)!(ℓ− j)!

=

q∑

j=0

Aq,j

(
k

j

) ∑

j≤ℓ≤k
(−1)ℓ

(
k − j

ℓ − j

)
.

Now, if j < k¡ then making the substitution λ = ℓ− j, we have

∑

j≤k≤ℓ
(−1)ℓ

(
k − j

ℓ− j

)
=

k−j∑

λ=0

(−1)λ+j
(
k − j

λ

)

= (−1)j
k−j∑

λ=0

(−1)λ
(
k − j

λ

)

= (−1)j(1 − 1)k−j

= 0.

If j = k, then
k∑

ℓ=0

(−1)ℓ
(
k

ℓ

)
ℓq = (−1)kAq,k.

Bernoulli Polynomials

Define

Bγ(y) := γ
∑

j≥0

Aγ−1,+j

(
y

j + 1

)
+ cγ

for γ = 1, 2, . . .. Now,

Bγ(0) = γ
∑

j≥0

Aγ−1,j

(
0

j + 1

)
+ cγ = cγ .

Also,

Bγ(1) = γ
∑

j≥0

Aγ−1,j

(
1

j + 1

)
+ cγ = γAγ−1,0 + cγ = cγ

for γ > 1.

Clearly,

B1(1) =
∑

j≥0

A0,j

(
1

j + 1

)
+ c1 = A0,0 + c1 = 1 + c1.
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Now, recall the identity (
x

j

)
=

(
x+ 1

j + 1

)
−
(

x

j + 1

)

and so

xq =
∑

j≥0

Aq,j

(
x

j

)

=
∑

j≥0

Aq,j

[(
x+ 1

j + 1

)
−
(

x

j + 1

)]

=
1

q + 1
[Bq+1(x+ 1)−Bq+1(x)].

Differentiating both sides yields

qxq−1 =
1

q + 1
[B′
q+1(x+ 1)−B′

q+1(x)].

Observe that
1

q + 1
B′
q+1(x+ 1)−Bq(x+ 1) =

1

q + 1
B′
q+1(x)−Bq(x)

and so
1

q + 1
B′
q+1(x) −Bq(x) = kq

with period 1. Thus
1

q + 1
B′
q+1(x) = Bq(x).

Next,

B1(x) =
∑

j≥0

A0,j

(
x

j + 1

)
+ c1

= A0,0

(
x

1

)
+ c1

= x+ c1.

Hence by the earlier formula,
1

2
B′

2(x) = x+ c1

so with the initial condition B2(0) = c2, we get

1

2
B2(x) =

x2

2
+
c1
1!
x+

c2
2!
.

Iterating this process,
1

q!
Bq(x) =

xq

q!
+
c1
1!

· xq−1

(q − 1)!
+ · · ·+ cq−1

(q − 1)!
· x
1!
.

We find a recursion formula for cq =: Bq which we define to be the Bernoulli numbers. The first few are

B1 = −1

2
, B2 =

1

6
, B3 = 0.
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Frank Patane: Bernoulli Polynomials

Recall: Recall that we define Bernoulli Polynomials by

Bq(x) :=

q∑

k=0

(
q

k

)
Bk(0)x

q−k = (B + x)q

where we write Bq as Bq.

Remark: Observe that

B1(x) = x− 1

2
=⇒ B1 = −1

2
, B2(x) = x(x− 1) +

1

6
=⇒ B2 =

1

6
, B3(x) = x(x− 1)

(
x− 1

2

)
=⇒ B3 = 0, B4(x)

So, we see that Bk := Bk(0) = Bk(1) if k > 1.

Remark: We have that
N−1∑

n=1

nq =
1

q + 1
[Bq+1(N)−Bq+1(1)] , q ≥ 1.

So, for q = 2:
N−1∑

n=1

n2 =
1

3
B3(N) =

1

3
·N(N − 1)

(
N − 1

2

)
.

For q = 3:
N−1∑

n=1

n3 =
1

4
·N2(N − 1)2.

Also,
N−1∑

n=1

n3 =

(
N−1∑

n=1

n

)2

, and we see that for q = 1:
N−1∑

n=1

n =
1

2
·N(N − 1).

Claim: We prove now that (
N∑

n=1

n

)2

=

N∑

n=1

n3.
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Well,

13 + 23 + 33 + · · ·+N3 = 1 + (3 + 5)︸ ︷︷ ︸
23

+(7 + 9 + 11)︸ ︷︷ ︸
33

+ · · ·

= (number of terms)
2

=

(
N∑

n=1

n

)2

.

