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Chapter 1

Course Notes

1.1 Day 1 - 08/29/12

1.1.1 First Definitions

Definition: Let F be a field. A Lie algebra over F is a vector space L with a product

[·, ·] : L× L→ L

such that:

(L1) [·, ·] is bilinear.

(L2) [x, x] = 0 for all x ∈ L.

(L3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (This is the Jacobi Identity.)

Remark: The word “algebra” in the term “Lie algebra” has no relation to the concept of an “algebra”
developed in Dummit & Foote or Hungerford. This is more of a historical use of the word.

Definition: We define a Lie ideal I to be a Lie subalgebra (i.e., a subset closed under [·, ·]) such that [x, a] ∈ I
for all x ∈ L and a ∈ I.

1.1.2 Some Examples

Examples:

(1) gl(V ) := EndF (V ), where V is an F -vector space. The operation is

[A,B] := AB −BA

where multiplication can be viewed as either composition of endomorphisms or matrix multiplication.

We now verify the axioms:

(L1) Bilinearity:

[A+ λC,B] = (A+ λC)B −B(A+ λC)

= AB + λCB −BA− λBC
= [A,B] + λ[C,B].

1



2 CHAPTER 1. COURSE NOTES

(L2) This is obvious since AA−AA = 0.

(L3) Jacobi Identity:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]]

= A(BC − CB)− (BC − CB)A+B(CA−AC)− (CA−AC)B + C(AB −BA)− (AB −BA)C

= ABC −ACB −BCA+ CBA+BCA−BAC − CAB +ACB + CAB − CBA−ABC +BAC

= 0.

(2) Sl(V ) := {A ∈ gl(V ) | tr(A) = 0}. The function tr : gl(V ) → F computes the trace of a matrix.
Observe that tr(AB) = tr(BA). We derive that dim(Sl(V )) = (dim(V ))2 − 1.

For example, a basis of Sl3 is: 0 1 0
0 0 0
0 0 0

 ,

 0 0 1
0 0 0
0 0 0

 ,

 0 0 0
0 0 1
0 0 0

 ,

 0 0 0
1 0 0
0 0 0

 ,

 0 0 0
0 0 0
1 0 0

 ,

 0 0 0
0 0 0
0 1 0

 ,

 1 0 0
0 −1 0
0 0 0

 ,

 0 0 0
0 1 0
0 0 −1

 .

(3) Sp(2`, F ), where V is a finite dimensional F -vector space with nonsingular alternating bilinear form

〈·, ·〉 : V × V → F

such that 〈v, v〉 = 0 for all v ∈ V . By bilinearity:

0 = 〈v + w, v + w〉 = 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉 = 〈v, w〉+ 〈w, v〉

and so we deduce that
〈v, w〉 = −〈w, v〉.

Lemma: In the above definition, V must have even dimension and additionally V has a basis
v1, w1, · · · , vn, wn such that the form has the matrix

(
0 1
−1 0

)
0 0 0

0

(
0 1
−1 0

)
0 0

0 0
. . . 0

0 0 0

(
0 1
−1 0

)



.

Proof: We use induction on dim(V ). Pick nonzero v ∈ V . Then, by nonsingularity, there exists
w ∈ V such that 〈v, w〉 6= 0. By scaling, we can assume without loss of generality that 〈v, w〉 = 1.
Then, let V1 be the space spanned by v and w. So on V1 the function 〈·, ·〉

∣∣
V1×V1

has matrix(
0 1
−1 0

)
.
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Hence V1 is a nonsingular subspace, and it follows that V = V1 ⊕ V ⊥1 , where

V ⊥1 := {x ∈ V | 〈x, u〉 = 0, ∀u ∈ V1}.

Then, V ⊥1 is also nonsingular and so induction applies. �

We see that we can also write

Sp(2`, F ) =

A ∈ gl2` | AX +XAt = 0, for X =

 1
I`

I`


for matrices X of a particular form which I need to check.

(4) G(2`+ 1, F ) :=

{
A ∈ gl2`+1 | AX = XAt = 0, for X =

(
I`

−I`

)}
.

(5) G(2`, F ) :=

{
A ∈ gl2` | AX = XAt = 0, for X =

(
I`

I`

)}
.

The examples (2)−(5) are called types A`, C`, B`, D`, respectively.

Suggested Homework: Try to find some bases for these examples. They have a nice block form.

1.2 Day 2 - 08/31/12

1.2.1 Other Sources of Lie Algebras

Definition: An F -algebra is an F -vector space A with a bilinear multiplication operation A×A→ A.

Definition: A derivation of A is a linear map d : A→ A satisfying the Leibniz rule:

d(ab) = d(a)b+ ad(b)

for all a, b ∈ A.

Construction: Let Der(A) ⊆ EndF (A) be the set of all derivations of A. It is actually a subspace of
EndF (A). Define

[·, ·] : Der(A)×Der(A)→ Der(A)

by
[d, d′] = d ◦ d′ − d′ ◦ d

so that
[d, d′](a) = d(d′(a))− d′(d(a)).

We now check that this makes Der(A) a Lie subalgebra of EndF (A).

[d, d′](ab) = d(d′(ab))− d′(d(ab))

= d(d′(a)b+ ad′(b))− d′(d(a)b+ ad(b))

= d(d′(a))b+ d′(a)d(b) + d(a)d′(b) + ad(d′(b))− d′(d(a))b− d(a)d′(b)− d′(a)d(b)− ad′(d(b))

= d(d′(a))b+ ad(d′(b))− d′(d(a))b− ad′(d(b))

= [d, d′](a)b+ a[d, d′](b).
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Remark: If A is a Lie Algebra, then for each x ∈ A, the map

adx : A→ A

defined by
adx(a) := [x, a]

is a derivation. To show this we check the Leibniz rule (we start with the rule and work toward a true
statement):

adx([a, b]) = [adx(a), b] + [a, adx(b)]

[x, [a, b]] = [[x, a], b] + [a, [x, b]]

[x, [a, b]]− [[x, a], b]− [a, [x, b]] = 0

[x, [a, b]] + [b, [x, a]] + [a,−[x, b]] = 0

[x, [a, b]] + [b, [x, a]] + [a, [b, x]] = 0.

The last line is just the Jacobi identity. So, the Jacobi identity implies that adx is a derivation of the Lie
bracket. These derivations are called inner derivations.

1.2.2 Lie Ring of a Group

Definition: Let G be a group. First recursively define the operation:

[x1, x2, . . . , xn] := [[x1, . . . , xn−1], xn].

We define the lower central series by

L0(G) := G, L1(G) := [G,G], L2(G) := [L1(G), G], · · · Li(G) = [Li−1(G), G].

Note that L0(G) ⊇ L1(G) ⊇ L2(G) ⊇ · · · .

Lemma: Let x, x′ ∈ Li(G), let y, y′ ∈ Lj(G), and let z ∈ Lk(G). Then,

(i) [Li(G), Lj(G)] ⊆ Li+j+1(G)

(ii) [x, y] = [y, x] (mod Li+j+1(G))

(iii) [xx′, y] = [x, y][x′, y] (mod Li+j+1(G)) and [x, yy′] = [x, y][x, y′] (mod Li+j+1(G))

(iv) [x, y, z][y, z, x][z, x, y] = 0 (mod Li+j+k+1(G))

(v) [x, y]a = [xa, y] = [x, ya] (mod Li+j+1(G))

Remark: Consider

L :=

∞⊕
i=0

Li(G)/Li+1(G).

Then we can define:

[·, ·] : (Li(G)/Li+1G)× (Lj(G)/Lj+1(G))→ Li+j+1(G)/Li+j+2(G)

by
[x+ Li+1(G), y + Lj+1(G)] := [x, y] + Li+j+2.

The properties of the Lemma show us that the operation is a ring. Parts (iii) and (iv) give bilinearity. Part
(iv) gives the Jacobian Identity.
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1.2.3 Ideals, Homomorphisms, etc.

Definition: Let L be a Lie algebra over F . A subspace I ⊆ L is a Lie ideal if [I, L] ⊆ I.

Definition: The center is defined as

Z(L) := {x ∈ L | [x, y] = 0 for all y ∈ L}.

We say that L is abelian if Z(L) = L.

Remark: The derived subgroup

[L,L] := spanC{[x, y] | x, y ∈ L}

is an ideal.

Warning: Just like with groups, the set of commutator elements is not itself an ideal!

Definition: Say L is simple if its only ideals are L and {0}.

Definition: If X is a subspace of L, the normalizer of X is

NL(X) := {y ∈ L | [y,X] ⊆ X}.

This is a Lie subalgebra of L.

Definition: If X is a subspace of L, the centralizer of X is

CL(X) := {y ∈ L | [y,X] = {0}}.

This is a Lie subalgebra of L.

Definition: If L and L′ are Lie algebras over F , then a linear map φ : L→ L′ is a Lie algebra homomorphism
if and only if

[φ(x), φ(y)] = φ([x, y])

for all x, y ∈ L.

Remark: If φ is a homomorphism of Lie algebras, then Ker(φ) is an ideal. Conversely, if I is an ideal, then
we can construct the quotient Lie algebra L/I by defining

[x+ I, y + I] := [x, y] + I.

This gives a homomorphism ψ such that Ker(ψ) = I via the natural projection L→ L/I.
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1.3 Day 3 - 09/05/12

1.3.1 Representations

Definition: A representation of a Lie algebra L is a Lie algebra homomorphism from L to gl(V ) for some
vector space V .

The adjoint representation is the map ad : L → Der(L) ⊆ gl(V ) defined by x 7→ adx. Recall that adx(y) :=
[x, y]. To verify that this is a representation, we must have

[adx, ady] = ad[x,y] .

Computing this,

[adx, ady](z) = adx(ady(z))− ady(adx(z))

= [x, [y, z]]− [y, [x, y]],

and
ad[x,y](z) = [[x, y], z].

The equality of these two sides follows from the Jacobi identity.

We can see that the kernel of ad is the center of L.

Definition: Suppose x ∈ L such that the derivation adx is a nilpotent (alternatively, “x is an ad-nilpotent”)
linear transformation of L. Let k be such that (adx)k = 0 (this multiplication is composition). Define

exp(adx) := 1 + adx +
(adx)

2

2
+ · · ·+ (adx)

k−1

(k − 1)!
.

It is clear that exp(adx) ∈ GL(L) (i.e., it’s invertible). We claim that exp(adx) ∈ Aut(L), i.e.,

[exp(adx)(y), exp(adx)(z)] = exp(adx)([y, z]).

Let δ be an arbitrary nilpotent derivation of L. Then,

δ([x, y]) = [δ(x), y] + [x, δ(y)]

δ2([x, y]) = [δ2(x), y] + [δ(x), δ(y)] + [δ(x), δ(y)] + [x, δ2(y)]

... =
...

δn

n!
([x, y]) =

n∑
i=0

[
1

i!
δi(x),

1

(n− i)!
δn−1(y)

]
.

This is called the Leibniz rule. So, assuming that δk = 0, we have

[exp(δ)(x), exp(δ)(y)] =

k−1∑
i=0

δi(x)

i!
,

k−1∑
j=0

δj(y)

j!


=

2k−2∑
n=0

(
n∑
i=0

[
δi(x)

i!
,
δn−1(y)

(n− i)!

])

=

2k−2∑
n=0

δn([x, y])

n!

=

k−1∑
n=0

δn([x, y])

n!
(since δk = 0)

= exp(δ)([x, y]).
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Example: Let L := SL2. Consider

x :=

(
0 1
0 0

)
, y :=

(
0 0
1 0

)
, h :=

(
1 0
0 −1

)
.

We have

[x, x] = 0,

[x, h] =

(
0 1
0 0

)(
1 0
0 −1

)
−
(

1 0
0 −1

)(
0 1
0 0

)
=

(
0 −2
0 0

)
= −2x,

[x, y] =

(
0 1
0 0

)(
0 0
1 0

)
−
(

0 0
1 0

)(
0 1
0 0

)
=

(
1 0
0 −1

)
= h.

So,

adx : x 7−→ 0

h 7−→ −2x

y 7−→ h

This gives the matrix (where columns 1, 2, and 3 represent x, h, and y):

adx =

 0 −2 0
0 0 1
0 0 0

 .

Observe hence that (adx)3 = 0 and so

exp(adx) = 1 + adx +
(adx)

2

2

=

 1 0 0
0 1 0
0 0 0

+

 0 −2 0
0 0 1
0 0 0

+

 0 0 −1
0 0 0
0 0 0


=

 1 −2 −1
0 1 1
0 0 1

 .

Definition: The subgroup of Aut(L) generated by the elements exp(adx) for adx nilpotent is called the
subgroup of inner automorphisms. This subgroup is normal: if φ ∈ Aut(L) then,

φ(adx)φ−1 = adφ(X)

and so
φ(exp(adx))φ−1 = exp(adφ(x)).

Remark: Just like group theory, we can define solvable and nilpotent Lie algebras.

Definition: Let L be a Lie algebra. Set L(0) := L, L(1) := [L,L], L(2) := [L(1), L(1)], . . . (where we are using
commutator notation). Then we say that L is solvable if L(n) = 0 for some n.

Example: Consider the upper triangular algebra. Then, L(1) is the set of strictly upper triangular matrices,
and L(2) is the set of upper triangular matrices with both the diagonal and the next diagonal above it are all
zero, etc. Following this, L(n−1) is the set of matrices which are zero in all entries except the upper right-most
element, and L(n) = 0.
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Proposition:

(a) If L is solvable then so are all homomorphic images and subalgebras.

(b) If I is a solvable ideal such that L/I is solvable, then L is solvable.

(c) If I, J are solvable ideals then I + J is solvable.

Definition: The radical of L, denoted Rad(L), is the unique maximal solvable ideal of L (given by part (c)
in the above Proposition).

Definition: If Rad(L) = 0 then we say that L is semisimple.

Note: For any Lie algebra L, the quotient L/Rad(L) is semisimple.

1.4 Day 4 - 09/07/12

1.4.1 Nilpotency

Definition: Define L0 := L, L1 := [L,L], . . . , Li := [L,Li−1]. This is called the lower central series. We
say that L is nilpotent if Ln = 0 for some n.

Example: Abelian Lie algebras L are nilpotent because L1 = 0.

Example: As we showed in class previously, the Lie algebra of all strictly upper triangular matrices of a
particular size is nilpotent.

Proposition: Let L be a Lie algebra.

(a) If L is nilpotent then so are all subalgebras of L and all homomorphic images of L.

(b) If L/Z(L) is nilpotent, then so is L.

(c) If L is nilpotent, then Z(L) 6= 0.

Remark: If L is nilpotent and x ∈ L then adx is a nilpotent linear transformation.

Theorem: Let L be a subalgebra of gl(V ) with V 6= 0 and V finite dimensional. If L consists of nilpotent
endomorphisms, then there exists a nonzero v ∈ V such that Lv = 0.

Proof: We proceed by induction on dim(L). If dim(L) = 0 or dim(L) = 1 then the theorem is trivial.
Now suppose that K 6= L is a subalgebra of L. We first prove a lemma.

Lemma: If x ∈ gl(V ) is a nilpotent endomorphism, then adx is nilpotent.

Proof: Write
adx(y) = [x, y] = xy − yx = λx(y)− ρx(y).

So, λx ∈ End(gl(V )) is left multiplication and ρx ∈ End(gl(V )) is right multiplication.

Observe that λx and ρx are nilpotent and they commute. So, adx = λx − ρx is also
nilpotent. �



1.4. DAY 4 - 09/07/12 9

Applying the lemma to K, we see that K acts on L as an algebra of nilpotent linear transformations,
hence it also asks on L/K. By induction, there exists x+K ∈ L/K which is killed by K, i.e., [y, x] ∈ K
for all y ∈ K. Since x 6∈ K and x ∈ NL(K), we have NL(K) > K.

Now suppose that K is a maximal sub algebra of L. Then, we must have NL(K) = L, i.e., K is an
ideal of L. Also note that K has codimension 1. This is analogous to the case of p-groups, where any
maximal subgroup must have index p.

So, L = K + Fz for some z 6∈ K. By induction we have that the set

W := {v ∈ V | Kv = 0}

is nontrivial. Pick a nonzero w ∈W . Since K is an ideal, we can prove that LW ⊆W :

Suppose w ∈W and x ∈ L. We want to show that xw ∈W . Let y ∈ K. We need to check that
yxw = 0. Observe that

yxw = xyw − [x, y]w.

We have that yw = 0 and so xyw = 0. Also, [x, y] ∈ K since K is an ideal. Hence, [x, y]w = 0.
Therefore yxw = 0, which shows that LW ⊆W .

So, z acts as a nilpotent endomorphism of W . Thus, there exists v ∈W such that zv = 0. Now,

Lv = Kv + Fzv = 0 + 0 = 0. �

Engel’s Theorem: If all elements of L are ad-nilpotent (i.e., adx is nilpotent for all x ∈ L), then L is
nilpotent.

Proof: By the previous Theorem, there exists a nonzero x ∈ L such that (adL)x = 0, i.e., x ∈ Z(L).
So, Z(L) 6= 0. Hence, L/Z(L) consists of ad-nilpotent elements. So by induction, L/Z(L) is nilpotent.
Therefore L is nilpotent. �

Warning: A matrix in gl(V ) may be ad-nilpotent without being nilpotent. For example, I.

Corollary: If L is a subalgebra of gl(V ) which consists of nilpotent endomorphism, then there exists a flag
of L-invariant subspaces

0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ · · · ⊂ Vn

such that

LVi ⊆ Vi−1

for all i.

Proof: Observe that L acts on V . So, there exists v 6= 0 such that Lv = 0. Set V1 = 〈V 〉 and now L
acts on V/V1. �

Remark: This corollary implies that there exists a basis of V such that L is a subalgebra of n(n, F ) (the
algebra of strictly upper triangular matrices of size n.
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1.5 Day 5 - 09/10/12

1.5.1 Lie’s Theorem

Lie’s Theorem Assume F is algebraically closed of characteristic zero. Let L be a solvable subalgebra of
gl(V ), for V finite dimensional. If V 6= 0 then V contains a common eigenvector for all endomorphisms in L.

Proof: Assume dim(L) 6= 0. We proceed by induction on dim(L). Since L is solvable, we have that
[L,L] $ L. Any subalgebra of L containing [L,L] is automatically an ideal. So, there exists an ideal
K ⊆ L such that K ⊃ [L,L] and codim(K) = 1.

By induction, since K is solvable, there exists v ∈ V r {0} which is a common eigenvector for K, i.e.,
there exists λ : K → F such that for all y ∈ K,

yv = λ(y)v.

Define
W := {w ∈ V | yw = λ(y)w ∀y ∈ K} 6= 0.

Note that W is a subspace of V .

We want to show that L(W ) ⊆W . Let w ∈W , x ∈ L, y ∈ K. We need to test the case when xw ∈W .

yxw = yxw − xyw + xyw

= [y, x]w − xλ(y)w

= λ(y)xw + [y, x]w

= λ(y)xw + λ([y, x])w

So, we need λ([y, x])w = 0 to show that xw ∈W .

Let n be the smallest possible integer such that the set

{w, xw, . . . , xnw}

is linearly dependent. (Such an n exists because V is finite dimensional.) Set

W0 := 0, W1 := 〈w〉, . . . , Wi := 〈w, xw, . . . , xi−1w〉

for 0 ≤ i ≤ n+ 1. So,
dim(Wi) = i

and of course Wn+1 = Wn. We now claim that y leaves each Wi invariant.

yxiw = yxxi−1w

= yxxi−1w − xyxi−1w + xyxi−1w

= [y, x]︸ ︷︷ ︸xi−1w=: z + xyxi−1w︸ ︷︷ ︸
∈ x(yWi)⊆xWi⊆Wi+1

= zxi−1w − xi−1zw + xi−1zw + xyxi−1w

= [z, xi−1]w︸ ︷︷ ︸
∈ K

+xi−1zw︸ ︷︷ ︸
∈ K

+xyxi−1w

So, y leaves each Wi invariant and stabilizes the chain 0 = W0 ⊆W1 ⊆ · · · ⊆Wn.

Now we claim that yxiw = λ(y)xiw (mod W )i.

yxiw = yxxi−1w

= yxxi−1w − xyxi−1w + xyxi−1w

= [y, x]xi−1w + λ(y)xiw

= [y, x]xi−1w − xi−1[y, x]w + xi−1[y, x]w + λ(y)xiw

= [[y, x], xi−1]w + xi−1[y, x]w + λ(y)xiw ∈W.
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So, the action of y on Wn has the matrix

y ∼


λ(y) ∗

λ(y)
. . .

0 λ(y)


where the ith column represents Wi.

Now, trWn
(y) = nλ(y) for all y ∈ K. In particular, it holds for elements of the form [x, z] with x

as above and z ∈ K. But, x and z stabilize Wn, and so [x, z] acts on Wn as the commutator of two
elements of End(Wn), so that

trWi([x, z]) = 0.

So,
nλ([x, z]) = 0

for all z ∈ K, and hence
λ([x, z]) = 0

for all z ∈ K, as required. �

Corollary: Let L be a solvable subalgebra of gl(V ), with dim(V ) = n <∞. Then, L satisfies a flag

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn

of subspaces of V with dim(Vi) = i.