Remark: We have shown that Bq(1 − x) = (−1)qBq(x), so for x = 0, we see that

B2k+1(1) = −B2k+1(0).

The Zeros of Bq(x)

We have shown that B2k+1(x) for k ≥ 1 has only the zeros 0, 1
2 , 1 in [0, 1]. By the above remark

B2k+1

(
1

2

)
= −B2k+1

(
1

2

)
.

Suppose that B2k+1(x) has 4 distinct zeros 0, α1, α2, 1 in [0, 1]. Then by Rolle’s Theorem,

B′
2k+1(x) = (2k + 1)B2k(x)

has zeros β1, β2, β3, with
0 < β1 < α1 < β2 < α2 < β3 < 1.

If we repeat the process, B2k−1(x) will have two zeros γ1, γ2, with

β1 < γ1 < β2 < γ2 < β3

so it has zeros in [0, 1]. But, B3(x) has degree three, and so this is a contradiction. Therefore, 0, 12 , 1 are all
the zeros of B2k+1(x) for k ≥ 1.

Corollary: B2k(x) −B2k(0) does not change sign in (0, 1).

Proof: Let α be a zero in (0, 1) of B2k(x)−B2k(0). Together with the fact that

B2k(0)−B2k(0) = B2k(1)−B2k(0) = 0

this implies that B2k−1(x) would have four zeros in [0, 1], which is a contradiction.

Now we consider the case 2k + 1. Note that B2k+1(0) = B2k+1(
1
2 ) = 0, and so B2k has a zero β in

(0, 12 ). Thus
(B2k(x) −B2k(0))(B2k(β) −B2k) > 0

and so ((
2k

2

)
B2k−2(0)x

2 +

(
2k

4

)
B2k−4(0)x

4 + · · ·
)
·B2k(0) < 0.

Therefore, B2k−2(0) ·B2k(0) < 0. �

Remark: Also note that for k > 2, the quantity B2k(x)−B2k(0) vanishes at 0 and 1, yet 0, 1 are also roots
of B2k−1(x) (and so are double roots). In particular, B2(x)−B2(0) = x(x− 1). Thus, (B2(x)−B2(0))

2 is a
factor of B2k(x)−B2k(0) for k ≥ 2. Thus, B4(x)−B4(0) = (B2(x)−B2(0))

2.

Fourier Expansion of Bernoulli Polynomials



235

Definition: Define

ψq(t) := Bq(t− ⌊t⌋),

with q ≥ 1 has period 1. Also, ψq(t) for q ≥ 2 is continuous since Bq(0) = B1(q). Then, we have that

ψq(t) =
a
(q)
0

2
+

∞∑

n=1

a(q)n cos(2πnt) + b(q)n sin(2πnt),

where

a(q)n := 2

∫ 1

0

Bq(x) cos(2πnx) dx

and

b(q)n := 2

∫ 1

0

Bq(x) sin(2πnx) dx.

Consider: First consider the case n = 0. Then,

a
(q)
0 = 2

∫ 1

0

Bq(x) dx =
2

q + 1

∫ 1

0

B′
q+1(x) dx = 0.

For n > 0, we can integrate by parts to get

a(q)n = 2






Bq(x) sin(2πnx)

2πn︸ ︷︷ ︸
= 0

∣∣1
0


− 1

2πn

∫ 1

0

B′
q(x) sin(2πnx) dx




= − 2q

2πn

∫ 1

0

Bq−1 sin(2πnx) dx

=
−q
2πn

b(q−1)
n .

Thus, a
(1)
n = 0 for n ≥ 1, since

b(0)n = 2

∫ 1

0

sin(2πnx) dx = 0.

Similarly by integration by parts, we get that

b(q)n =
q

2πn
q(q−1)
n , n ≥ 1.

Lastly,

b(1)n =
−2

2πn
.

Thus for k ≥ 1 and n > 0, we get that

a(2k−1)
n = 0,

b(2k)n = 0,

a(2k)n = (−1)k−1 2(2k)!

(2πn)2k
,

b(2k−1)
n = (−1)k

2(2k − 1)!

(2πn)2k−1
.
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Remark: Concluding,

ψ2k−1(t) =

∞∑

n=1

(−1)k
2(2k − 1)!

(2πn)2k−1
· sin(2πnt)

= 2(−1)k(2k − 1)!