Proof: Use the theorem above inductively, modding out by dimension 1 subspaces and then pulling
the result back. �

Remark: Let L be solvable. If we have the adjoint representation ad : L → gl(L) 3 adL, then adL is a
solvable subalgebra of gl(L). So by the previous corollary, L stabilizes a chain

0 = L0 ⊆ L1 ⊆ · · · ⊆ Ln

of ideals of L.

Corollary: Let L be solvable of dimension n. Then, x ∈ [L,L] implies that adL x is nilpotent. In particular,
[L,L] is nilpotent.

Proof: By the previous corollary, L has a basis such that ad y ∈ t(n, F ) (upper triangular matrices
of size n) for all y ∈ L. Hence, if x ∈ [L,L] then adx ∈ n(n, F ) (strictly upper triangular matrices
of size n). So, adx is nilpotent, and so ad[L,L] x is nilpotent. Then, by Engel’s Theorem, [L,L] is
nilpotent. �

1.6 Day 6 - 9/12/12

1.6.1 Jordan-Chevalley Decomposition (additive version)

Proposition: Let F be algebraically closed and of characteristic zero. Let V be a finite dimensional vector
space, and let x ∈ End(V ). Then

(a) There exist unique xs, xn ∈ End(V ) such that x = xs + xn where xs is semisimple, xn is nilpotent, and
both xs and xn commute with any endomorphism which commutes with x.
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(b) There exist polynomials p(T ), q(T ) with zero constant term, such that xs = p(x) and xn = q(x).

(c) If A ⊆ B ⊆ V are subspaces and x maps B into A, then so do xs and xn.

Proof: Let a1, . . . , ar be the distinct eigenvectors with multiplicities m1, . . . ,mr. So, the characteristic
polynomial of x is ∏

i

(T − ai)mi ∈ F [T ].

By the Chinese Remainder Theorem, there exists p(T ) such that

p(T ) ≡ ai mod (T − ai)mi

for all i, and p(T ) ≡ 0 mod T .

Let Vi := Ker((x− ai)mi). This is typically called the geometric eigenspace. So,

V = V1 ⊕ · · · ⊕ Vr.

On Vi, p(x) acts as a scalar ai. So, p(x) is semisimple.

Let q(T ) := T − p(T ). Then, q(x) is nilpotent on each Vi because it will act on each Vi as the Jordan
Canonical Form minus the diagonal part. Additionally, p(T ) ≡ 0 mod T and so it has no constant
term, and by definition of q(T ) = T − p(T ) we must have that q(T ) has no constant term.

Now set xs := p(x) and xn := q(x). Then, x = xs + xn and x, xs, xn all commute.

It remains to prove that the decomposition is unique. Suppose

x = xs + xn = ys + yn

with xs, ys semisimple and xn, yn nilpotent. Then,

xs − ys = yn − xn

and xs− ys is semisimple and yn− xn is nilpotent. The only way to be semisimple and nilpotent is to
be 0. Hence xs = ys and xn = yn and so the decomposition is unique. �

1.6.2 Cartan’s Criterion

Theorem: (Cartan’s Criterion) Let L be a subalgebra of gl(V ), with dim(V ) <∞. Suppose tr(xy) = 0 for
all x ∈ [L,L] and y ∈ L. Then, L is solvable.

Remark: We first state a technical lemma from which the theorem follows.

Lemma: Let A ⊆ B be two subspaces of gl(V ) for V finite dimensional. Let

M := {x ∈ gl(V ) | [x,B] ⊆ A}.

Suppose x ∈M satisfies tr(xy) = 0 for all y ∈M . Then, x is nilpotent.

Proof of Cartan’s Criterion using the Lemma: It suffices to prove that [L,L] is nilpotent. By
Engel’s Theorem, it suffices to show that every x ∈ [L,L] is a nilpotent endomorphism (if we can
show this, then by a lemma, each x ∈ [L,L] is ad-nilpotent, and then apply Engel’s Theorem). Now
apply the lemma with A = [L,L] and B = L. Fix x ∈ [L,L]. Then let

M = {z ∈ gl(V ) | [z, L] ⊆ [L,L]}.
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Then, L ⊆ M . It suffices to prove that for x there is a generator [w, z] of [L,L] with w, z ∈ L. Let
y ∈M .

Well,

tr([w, z]y) = tr(w[z, y])︸ ︷︷ ︸
∈ [L,L]

= 0.

So,

tr(xy) = 0, ∀x ∈ [L,L] y ∈M.

Hence [L,L] is nilpotent and so L is solvable. �

Proof of Lemma: Let m := dim(V ). Let a1, . . . , am be the eigenvalues of x (possibly repeated). Let
E ⊆ C be the Q-subspace generated by a1, . . . , am. It suffices to show that E∗ := HomQ(E,Q) = 0,
which then implies that a1, . . . , am were zero to begin with.

Let f ∈ E∗. We will show f = 0. Pick a basis of V such that xs has a diagonal matrix. Let y ∈ gl(V )
be the element whose matrix has the diagonal

f(a1), . . . , f(am).

Let r(T ) ∈ F [T ] be a polynomial with no constant term such that r(ai − aj) = f(ai) − f(aj) for all
1 ≤ i, j ≤ m. Since f is linear we can show that r(T ) is well defined (note that if ai − aj = a′i − a′j ,
then f(a′i)− f(a′j) = f(ai)− f(aj)), and in fact exists by Lagrange Interpolation.

By an earlier calculation, ad y = r(xs). Note that r(xs) is also a polynomial in x with no constant
term. So, ad y(B) ⊆ A, i.e. y ∈M . Therefore,

tr(xy) = 0

by hypothesis. Since x is diagonal,

0 = tr(xy) =

m∑
i=1

ai︸︷︷︸
∈ E

f(ai)︸ ︷︷ ︸
∈ Q

.

Applying f to each side

0 = f

(
m∑
i=1

aif(ai)

)
=

m∑
i=1

f(ai)
2.

Since f(ai) ∈ Q, we have f(ai) = 0 for all i, and so x = 0. �

1.7 Day 7 - 9/14/12

1.7.1 Killing Form

Definition: Let L be a finite dimensional Lie algebra over F . For x, y ∈ L, we define the Killing form by

κ(x, y) := trEnd(L)((adx)(ad y)).

Note that (adx)(ad y) should be interpreted as composition of endomorphisms. Also note that κ : L×L→ F
is a symmetric bilinear form. This map is associative:

κ([x, y], z) = κ(x, [y, z]).
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Remark: Let S = Radκ = {x ∈ L | κ(x, y) = 0 ∀y ∈ L}. S is an ideal of L. To see this, let x ∈ S, y ∈ L,
z ∈ L, and apply associativity.

Lemma: Let I be an ideal of L. Let κ be the Killing form of L and let κI be the Killing form of I. Then,

κI = κ
∣∣
I×I .

Proof: Let V is a vector space with a subspace W . Let φ ∈ End(V ) with φ(V ) ⊆W . Then,

tr(φ) = tr
(
φ
∣∣
W

)
.

Let x, y ∈ I. Then, (adx)(ad y) ∈ End(L) and (adx)(ad y)(L) ⊆ I. So,

κI = trEnd(I)((adx)(ad y)) = trEnd(L)((adx)(ad y)) = κ. �

Example: Consider L = fracSl(2, F ). Let

e :=

(
0 1
0 0

)
, h :=

(
1 0
0 −1

)
, f :=

(
0 0
1 0

)
.

Then,

ad e : e 7−→ 0

h 7−→
(

0 1
0 0

)(
1 0
0 −1

)
−
(

1 0
0 −1

)(
0 1
0 0

)
=

(
0 −1
0 0

)
−
(

0 1
0 0

)
= −2e

f 7−→
(

0 1
0 0

)(
0 0
1 0

)
−
(

0 0
1 0

)(
0 1
0 0

)
= h.

Summarizing, [e, e] = 0, [e, h] = −2e, [e, f ] = h. So,

ad e =

 0 −2 0
0 0 1
0 0 0


where the columns are the basis e, h, f . Next,

adh : e 7−→ [h, e] = 2e

h 7−→ 0

f 7−→
(

1 0
0 −1

)(
0 0
1 0

)
−
(

0 0
1 0

)(
1 0
0 −1

)
=

(
0 0
−1 0

)
−
(

0 0
1 0

)
= −2f.

So we now know that [h, f ] = −2f We have the matrix

adh =

 2 0 0
0 0 0
0 0 −2


under the same basis. Lastly,

ad f : e 7−→ [f, e] = −h
h 7−→ [f, h] = 2f

f 7−→ 0

Hence,

ad f =

 0 0 0
−1 0 0
0 2 0





1.7. DAY 7 - 9/14/12 15

under the same basis.

Now we can compute the Killing form:

(ad e)(adh) =

 0 −2 0
0 0 1
0 0 0

 2 0 0
0 0 0
0 0 −2

 =

 0 0 0
0 0 0
0 0 0



(ad e)(ad f) =

 0 −2 0
0 0 1
0 0 0

 0 0 0
−1 0 0
0 2 0

 =

 2 0 0
0 2 0
0 0 0



(adh)(ad f) =

 2 0 0
0 0 0
0 0 −2

 0 0 0
−1 0 0
0 2 0

 =

 0 0 0
0 0 0
0 0 0


(We only need to compute half of the entries in the Killing form because we know that it is symmetric.) So,
the Killing form is

κ =

 0 0 4
0 8 0
4 0 0

 .

The rows and columns have order e, h, f . Note that

det(κ) = −128 6= 0

and so κ is nondegenerate. Also Radκ = 0.

Theorem: Let L be a Lie algebra. Then L is semisimple if and only if its Killing form is nondegenerate.

Proof: Assume first that RadL = 0. Let S := Radκ. Then,

tr((adx)(ad y)) = 0

for all x ∈ S and y ∈ L. So, by Cartan’s Criterion, adL S is solvable and so in particular, adS S is
solvable, and hence S is solvable. So, since S is an ideal, S ⊆ RadL = 0.

Conversely, suppose S = 0. Let I be an abelian ideal of L. Let x ∈ I and y ∈ L. Then,

(adx)(ad y) : L→ L→ I.

So,

((adx)(ad y))2 : L→ [I, I] = 0.

Hence, (adx)(ad y) is nilpotent and thus tr((adx)(ad y)) = 0. Therefore, x ∈ Radκ. So, I ⊆ Radκ =
0. �

Theorem: Let L be semisimple. Then, there exist ideals L1, . . . , Lt of L which are simple Lie algebras such
that

L = L1 ⊕ · · · ⊕ Lt.