∞∑

n=1

sin(2πnt)

(2πn)2k−1
.

Similarly,

ψ2k(t) = 2(−1)k−1(2k)!
∞∑

n=1

cos(2πnt)

(2πn)2k
.
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Todd Molnar: The
Sathe/Selberg-Delange Theorem

Lemma 1: If

D(s) :=

∞∑

n=1

dn
ns

is absolutely convergent for ℜ(s) = σ > σa and c > σa, then for x > 0,

1

2πi

∫ c+i∞

c−i∞
D(s) · x

s

s
ds =





∑
n≥x dn, x 6∈ Z

dx
2

+
∑

n<x

dn, x ∈ Z .

Theorem 2: (Hankel’s Formula) Let H be the contour which travels along y = −1 from x = −r toward
the y-axis, then when it intersects a circle centered at zero, it follows it until it is on the line x = r (on the
left-hand side of the y-axis), then it follows this horizontal line back to −∞. Then, for all z ∈ C, we have
that

1

Γ(z)
=

1

2πz

∫

H

s−zes ds

where Γ(z) =
∫∞
0 e−ttz−1 dt.

Theorem 3: (Cauchy’s Estimate) Let f be analytic in a circle centered at a ∈ C of radius R, and assume
|f(z)| ≤M in this circle; then:

|f (n)(a)| ≤ n! ·M
Rn

.

Theorem 4: For all s ∈ C such that ℜ(s) =: ω > 0, we have that ζ(s) is a meromorphic function, with a
simple pole at s = 1 with residue 1. Furthermore, there exists c > 0 such that ζ(s) 6= 0 in the region:

ω ≥ 1− c

1 + log |t| . (1)

Definition: Let Z(s; z) := (s − 1)zζz(s) · s−1, and choose the principal branch of the complex logarithm,
such that Z(1; z) = 1.

Lemma 2: Z(s; z) is holomorphic in the disk |s− 1| < 1 and

Z(s; z) =
∞∑

j=0

γj(z) ·
(s− 1)j

j!
, (2)
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where the γj(z) are entire functions of z ∈ C, such that for all A > 0 and ǫ > 0:

γj(z)

j!
<<A,ǫ (1 + ǫ)k, |z| ≤ A. (3)

Definition: Let D denote the simply connected domain obtained by deleting the real segment [1− c, 1] from
the region in (1), admitting the analytic continuation:

ζz(s) =
s · Z(s; z)
(s− 1)z

, s ∈ D.

Remark: For all A > 0, we have that

|ζz(s)| <<A (1 + log |t|)A, for |z| ≤ A, s ∈ D, and |s− 1| >> 1. (4)

Definition: Let z ∈ C, c0 > 0, 0 < δ ≤ 1, M > 0. We sat that

F (s) :=

∞∑

n=1

an
ns

is of type P (z, c0, δ,M) if G(s; z) = F (s)ζz(s) may be continued to a holomorphic function for σ ≥ 1 −
c0

1 + log |t| and

|G(s; z)| ≤M(1 + |t|)1−δ (5)

in this domain.

Definition: If F (s) is of type P (z, c0, δ,M) and there exists a sequence of positive real numbers {bn}n∈N such

that |an| ≤ bn and if
∞∑

n=1

bn
ns

is of type P (w, c0, δ,M), some w ∈ C, we say that F (s) is of type T (z, w, c0, δ,M).

Definition: In the domain where G(s; z) is holomorphic, set

G(k)(s; z) :=
∂k

∂sk
G(s; z)

and

λk(z) :=
1

Γ(z − k)
·
∑

h+j=k

1

h! · j!G
(k)(1; z) · γj(z).

Theorem 5: Let F (s) =

∞∑

n=1

an
ns

be a Dirichlet series of type T (z, w, c0, δ,M). For x ≥ 3, N ≥ 0, A > 0,

|z| ≤ A, and |w| ≤ A, we have

∑

n≤x
an = x · logz−1(x) ·

[
N∑

k=0

λk(z)

logk(x)
+O (M ·Rn(x))

]

where

Rn(x) = e−c1
√

log(x) +

(
c2N + 1

log(x)

)N+1

.

The constants c1, c2 > 0 and the implicit constant in the Landau Symbol depend at most on c0, δ, A.
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Definition: Define

ω(n) :=
∑

p|n
1.

Observe that if gcd(a, b) = 1, then ω(ab) = ω(a) + ω(b). Therefore,

zω(ab) = zω(a)zω(b).