Moreover, every simple ideal is equal to one of the Li. Also,

κLi = κ
∣∣
Li×Li

.
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1.8 Day 8 - 9/17/12

1.8.1 Inner Derivations

Lemma B: Let A be an F -algebra. Then, Der(A) contains the semisimple and nilpotent parts of its elements.

Remark: A is just a F -vector space with a bilinear multiplication. It may be a Lie algebra, or it
may not. We write multiplication in the normal way, but if A is a Lie algebra, this represents the Lie
bracket operation.

Proof: Let δ ∈ Der(A) ⊆ End(A). We can write δ = σ + ν where σ is semisimple and ν is nilpotent.
It suffices to show that σ ∈ Der(A).

For a ∈ F , set
Aa := {x ∈ A | (δ − a)kx = 0 for some k}.

Define
A :=

⊕
Aa

where the sum is taken over the eigenvalues of δ. Note that σ acts on Aa as scalar multiplication by
a. Also, AaAb ⊆ Aab.

Now we expand, for all x, y ∈ A:

(δ − (a+ b))n(xy) =

n∑
i=0

(
n

i

)
(δ − a)n−i(x)(δ − b)i(y). (F)

Let x ∈ Aa and y ∈ Ab. Then, xy ∈ Aa+b, and so σ(xy) = (a+ b)xy. On the other hand,

σ(x)y + xσ(y) = axy + bxy = (a+ b)xy.

Hence σ ∈ Der(A). �

Theorem: If L is a semisimple Lie algebra, then adL = Der(L), i.e., every derivation of L is inner.

Proof: The homomorphism ad : L→ adL(⊆ Der(L)) is an isomorphism since Ker(ad) = ξ(L) = 0.

Set M := adL and D := Der(L). Then, we now show that M is an ideal of D. We now want to prove
that

[δ, adx] = ad(δx)

where δ ∈ Der(L) and the Lie bracket is taken in gl(L). To do this, let y ∈ L. Now,

[δ, adx](y) = δ ad(x)y − ad(x)δy

= δ([x, y])− [x, δy]

= [δx, y] + [x, δy]− [x, δy]

= [δx, y]

= ad(δx)(y).

Hence M is an ideal of D.

Now we compute the Killing form. Consider κD. Since Killing forms acts nicely on ideals, we have

κD
∣∣
M×M = κM

and additionally, κM is nondegenerate. Then,

D = M ⊕M⊥
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and also M⊥ is an ideal of D, by the associativity of κD. Therefore, [M,M⊥] ⊆M ∩M⊥ = 0. So, M
and M⊥ commute.

Therefore, ad(δx) = 0 for all δ ∈ M⊥ and x ∈ L. Hence, δx = 0 for all δ ∈ M⊥ and x ∈ L, and so
δ = 0, i.e., M⊥ = 0. �

1.8.2 Abstract Jordan Decomposition

Let L be a semisimple Lie algebra. Then, the map

L→ adL = DerL

is an isomprhism.

For x ∈ L, let xs and xn be defined by

adx = ad(xs)︸ ︷︷ ︸
=(ad x)s

+ ad(xn)︸ ︷︷ ︸
=(ad x)n

.

1.8.3 Representations and Modules

Definition: Let L be a Lie algebra. A representation of L is a homomorphism of Lie algebras:

ρ : L→ gl(V )

for some F -vector space V . Recall that we must have

ρ([x, y]) = [ρ(x), ρ(y)] = ρ(x)ρ(y)− ρ(y)ρ(x)

by the definition of Lie algebra homomorphism.

Definition: An L-module is a vector space V together with a map L × V → V defined by (x, v) 7→ x · v,
such that

(M1) (ax+ by) · v = a(x · v) + b(y · v)

(M2) x · (av + bw) = a(x · v) + b(x · w)

(M3) [x, y] · v = x · y · v − y · x · v

for all x, y ∈ L, v, w ∈ V , a, b ∈ F .

1.8.4 Universal Enveloping Algebra

Definition: Let L be a Lie algebra over F . A universal enveloping algebra of L is a pair (U , i) where U is
an associative algebra with 1 and i : L → U is a linear map satisfying i([x, y]) = i(x)i(y) − i(y)i(x) for all
x, y ∈ L and satisfying the following universal property: For any associative algebra A with 1 and any linear
map f : L → A such that f([x, y]) = f(x)f(y) − f(y)f(x), there exists a unique homomorphism φ making
the following diagram commutes:

U

L

i -

A

∃! φ
?

f
-
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Proof of Existence: Let T be the tensor algebra on L, i.e.,

T = F ⊕ L⊕ (L⊗ L)⊕ (L⊗ L⊗ L)⊕ · · · =
∞⊕
n=0

L⊗n.

Denote T k to be the term L⊗k. Let J be an ideal of T generated by x⊗y−y⊗x− [x, y] for all x, y ∈ L = T 1.

Let U := T/J and let i : L→ U . Then, U is an associative algebra with 1. Then,

L
i - T/J = U T

i(x)

[x, y] A
�

f

-

f(x)
�

f(x)f(y)− f(y)f(x)

-

We see that
U

ρ : L -

i
-

gl(V ) = End(V )

∃! ρ̂
-

1.9 Day 9 - 9/19/12

1.9.1 Representation Definitions

Definition: A representation (or module) L is irreducible (simple) if the only L-submodules are 0 and the
whole module.

Definition: We say that a representation (or module) is completely reducible (semisimple) if it is the direct
sum of irreducible (simple) representations (modules).

Remark: We define the direct sum of representatoins by taking block matrices and adjoining them along a
diagonal.

Definition: If V is an L-module, we define

EndL(V ) := {φ ∈ End(V ) | φ(xv) = xφ(v), ∀x ∈ L, v ∈ V }.

Schur’s Lemma: If V is irreducible, then EndL(V ) = {F1V } consists of scalar multiplication.
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1.9.2 Module Constructions

Dual / Contragredient Representation: Let V be an L-module and let V ∗ := Hom(V, F ) be the dual
vector space. Define a map L× V ∗ → V ∗ by

(xf)(v) 7→ −f(xv).

To show that we get an L-module, we would need to show that

([x, y]f)(v) = x(yf)(v)− y(xf)(v).

Given a group G, the map G→ GL(V ) definds the FG-modules with

(gf)(v) = f(g−1(v)).

Tensor Product Construction: Let V and W be L-modules (where L is a Lie algebra). Make V ⊗F W
into an L-module by

x(v ⊗ w) := xv ⊗ w + v ⊗ xw
(as usual, defined by its action on the generating set of simple tensors). We would need to check that:

[x, y](v ⊗ w) = xy(v ⊗ w)− yx(v ⊗ w)

If we let V and W be FG-modules, then V ⊗F W is an FG-module by the construction

g(v ⊗ w) = gv ⊗ gw.

To check this, we verify that

(hg)(v ⊗ w) = (hg)v ⊗ (hg)w

= h(gv)⊗ h(gw)

= h(gv ⊗ gw)

= h(g(v ⊗ w)).

Hom Construction: Let V and W be L-modules. We can make HomF (V,W ) an L-module by

(xφ)(v) := x(φ(v))− φ(xv).

Similarly, let V and W be FG-modules. We can make HomF (V,W ) into an FG-module by

(gφ)(v) := g(φ(g−1v)).

Remark: Consider the map V ∗ ⊗W → HomF (V,W ) defined by f ⊗ w 7→ φ such that

φ : v 7→ f(v)w.

This map is surjective, and additionally it is an isomoprhism of L-modules if dim(V ) and dim(W ) are finite.

1.10 Day 10 - 9/21/12

1.10.1 Weyl’s Theorem

Theorem: (Weyl) Let φ : L → gl(V ) be a finite dimensional representation of a semisimple Lie algebra.
Then, φ is completely reducible.
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Remark: Before we can prove Weyl’s Theorem, we will need to set up some machinery.

Definition: Let φ : L → gl(V ) be a faithful (i.e., injective) representation. Define an associative bilinear
form on L by

β(x, y) = trV (φ(x)φ(y)).

This is nondegenerate because
Rad(β) ⊆ Rad(φ(L)) = 0

using Cartan’s Criterion. Let {x1, . . . , xn} be a basis of L (with n := dim(L)) and let {y1, . . . , yn} be the
dual basis with respect to β, i.e., β(xi, yj) = δi,j . Next define

cφ =

n∑
i=1

φ(xi)φ(yi) ∈ End(V ).

cφ is called the Casamir Element of the representation φ.

Claim: cφ ∈ EndL(C).

Proof: Let x ∈ L. Write

[x, xi] =

n∑
j=1

ai,jxj

and

[x, yi] =

n∑
j=1

bi,jyi.

Now,

ai,j = β([x, xi], yj)

= β(−[xi, x], yj)

= β(−xi, [x, yj ])
= −bj,i.

Recall the identity:
[x, yz] = [x, y]z + y[x, z]

in End(V ). So, applying this to each term in the sum of cφ:

[φ(x), cφ] =

n∑
i=1

[φ(x), φ(xi)]φ(yi) +

n∑
i=1

φ(xi)[φ(x), φ(yi)]

=

n∑
i=1

n∑
j=1

ai,jφ(xj)φ(yi) +

n∑
i=1

φ(xi)

n∑
j=1

bi,jφ(yj)

= 0

where the terms in the left sum cancel with the terms in the right sum by the fact that ai,j = −bj,i.
Since the commutator is 0, φ(x) commutes with cφ for all x, which proves the theorem. �

Remark: Let’s compute tr(cφ):

tr(cφ) =

n∑
i=1

tr(φ(xi), φ(yi))

=

n∑
i=1

β(xi, yi)

= n = dim(L).
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If V is irreducible, then

cφ =
dim(L)

dim(V )
· IV .

Example: L = Sl(2,F) and V = F 2. Consider the standard basis e, h, f of L and the dual basis (which
after some calculation, we find is f, h2 , e. Now,

β(x, y) = tr(xy)

in this case. So,

cφ = ef +
1

2
h2 + fe =

(
3/2 0
0 3/2

)
.

Lemma: If φ : L→ gl(V ) as a representation of a semisimple Lie algebra, then φ(L) ⊆ Sl(V ). In particular,
L acts trivially on any 1-dimensional L-module.

Proof of Weyl’s Theorem: We want to show that every short exact sequence of L-modules of the form

0 - W - V - U - 0 (F)

splits. We look at three cases:

1) 0 - W - V - F - 0, where W is simple.

2) 0 - W - V - F - 0, where W is arbitrary.

3) The general case in (F).

Case 1: We can assume that L acts faithfully on V . Let cφ be the Casimir element of φ : L→ V . L acts
trivially on F and so

cφ =

n∑
i=1

φ(xi)φ(yi)

maps V into W . So cφ has trace 0 on V/W ∼= F . Also, cφ acts as scalars on W . This scalar is nonzero
since

trV (cφ) =
dim(L)

dim(V )
6= 0.