Define and calculate

F1(s; z) :=

∞∑

n=1

zω(n)

n2

=
∏

p prime

(
1 +

z

ps
+

z

p2s
+

z

p3s
+ · · ·

)

=
∏

p prime

[
1 + z

(
1

1− p−s
− 1

)]

=
∏

p prime

[
1 + z

(
p−s

1− p−s

)]

=
∏

p prime

[
1 +

z

ps − 1

]
.

Now, using the following identity for the Riemann Zeta Function

ζ(s) :=
∞∑

n=1

1

ns
=

∏

p prime

(
1− 1

ps

)−1

we have that

G1(s; z) = F1(s; z)ζ
−z(s)

=
∏

p prime

(
1 +

z

ps − 1

)(
1− 1

ps

)z

=
∞∑

n=1

b1,z(n)

ns
.

Note that b1,z(n) is multiplicative.

Next,

1 +
∞∑

v=1

b1,z(p
ν)ξν =

(
1 +

ξz

1− ξ

)
(1− ξ)z , |ξ| < 1.

In particular,

b1,z(p) = 0. (1∗)

Cauchy’s Estimate for |z| ≤ A gives

|b1,z(pν)| ≤M · 2ν/2, ν ≥ 2. (2∗)

Where

M := sup
|z|≤A
|ξ|≤ 1√

2

∣∣∣∣
(
1 +

ξz

1− ξ

)
(1− ξ)z

∣∣∣∣ .
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From (1∗) and (2∗), for σ > 1
2 , we get that

∑

p prime

∞∑

ν=1

|b1,z(pν)|
pνσ

≤ 2 ·M
∑

p prime

1

pσ(pσ −
√
2)

≤ c ·M
σ − 1

2

,

where c > 0 is a constant.

Therefore, G1(s; z) is absolutely convergent for σ > 1
2 , and in the case σ > 3

4 , it follows that

G1(s; z) <<A 1.

This completes the theorem. �

Corollary: If θ ∈ R rQ, then {ω(n) · θ}n∈N is uniformly distributed modulo 1.

Proof: For all A > 0, there exists c1 = c1(A) and c2 = c2(A) such that uniformly for x ≥ 3, N ≥ 0,
and |z| ≤ A, we have

∑

n≤x
zω(n) = x logz−1(x)

[
N∑

k=0

λk(z)

logk(x)
+OA

(
e−c1

√
log(x) +

(
c2N + 1

log(x)

)N+1
)]

. (3∗)

From (3∗) it follows that using z = e2πihθ and θ ∈ RrQ and h 6= 0, we get |z| = 1 and z 6= 1. Hence,

lim
x→∞

1

x

∑

n≤x
zω(n).

By Weyl’s Criterion, this shows that {ω(n)θ}n∈N is uniformly distributed modulo 1. �

Proof of Theorem 5: Let 0 < c < c0 such that ζ(s) 6= 0 in σ ≥ 1− c

1 + log |t| by Theorem 4. Then, by

(4) and (5), we have that

F (s) <<A M(1 + log |t|)A(1 + |t|)1−δ <<A,δ M(1 + |t|)1−δ/2 (6)

uniformly for s ∈ S with |s− 1| >> 1 and |z| ≤ A. Setting

A(x) :=
∑

n≤x
an

we apply Lemma 1 to see that

∫ x

0

A(t) dt =
1

2πi

∫ K+i∞

K−i∞
F (s) · xs+1

s(s+ 1)
ds,

with K = 1 +
1

log(x)
. Let T > 1. Consider the contour integral given by the residue theorem:

iR

R
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The circle about s = 1 has radius r =
1

2 log(x)
and σ(T ) = 1 − c

2(1 + log |t|) . By (6), contributions from

[K ± iT,K ± i∞] are <<A,δ M · x2 · T−δ/2, and the same holds true for [σ(T )± iT,K ± iT ].

With σ = σ(T ) and T = exp

(√
c

δ
log(x)

)
and x ≥ x0, it follows that

∫ x

0

A(t) dt = Φ(x) +O(Mx2e−c3
√

log(x)) (7)

and so

Φ(x) =
1

2πi

∫

C

F (s) · xs+1

s(s+ 1)
ds.

Thus,

Φ′(x) =
1

2πi

∫

C

F (s) · x
s

s
ds,

and

Φ′′(x) =
1

2πi

∫

C

F (s) · xs−1 dx.

The result follows from some further calculation which is not included in this talk. �
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