Therefore, Ker(φ) is 1-dimensional and intersects W trivially, i.e.,

V = Ker(cφ)⊕W

as L-modules. It follows directly that the short exact sequence splits.

Case 2: Proceed by induction on dim(W ). Let W ′ ⊆W be a maximal submodule. Consider

0 - W/W ′ - V/W ′ - F - 0

which splits by Case 1. So, there exists X̃ such that X̃ ⊆ V , X̃ ⊇ W ′ and X̃/W ′ ∼= F . So, as
L-modules

V/W ′ = W/W ′ ⊕ X̃/W ′.
Therefore, we have a short exact sequence

0 - W ′ - X̃ - X̃/W ′ ∼= F - 0.

Since dim(W ′) < dim(W ), induction applies. So,

X̃ = W ′ ⊕X

where X ∼= F . Check now that V = W ⊕X. It follows directly that the short exact sequence splits.
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Case 3: We need to find a splitting map in HomL(V,W ). In Hom(V,W ) define

V := {f ∈ Hom(V,W ) | f
∣∣
W

is scalar},

W := {f ∈ Hom(V,W ) | f
∣∣
W

= 0}.

We claim that V,W are L-submodules of Hom(V,W ). (The module structure is (xg)(v) = xg(v)−g(xv).
Check this on your own.) Then we haveW ⊆ V and V/W ∼= F . Thus we have the short exact sequence

0 - W - V - F - 0.

By Case 2, V has a 1-dimensional submodule X on which L acts trivially. Choose f ∈ X such that
f
∣∣
W

= 1W . Then, f ∈ HomL(V,W ) since L acts trivially on f . So, f is the required splitting map.
This completes this case.

So, the theorem is proved. �

1.11 Day 11 - 9/24/12

1.11.1 Preservation of Jordan Decomposition

Definition: Let x ∈ L where L is a semisimple Lie algebra. The abstract Jordan decomposition is x = s+n
where

adx = (adx)s︸ ︷︷ ︸
=ad(s)

+ (adx)n︸ ︷︷ ︸
=ad(n)

.

Theorem: If L ⊆ gl(V ) is a semisimple Lie algebra (with V finite dimensional), then the semisimple and
nilpotent parts of each element of L lie in L. In particular, the abstract and usual Jordan Decomposition are
the same.

Proof: Let x ∈ L ⊆ gl(V ). Write x = xs + xn under the ordinary Jordan decomposition. It suffices
to show that xs ∈ L.

In the next part, “ad”=“adgl(V )”. We know that

(adx)(L) ⊆ L

and therefore,

(adx)s(L) ⊆ L

where (adx)s = adxs by Lemma A. So,

(adx)n(L) ⊆ L

where also (adx)n = adxn. Hence,

(adxs)(L) ⊆ L

and

(adxn)(L) ⊆ L,

i.e.,

xs, xn ∈ Ngl(V )(L) =: N.

For any L-submodule W of V , set

LW :=
{
y ∈ gl(V ) | y(W ) ⊆W and tr

(
y
∣∣
W

)
= 0
}
.
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Certainly L ⊆ LW for all W since L = [L,L] ⊆ ker (trW ). Define

L′ :=
⋂
W

LW .

So, L ⊆ L′. We want L = L′. Now, L′ is an L-submodule of gl(V ) containing L. Hence, by Weyl’s
Theorem, L′ = L⊕M as L-modules, for some L-module M . It remains to show that M = 0.

Let y ∈M . Consider that [L, y] = 0 since y ∈ N and M is an L-submodule. Let W be any simple L-
submodule of V . Then, y

∣∣
W
∈ EndL(W ) and so y

∣∣
W

is a scalar. But, by definition of L′, tr
(
y
∣∣
W

)
= 0.

Hence y
∣∣
W

= 0. Since V is a direct sum of simple submodules, we get y = 0. Therefore M = 0 and so
L = L′ and the proof is complete. �

Corollary: If L is semisimple and φ : L→ gl(V ) is a finite dimensional representation, then if x = s+ n is
the abstract Jordan decomposition of x ∈ L, then φ(x) = φ(s) + φ(n) is the usual Jordan decomposition of
φ(x) in gl(V ).

Proof: L has a basis of eigenvalues of ad s. Hence φ(L) has a basis of eigenvalues of adφ(L)(φ(s)).
Similarly, adφ(L) φ(n) is nilpotent and so commutes with adφ(L) φ(s). Hence,

φ(x) = φ(s) + φ(n)

where φ(s) is adφ(L) semisimple and φ(n) is adφ(L) nilpotent.

So, this is the abstract Jordan decomposition for φ(L). Hence by the Theorem, φ(s) = φ(x)s and
φ(n) = φ(x)n. �

Example: Simple modules for Sl(2, F ) =: L. Recall the basis

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
with

[h, e] = 2e, [h, f ] = −2f, [e, f ] = g, [e, e] = [h, h] = [f, f ] = 0.

To study these, we make a definition and prove some statements:

Definition: Let V be a finite dimensional L-module. Then, h acts semisimply on V (because of
the persistence of the Jordan decomposition – if it acts faithfully on one representation then it acts
faithfully on all representations). So,

V =
⊕
λ∈F

Vλ

where Vλ is the eigenspace of V corresponding to λ, i.e., Vλ = {v ∈ B | hv = λv}. If Vλ 6= 0, we say
that λ is a weight of h in V , and that Vλ is a weight space.

Lemma: If v ∈ Vλ, then ev ∈ Vλ+2 and fv ∈ Vλ−2.

Proof:

hev = (he− eh)v + ehv

= [h, e]v + λev = 2ev + λev

= (λ+ 2)ev.

Therefore, ev ∈ Vλ+2. The other calculation is analogous. �
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Definition: Let dim(V ) < ∞ and write V =
⊕
Vλ. Then, there exists λ such that Vλ 6= 0 and

Vλ+2 = 0. For such a λ, if v ∈ Vλ, we have ev = 0. A nonzero vector of such a Vλ is called a
maximal vector.

Definition: Assume that V is a simple L-module. Let v0 ∈ Vλ be a maximal vector. Set

v−1 := 0, vi :=

(
1

i!

)
f ivo

for i ≥ 0.

Lemma: We clearly have that:

(a) hvi = (λ− 2i)vi

(b) fvi = (i+ 1)vi+1

(c) evi = (λ− i+ 1)vi−1

Proof of (c): Use induction on i. The base case i = 0 is trivial. Next consider

ievi = efvi−1 (by part (b))

= (ef − fe)vi−1 + fevi−1

= hvi−1 + (λ− i+ 2)fvi−2 (second summand by induction)

= (λ− 2i+ 2)vi−1 + (λ− i+ 2)(i− 1)vi−1

= i(λ− i+ 1)vi−1.

This completes the inductive step.

1.12 Day 12 - 9/26/12

1.12.1 Construction of Simple Irreducible Modules

Theorem: Let V be a finite dimensional irreducible module for L = Sl(2, F ). Then, the following is true.

(a) V is the direct sum of weight spaces (relative to h) Vµ, where µ = m,m−2, . . . ,−m where dim(V ) = m+1
and dim(Vµ) = 1 for each µ.

(b) V has (up to scalars) a unique maximal vector (whose weight is m).

(c) The action of L on V is as previously given. In particular, there is at most one simple module for each
m.

Construction of simple modules:

We can show existence of the simple module V (m) of dimension m+ 1 for all m = 0, 1, . . .. Consider
the represention as a linear map

φ : L→ GL(V )

where for all x, y ∈ L we want to check

φ([x, y]) = [φ(x), φ(y)].

Since [·, ·] is bilinear, it suffices to check this for x, y belonging to some fixed basis.
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Let V (m) be an (m+1)-dimensional vector space with basis v0, . . . , vm. Define, E,H,F ∈ End(V (m))
by

Hvi = (m− 2i)vi

Fvi = (i+ 1)vi+1

Evi = (m− i+ 1)vi−1, i ≥ 0

Ev0 = 0.

It needs to be checked that the map Sl(2, F )→ gl(V (m)) defined by e 7→ E, f 7→ F , and h 7→ H is a
homomorphism of Lie algebras.

Another construction:

Let X =

(
1
0

)
and Y =

(
0
1

)
be a basis for F 2, under the standard representation of Sl(2, F )

where

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
so that eX = 0, eY = X, hX = X, hY = −Y , fX = Y and fY = 0.

Consider the polynomial ring F [X,Y ] and let z ∈ glSl(2, F ) act by the derivation rule

z(fg) = (zf)g + f(zg).

It should be checked that this action is well-defined.

Then the space of homogenous polynomials of degree m is a submodule of dimension m + 1, and
irreducible. Observe for example that

e(X2) = eX ·X +X · eX = 0

f(X2) = fX ·X +X · fX = 2XY

f(XY ) = Y 2 +X · f(Y ) = Y 2.

What does it mean in this context to say “X2” when X is a column vector? We are thinking of X
and Y as variables in the polynomial ring, so we consider the tensor algebra

T (V ) = F ⊕ V ⊕ (V ⊗ V ) + · · ·

and the symmetric algebra
S(V ) = T (V )/〈x⊗ y − y × x〉

and the operations are being performed in the symmetric algebra.

1.13 Day 13 - 9/28/12

1.13.1 Root Space Decomposition / Maximal Toral Subalgebras

Definition: A subalgebra of a semisimple Lie algebra L is toral if it consists of semisimple elements.

Example: The subalgebra of diagonal matrices in Sl(V ) is toral.

Lemma: A toral subalgebra is abelian.
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Proof: Let T be toral. We need to show that adT x = 0 for all x ∈ T . Suppose toward a contradiction
that there exists y 6= 0 and a 6= 0 such that

[x, y] = ay.

Then,
(adT y)(x) = [y, x] = −ay

So, −ay is an eigenvector for adT y with eigenvalue 0. Write

x = v1 + · · ·+ vr

where the vi are the eigenvalues of adT y. So,

(adT y)(x) = λ1v1 + · · ·+ λkvk

for λi 6= 0. This is a contradiction. �

Remark: Let H be a maximal toral subalgebra, i.e., not contained in any other toral subalgebra. (For
example, in Sl(n, F ), the digonal subalgebra is a maximal toral subalgebra: pick a matrix with distinct
eigenvectors along the diagonal, and now observe that any matrix that commutes with this matrix must also
be diagonal.) Then, H is abelian, and so adLH is a set of commuting diagonalizable endomorphisms. So, L
has a basis over which all adL h for h ∈ H are diagonal. Each element v of such a basis defines a function
λ : H → F by (adL h)(v) := λ(h)v. λ is a Lie algebra homomorphism (an element of H∗), and is called a
root.

Remark: We can write
L =

⊕
α∈H∗

Lα

where
L(α) = {x ∈ L | (adL h)(x) = α(h)x}.

This is called the root space decomposition. Accordingly, we can write

Sl(2, F ) = Fe⊕ Fh︸︷︷︸= H ⊕ Ff

with
αe = 2 αh = 0 αf = −2.

Definition: The set Φ = {α | α 6= 0, Lα 6= 0} is called the set of roots.

Proposition: For all α, β ∈ H∗, [Lα, Lβ ] ⊆ Lα+β .

Proof: Let h ∈ H, x ∈ Lα, y ∈ Lβ . Then,

[h, [x, y]] = [[h, x], y] + [x, [h, y]] = α([x, y]) + β([x, y]) = (α+ β)([x, y]). �

Lemma: If α+ β 6= 0, then Lα and Lβ are orthogonal.

Proof: Pick h ∈ H such that (α+ β)(h) 6= 0. Let x ∈ Lα and y ∈ Lβ . Then,

α(h)K(x, y) = K([h, x], y)

= −K([x, h], u)

= −K(x, [h, y])

= −β(h)K(x, y).

So, (α+ β)(h)K(x, y) = 0 and hence K(x, y). This completes the theorem. �
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Corollary: L0 is orthogonal to Lα for all α 6= 0. So, K
∣∣
L0×L0

is nondegenerate.

Lemma: If x, y are commuting endomorphisms and y is nilpotent, then so is xy. In particular, tr(xy) = 0.

Theorem: CL(H) = H

Proof: Set C := CL(H).

(1) If x ∈ C, then xn ∈ C and xs ∈ C.

(2) All semisimple elements of C lie in H (by the maximality of H as a toral subalgebra).

(3) K
∣∣
H

is nondegenerate. Suppose h ∈ H with K(h,H) = 0. Let x ∈ C and x = xs + xn with
xs, xn ∈ C. Then, xs ∈ H, so K(h, xs) = 0. Also, adxn is nilpotent and commutes with adh.
So, tr(adxn adh) = K(xn, h) = 0. Hence, K(h, x) = 0 for all x ∈ C. Thus h = 0.

(4) C is nilpotent. (This means as a Lie algebra, which is a different sense of nilpotency than
elements!) Let x ∈ C and write x = xs + xn with xs, xn ∈ C. Then xs ∈ H and so adC xs = 0.
adL xn is nilpotent and so adC xn is nilpotent. So, adC x is nilpotent for all x ∈ C since adxs
and adxn commute. By Engel’s Theorem, C is nilpotent.

(5) H ∩ [C,C] = 0. Observe that

K(H, [C,C]) = K([H,C]︸ ︷︷ ︸
=0

, C) = 0.

Since K
∣∣
H×H is nondegenerate, H ∩ [C,C] = 0.

(6) C is abelian. Suppose otherwise that [C,C] 6= 0. Then, Z(C) ∩ [C,C] 6= 0. Let z ∈ Z(C) be
nonzero. The, z 6∈ H and so zn 6= 0. Note zn ∈ Z(C). For any y ∈ C, K(zn, y) = tr(ad zn ad y) =
0. So zn = 0, which is a contradiction.

(7) C = H. If not, then there exists a nilpotent element x in C. Then, for all y ∈ C, K(x, y) =
tr(adx ad y) = 0, since C is abelian. This is a contradiction since K

∣∣
C×C is nondegenerate.

This completes the theorem. �

Remark: We can now complete the decomposition:

L = H︸︷︷︸
=L0

⊕
⊕
α∈Φ

Lα.

Corollary: K
∣∣
H×H is nondegenerate, so we can use K to identity H with H∗, i.e.,

∀α ∈ H∗, ∃!tα ∈ H such that ∀h ∈ H : α(h) = K(tα, h).

Look at {tα | α ∈ Φ} ⊆ H.

Proposition: Proofs of each parts are quick sketches.

(a) Φ spans H∗.

Proof: This is equivalent to saying that {tα}α∈Φ span H. If not, then there exists a nonzero
h ∈ H orthogonal to all tα, i.e., α(h) = 0 for all α ∈ Φ. Then, [h, Lα] = 0 for all α ∈ Φ. But
[h, L0] = 0, so h ∈ Z(L) = 0, which is a contradiction. �

(b) If α ∈ Φ then −α ∈ Φ.
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Proof: Recall and earlier propsition: if α + β 6= 0 then K(Lα, Lβ) = 0. Also, Lα, Lβ ⊆ Lα+β .
So the elements of Lα are nilpotent. Hence, K(Lα, Lα) = 0. If −α 6∈ Φ, then the Killing form of
Lα with everything is zero, which is a contradition. �

(c) Let α ∈ Φ, x ∈ Lα and y ∈ L−α. Then, [x, y] = K(x, y)tα.

Proof: Let α ∈ Φ, x ∈ Lα, y ∈ L−α, and h ∈ H. Then,

κ(h, [x, y]) = κ([h, x], y)

= α(h)κ(x, y)

= κ(tα, h)κ(x, y)

= κ(κ(x, y)tα, h)

= κ(h, κ(x, y)tα)

So, h is orthogonal to [x, y]− κ(x, y)tα. �

(d) If α ∈ Φ, then [Lα, L−α] is 1-dimensional with basis tα.

Proof: Use part (c). �

(e) α(tα) = K(tα, tα) 6= 0 for α ∈ Φ.

Proof: The assertion that needs to be proved is κ(tα, tα) 6= 0. Suppose this is false. Then,
[tα, Lα] = 0 and [tα, L−α] = 0. For x ∈ Lα, pick y ∈ L−α, with [x, y] = tα. Then, 〈x, y, tα〉 is
solvable (because its derived subalgebra is just the span of tα and so the second commutator is
zero).

(f) If α ∈ Φ and 0 6= xα ∈ Lα then there exists yα ∈ L−α such that xα, yα and hα := [xα, yα] span a
3-dimensional subalgebra of L isomorphism to Sl(2, F ):

xa 7→
(

0 1
0 0

)
yα 7→

(
0 0
1 0

)
hα 7→

(
1 0
0 −1

)
.

(g) hα =
2tα

K(tα, tα)
, hα = −h−α.
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1.14.1 Integrality Properties

Consider Sl(2, F ) and a finite dimensional module V . Then,

V ∼=
⊕
m≥0

V (m)(em)

where V (m) is simple of dimension m+ 1. Observe that∑
m

em = dim(V0) + dim(V1)

where V0 = {v ∈ V | hv = 0} and V1 = {v ∈ V | hv = v}.

Fix α ∈ Φ so that −α ∈ Φ. Let Sα ∼= Sl(2, F ) be a subalgebra given by xα ∈ Lα, yα ∈ L−α and hα = [xα, yα].
Consider the action of Sα on L by ad.

Let M be the subspace of L spanned by H and all root spaces of the form Lcα where c ∈ F×. M is an
Sα-submodule of L. Recall [Lα, Lβ ] ⊆ Lα+β .

We now claim that M = H + Sα, i.e., M = H ⊕ Fxα ⊕ Fyα. This will imply that
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(1) The only multiples of α in Φ are ±α.

(2) Lα = Fxα is one-dimensional.

Consider the weights of hα on M . If x ∈ L2α then [hα, x] = (cα)(hα)x = (2c)x, so we know that 2c is an
integers, i.e. that c is an integer multiple of 1/2.

Now consider Ker(α) = {h ∈ H | α(h) = 0}. α is nonzero and so the kernel has codimension 1 in H. We can
write H = Ker(α)⊕ Fhα as vector spaces. So,

M = H ⊕
⊕
c6=0

Lcα

with H = {m ∈M | [hα,m] = 0}. So, M0 = H.

Ker(α) is an Sα-submodule of M . If h′ ∈ Ker(α), then

[h′, xα] = 0,

[h′, yα] = 0,

[h′, hα] = 0.

Hence the Sα-submodule Ker(α)+Sα contains M0. So, Ker(α)+Sα contains the sum of all simple submodules
of L considered as Sα=modules which has even highest weights, i.e., all those which contain even weight.

Hence the only possible even weights for hα on M are 0 and ±2. Therefore, if β is a root, then 2β is not a root.

Hence

(
1

2

)
α is not a root. So, 1 is not a weight in M , i.e., M has no odd weights. Hence M = Ker(α) +Sα.

This proves the claim.

Remark: We have now completed the following classification for certain Lie algebras:

L = H ⊕
⊕
α∈Φ

Lα

with dim(Lα) = 1. This is a very rigid structure.

Example: (L = Sl(3, F )) Define

H =


 a 0 0

0 b 0
0 0 −a− b

 | a, b ∈ F
 .

Define Ei,j for i < j to be the matrix with a 1 in the (i, j) position and 0s elsewhere. Define Fi,j := ET
i,j .

In this example, we’re only considering E1,2, E1,3, E2,3 and the corresponding F s. Define Hi,j := [Ei,j , Fi,j ].
For example,  0 1 0

0 0 0
0 0 0

 ,

 0 0 0
1 0 0
0 0 0

 =

 1 0 0
0 −1 0
0 0 0

 =: H1,2.

Now,

L = H ⊕
⊕
i<j

[Ei,j ⊕ Fi,j ].

For each i, j, 〈Ei,j , Fi,j , Hi,j〉 ∼= Sl(2, F ). So, this object has three (non-disjoint) copies of Sl(2, F ) in it.

Example: Next consider the adjoint action of Sα on L. We already know that M ∼= F dim(H)−1⊕V (2) by Sα.
Consider β ∈ Φ with β 6= ±α. Let K =

∑
i∈Z Lβ+iα be a sum of Sα-submodules. Since (β + iα)(h) = 1 can
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happen for at most one i and (β + iα)(h) = 0 can never happen, we see that K is simple. Hence K ∼= V (m)
for some m. The weights are

{(β + iα)(hα) | i ∈ Z, Lβ+iα 6= 0}.

The highest weight is (β + qα)(hα) = β(hα) + 2q = m where q is the largest integer such that β + qα ∈ Φ.
The smallest integer is (β − rα)(hα) = β(h)− 2r = −m, where r is the largest integer such that β − rα ∈ Φ.
So,

K =

q⊕
i=−r

Lβ+iα.

Notation: The set

{β − rα, β − (r − 1)α, . . . , β, . . . , β + qα}

is called the “α-string through β”.

So,

L ∼= Ker(α)⊕ Sα ⊕
⊕

Kβ

where
⊕
Kβ is summed over distinct α-strings in Φ with β 6= 0.

1.15 Day 15- 10/03/12

Consider the decomposition

L = H ⊕
⊕
α∈Φ

Lα.

We have a Killing form κ : H ×H → F which is nondegenerate.

For δ ∈ H∗, let tδ ∈ H be defined by

κ(tδ, h) = δ(h)

for all h ∈ H. So, for α ∈ Φ, we have tα ∈ H, and

κ(tα, h) = α(h).

Let αinΦ and let xα ∈ Lα. Pick yα ∈ L−α such that

[xα, yα] =
2tα

κ(tα, tα)
=: hα.

Then, xα, yα, hα satisfy the same relations as

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
In particular, [h, e] = 2e, i.e., [hα, xα] = 2xα.

Recall that if α, β ∈ Φ and β 6= ±α then we can talk about the α-string through β. Consider

K =
⊕
i∈Z

Lβ+iα,

a simple Sα module. Let q be the biggest such that β+qα ∈ Φ and let r be the biggest such that β−rα ∈ Φ.

Since weights of simple Sα-modules form a finite arithmetic progression of step size 2, it follows that

β − rα, β − (r − 1)α, · · · , β + (q − 1)α, β + qα.
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The highest weight is
(β + qα)(hα) = β(hα) + 2q.

The lowest weight is
(β − rα)(hα) = β(hα)− 2r.

Hence,
β(hα)− 2r = −(β(hα) + 2q)

i.e.,
β(hα) = r − q ∈ Z.

Also,
β − β(hα)α ∈ Φ,

for all α, β ∈ Φ. This turns out to be a very important fact.

Since κ is nondegenerate on H¡ we can use it to define a nondegenerate form on H∗ by

(γ, δ) := κ(tγ , tδ).

Φ spans H∗ and so there exists a basis {α1, . . . , α`} ⊆ Φ of H∗. Note that ` = dim(H).

Let β ∈ Φ, with β =
∑̀
i=1

ciαi with ci ∈ F . We claim that ci ∈ Q.

Proof: Let α ∈ Φ. Then,

(β, αj) =
∑
i=1

`ci(αi, αj).

Now multiply by
2

(αj , αj)
.

2(β, αj)

(αj , αj)
=
∑̀
i=1

2(αi, αi)

(αj , αj)
ci.

We claim that the left-hand side and each term on the right-hand side (excluding the ci in each term)
are integers. The result will then follow by looking at this as a system of equations in the variables ci.

To see that these are integers,

2(β, αj)

(αj , αj)
=

2κ(tβ , tα)

(αj , αj)

= κ(tβ , hαj )

= β(hαj ) ∈ Z.

In the above, we use the fact that

hαj =
2tαj

(αj , αj)
.

Since the form (·, ·) is nondegenerate, the matrix (αi, αj) is invertible and hence so is the matrix
2(αi, αj)

(αj , αj)
. Hence the system has a unique solution (c1, . . . , c`) and ci ∈ Q. �

Define,
EQ := the Q-span of Φ ⊆ H∗.

Observe that
dim(EQ) = `.
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We have the map
(·, ·) : H∗ ×H∗ → F.

We want a map
EQ × EQ → Q.

Let λ, µ ∈ H∗. Then,

(λ, µ) = κ(tλ, tµ) =
∑
α∈Φ

α(tλ)α(tµ).

To see the equality, consider κ(x, y) = trL(adx ad y) on L decomposed as L = H ⊕
⊕
α∈Φ

Lα. If x, y ∈ H then

the H term disappears, and over each Lα we have trLα(xy) = α(x)α(y).

In particular, if β ∈ Φ, then

(β, β) =
∑
α∈Φ

α(tb)
2

=
∑
α∈Φ

(α, β)2

and so

1

(β, β)
=
∑
α∈Φ

 (α, β)

(β, β)︸ ︷︷ ︸
∈Q


2

.

So, (β, β) ∈ Q for all β,. Hence, (β, α) ∈ Q for all α, β.

Now,

(λ, λ) =
∑
α∈Φ

α(tλ)2 =
∑
α∈Φ

(α, λ)2 > 0.

Let E := R⊗Q EQ so that we can extend (·, ·)
∣∣
EQ

to E. E is a Euclidean space of dimension `, and

(E, (·, ·)) ⊇ Φ.

Theorem:

(a) Φ spans E and 0 6∈ Φ.

(b) If α ∈ Φ, then cα ∈ Φ if and only if c = ±1.

(c) If α, β ∈ Φ, then β − 2(β, α)

(α, α)
α ∈ Φ.

(d) If α, β ∈ Φ, then
2(β, α)

(α, α)
∈ Z.

We’ve proved the components of this theorem already. In general, if E is a Euclidean space, these are the
axioms for a root system in E.

1.16 Day 16 - 10/05/12

Remark: We now investigate arbitrary root systems, without considering whether or not they are derived
from a Lie algebra. We will occasionally prove statements that are trivial if the root system is a Lie algebra,
but not trivial for arbitrary root spaces.
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Remark: Let (E, (· · · , · · · )) be a real Euclidean space of dimension `. If α ∈ E is nonzero, then define σα
to be reflection in the hyperplane α⊥. If β ∈ E, then

σα(β) = β − 2(β, α)α

(α, α)
.

Notation: The textbook uses the notation

〈β, α〉 =
2(β, α)

(α, α)
.

The problem with this notation is that 〈·, ·〉 is not bilinear (it’s not linear in the second variable), as the
notation would suggest. So, instead, we define

α∨ :=
2α

(α, α)

so that

σα(β) = β − 2(β, α)α

(α, α)
= β − (β, α∨)α.

(To see this equality, write out α∨ and pull out the constants.)

Lemma: Let Φ be a finite set which spans E such that σαΦ ⊆ Φ for all α ∈ Φ. If σ ∈ GL(E) leaves Φ
invariant, fixes a hyperplane P pointwise, and sends some nonzero α to −α, then σ = σα, with P = α⊥.

Proof: Let τ = σσα. Then, τ(Φ) ⊆ Φ. Also, τ(α) = α because τ acts as the identity on E/Rα. Hence
all eigenvalues of σσα are 1. The matrix is of the form

1 ∗ ∗ ∗ ∗

I

Since τ(Φ) ⊆ Φ, there exists k such that τk(β) = β, for all β ∈ Φ. Since Φ spans E, we have τk = 1.
Hence the minimal polynomial of τ divides tk − 1 and (τ − 1)e. Hence, the minimal polynomial of τ
is r − 1, i.e., τ is the identity. �

Definition: A subset Φ ⊆ E is a root system if:

(R1) Φ is finite, Φ spans E, and 0 6∈ Φ.

(R2) For α ∈ Φ, cα ∈ Φ if and only if c = ±1.

(R3) For α ∈ Φ, σα(Φ) = Φ.

(R4) If α, β ∈ Φ, then 〈β, α∨〉 ∈ Z.

Definition: The subgroup 〈σα | α ∈ Φ〉 ⊆ GL(E) is called the Weyl group of Φ.

Lemma: If σ ∈ GL(E) leaves Φ invariant and α ∈ Φ, then

σσασ
−1 = σσ(α)

and
(β, α∨) = (σ(β), σ(α)∨)

for all α, β ∈ Φ.
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Proof: Well,
σσασ

−1(σ(α)) = σσα(α) = −σ(α).

Let Pα be the hyperplane perpendicular to α. Let σx ∈ Pα with x ∈ Pα. Note that

σ(σα)σ−1(σx) = σx.

Thus σσασ
−1 fixes σ(Pα) pointwise. By the earlier lemma,

σσασ
−1 = σσ(α).

Now,

σσ(α)(σβ) = σσασ
−1(σβ)

= σ(β − (β, α∨)α)

= σ(β)− (β, α∨)σ(α). �

Example: If ` = 1, we just have the set {−α, α} on a number line.

Example: If ` = 2 then we have (β, α∨) ∈ Z. Observe that

2(β, α)

(α, α)
=

2|β| cos(θ)

|α|
.

So,
(β, α∨)(α, β∨) = 4 cos2(θ) ≤ 4

and this product must be an integer. So what are the possibilities? Assume without loss of generality that
|β| ≥ |α| and that α 6= ±β.

(α, β∨) (β, α∨) θ
|β|2

|α|2

0 0
π

2
undefined

1 1
π

3
1

−1 −1
2π

3
1

1 2
π

4
2

−1 −2
3π

4
2

1 3
π

6
3

−1 −3
5π

6
3
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The first row corresponds to A1 ×A1 (and we have W ∼= Z2 × Z2):

β

α

The second row corresponds to A2 (and we have W ∼= S3):

α

β

The third row corresponds to B2/C2 (and we have W ∼= D8):

α

β

The sixth row corresponds to G2 (and we have W ∼= D12):

β

α

In all of the above cases, σ = 〈σα, σβ〉.
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Lemma: Suppose α, β ∈ Φ with β 6= ±α.

(i) If (α, β) > 0, then α− β ∈ Φ.

(ii) If (α, β) < 0, then α+ β ∈ Φ.

Proof: Suppose (α, β) > 0. Then, (α, β∨) > 0 and (β, α∨) > 0.

If (β, α∨) = 1, then σα(β) = β − α ∈ Φ. Thus, α− β ∈ Φ.

If (α, β∨) = 1, then σβ(α) = α− β ∈ Φ. �
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Corollary: Let α, β ∈ Φ, with β 6= ±α. Let q be maximal such that β + qα is a root and let r be maximal
such that β − rα is a root. Then, each element of {β + iα | −r ≤ i ≤ q} is also a root.

Proof: Assume there is a gap. Use the lemma above to show a contradiction. �

Remark: σα(x) = x− (x, α∨)α, i.e., σα reverses the root string. We see that

σα(β + qα) = β − rα.

So, (β, α∨) = r− q. Suppose β was at the end of the α-string. Then, q = 0 and r = the length of the string.
So, (β, α∨) is the length of the string, which shows that the length of any root string is ≤ 4.

1.17.1 Bases

Definition: A subset ∆ ⊆ Φ is a base if

(B1) ∆ is a base of E.

(B2) Each root β can be written as

β =
∑
α∈∆

kαα

where kα integers which are either all nonnegative or all nonpositive.

Theorem: Φ has a base.

Definition: For α ∈ Φ and Pα := α⊥, say that γ ∈ E is regular if γ ∈ E r
⋃
α

Pα.

Proof: Fix a regular element γ. Define

Φ+(γ) := {α ∈ Φ | (γ, α) > 0}

and note that

Φ = Φ+(γ) ∪ −Φ+(γ).

Let β ∈ Φ+(γ). Say that β is decomposable if β = β1 + β2 where βi ∈ Φ+(γ) and say that β is
indecomposable otherwise.

Claim: If γ ∈ E is regular, then the set ∆(γ) of indecomposable elements of Φ+(γ) is a base of Φ.
Additionally, every base of Φ is of this form.

Proof:

(1) Each root in Φ+(γ) is a nonnegative Z-combination of ∆(γ).

Proof: Suppose not. Pick α ∈ Φ+(γ) which is not so written and such that (α, γ)
is minimal. Then, α 6∈ ∆(γ). So α = β1 + β2 where β1, β2 ∈ Φ+(γ). Then,
(γ, α) = (γ, β1) + (γ, β2). Hence, (γ, βi) < (γ < α). Thus, βi ∈ Z+∆ for i = 1, 2.
Therefore, α ∈ Z+∆, which is a contradiction.

(2) If α, β ∈ ∆(γ) then (α, β) ≤ 0 unless α = β.

Proof: If α 6= β and (α, β) > 0 then α − β ∈ Φ. So, either α − β ∈ Φ+(γ) or
β − α ∈ Φ+(γ). Rewrite α = (α − β) + β and β = (β − α) + α. This contradicts
α, β ∈ ∆(γ).
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(3) ∆(γ) is linearly independent.

Proof: Suppose
∑

α∈∆(γ)

rαα = 0. Suppose we can write

∑
α∈∆(γ)

sαα =
∑

α∈∆(γ)

tββ

with sα, tβ > 0. Then,

0 ≤ (ε, ε) =
∑

α∈∆(γ)

sαtβ(α, β) ≤ 0.

Thus, ε = 0 and so

0 = (γ, ε) =

γ, ∑
α∈∆(γ)

sαα

 =
∑

α∈∆(γ)

sα(γ, α).

Therefore, all sα = 0 and similarly all tβ = 0.

(4) ∆(γ) is a base.

Proof: See book.

(5) Each base ∆ of Φ is of the form ∆(γ).

Proof: Choose γ ∈ E such that (γ, α) > 0 for all α ∈ ∆. γ is regular by (B2). Let
Φ+ be the positive roots with respect to ∆. Since γ is regular, Φ+ ⊆ Φ+(γ) and
similarly, Φ− ⊆ Φ−(γ), and so equality must hold. Since Φ+ = Φ+(γ), ∆ clearly
consists of indecomposable elements, i.e., ∆ ⊆ ∆(γ). But by dimensions, we must
have ∆ = ∆(γ).

We have now proved the theorem. �

1.18 Day 18 - 10/10/12

Remark: Roots in ∆ are called simple roots with respect to ∆. If α ∈ Φ+ with

α =
∑
β∈∆

kββ

then ∑
β∈∆

kβ

is called the height of α.

Definition: The connected components of Er
⋃
Pαa re called Weyl chambers. The fundamental Weyl chamber

with respect to ∆ is
C(∆) := {x ∈ E | (x, α) > 0 for all α ∈ ∆}.

(The condition would be equivalent if we said “for all α ∈ Φ+”.)
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Remark: Recall that ∆ is of the form ∆(γ) for some regular γ. By the decomposition of the fundamental
Weyl chamber C(∆), we have γ ∈ C(∆). Also, for any γ′ ∈ C(∆), we have ∆(γ′) = ∆(γ).

Lemma A: Fix a base ∆. If α is positive (i.e., all of the nonzero coefficients of α when expressed as a sum
of simple root are positive) but not simple, then there exists β ∈ ∆ such that α− β is a (positive) root.

Proof: Suppose there exists β ∈ ∆ such that (α, β) > 0. Then, by an earlier lemma, α−β ∈ Φ. Since
α not simple, it’s a combination of at least two simple roots with positive coefficients. Since we’re
subtracting only one of them, the other one still has positive coefficient, and so all the coefficients must
be positive. So, α− β is a positive root.

Now suppose that no such β exists, i.e., (α, β) ≤ 0 for all β ∈ ∆. We claim that the set ∆ ∪ {a} is
linearly independent. (See book for proof of this claim.) This is a contradiction. So, there exists such
a β ∈ ∆. �

Corollary: If α ∈ Φ+, then α can be written as α = α1 + · · · + αt, for αi ∈ ∆ and for all i ∈ [t] with
α1 + · · ·+ αi ∈ Φ.

Lemma B: Let α ∈ ∆. Then, σα permutes the set Φ+ r {a}.

Notation: Let δ :=
1

2

∑
α∈Φ+

α.

Corollary: σα(δ) = δ − α.

Notation: We use “α > 0” to mean α ∈ Φ+ and “α < 0” to mean α ∈ Φ−.

Lemma C: Let α1, . . . , αt ∈ ∆ (not necessarily distinct). Write σi := σαi . If

σ1σ2 · · ·σt−1(αt) < 0,

then for some s with 1 ≤ s < t, we have

σ1 · · ·σt = σ1 · · ·σs−1σs+1 · · ·σt−1.

Proof: Set βi := σi+1 · · ·σt−1(αt) for i ∈ [t− 2], and define βt−1 := αt. Then, β0 < 0 and βt−1 > 0.
Then,

σs(βs) = βs−1 < 0.

So, βs = αs be an earlier lemma. Now, if σ(γ) = δ, then σσγσ
−1 = σδ. So,

σs+1 · · ·σt−1︸ ︷︷ ︸
βs

(αt) = αs.

We see that
(σs+1 · · ·σt−1)(σt(σt−1 · · ·σs+1)) = σs

and so
σs+1 · · ·σt−1 = σsσs+1 · · ·σt.

This completes the proof. �

Corollary: If σ = σ1 · · ·σt is the shortest possible expression for σ as a product of simple reflections, then
σ(αt) < 0.
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Theorem: Let ∆ be a base of Φ.

(a) If γ ∈ E is regular, then there exists σ ∈W such that (σ(γ), α) > 0 for all α ∈ ∆, i.e. σ(γ) ∈ C(∆). So,
W acts transitively on Weyl chambers.

(b) If ∆′ is another base, then there exists σ ∈W such that σ(∆′) = ∆.

(c) If α ∈ Φ, then there exists σ ∈W such that σ(α) ∈W .

(d) W = 〈σα | α ∈ ∆〉.

(e) If σ(∆) = ∆), then σ = 1.

Proof: Let W ′ := 〈σα | α ∈ ∆〉. Prove parts (a), (b), and (c) with W ′ in place of W .

For part (a), let δ :=
1

2

∑
α>0

α. Choose σ ∈W ′ so that (σ(γ), δ) is as big as possible. Let α ∈ ∆. Then,

(σaσ(γ), δ) = (σ(γ), σα(δ))

= (σ(γ), δ)

= (σ(γ), δ)− (σ(γ), α).

Since γ is regular, σ(γ) is also regular. So, (σ(γ), α) > 0, i.e., σ(γ) ∈ C(∆).

Part (b) follows immediately.

In part (c), pick γ0 ∈ Pα r
⋃

β 6=±α

Pβ . Then there exists ε > 0 such that (γ0, α) = 0 and (γ0, β) > ε for

all β ∈ Φ+ r {α}. Pick γ very close to γ0 such that for some ε′ > 0,

0 < (γ, α) < ε′

while

|(γ, β)| > ε′

for all β ∈ Φ+ r {α}. Then, α ∈ ∆(γ′). Since α ∈ Φ+(γ) and is indecomposable, α = β1 + β2 with
(γ, α) = (γ, β1) + (γ, β2) for β1, β2 ∈ Φ+(γ).

In part (d), let α ∈ Φ and pick σ ∈ W ′ such that σ(α) = β ∈ ∆. Then, σβ = σσασ
−1. So,

σα = σ−1σβσ, and each of the three maps on the right-hand side are in W ′.

For part (e), suppose σ(∆) = ∆. Write σ = σα1 · · ·σαt as a product of simple reflections in the shortest
possible way. Then, the earlier lemma shows that σ(αt) < 0, and therefore σ = 1. �

Definition: Let ∆ be a base of Φ and σ ∈ W . We define the length of σ, denoted `(σ) to be the shortest
length of an expression for σ as a product of simple reflections. We call such a shortest expression reduced.

Lemma: For all σ ∈W , `(σ) = the number of positive roots α such that σ(α) < 0.

Proof: Let n(σ) denote the number of positive roots α such that σ(α) < 0. We proceed by induction
on `(σ). If `(σ) = 1, then the proof is clear. Write σ in reduced form

σ = σα1 · · ·σαt .

Then, σ(αt) < 0. Well, n(σσαt) = n(σ)− 1 and `(σσαt) = `(σ)− 1, so induction gives the result. �
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Notation: Let C(∆) denote the closure of C(∆) in E.

Lemma: Let λ, µ ∈ C(∆). If σ(λ) = µ for some σ ∈ W , then σ is a product of simple reflections, each of
which fixes λ. In particular, λ = µ.

Proof: We proceed by induction on `(σ). The base case is trivial. Suppose σ 6= 1. Then, σ must send
some simple root to a negative root. Suppose α ∈ ∆ is such that σ(α) < 0. Now,

0 ≥ (µ, σ(α)) = (σ−1µ, α) = (λ, α) ≥ 0.

Hence,

(λ, α) = 0,

so σα fixes λ. Then,

(σσα)(λ) = σ(λ) = µ.

Also, `(σσα) = `(σ)− 1. Induction applies. �

Corollary: C(∆) is a fundamental domain for the action of W on E.
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Definition: A root space is irreducible if it can’t be decomposed into nontrivial root spaces.

Recall: We say x > y for roots x, y if either x = y or x− y ∈ Φ+.

Lemma A: Let Φ be irreducible. Relative to <, there is a unique maximal root β. If

β =
∑
α∈∆

kαα

then kα > 0 for all α.

Proof: Let β be a maximal root. It’s clear that the maximal roots exist since the set is finite. What
we must show is that β is unique. Well, we have that β + α 6∈ Φ for all α ∈ ∆. So, we must have that
(β, α) ≥ 0. Suppose that

β =
∑
α∈∆

kαα =
∑
α∈∆1

kαα+
∑
α∈∆2

kαα,

where ∆1 = {α | kα 6= 0} and ∆2 = {α | kα = 0}. To prove the last statement of the lemma, we need
to prove that ∆2 = ∅.

Let γ ∈ ∆2. Then, (γ, α) ≤ 0 for all α ∈ ∆1. since γ, α ∈ ∆ and γ 6= α. Then, (γ, β) ≤ 0, and hence
(γ, β) = 0. Therefore, (γ, α) = 0 for all α ∈ ∆1. So (∆1,∆2) = 0. Therefore, ∆2 = ∅.

Now we show the first part of the lemma. Let β and β′ be maximal roots. Then, (β′, α) ≥ 0 for
all α ∈ ∆. But, ∆ spans E and so there exists α ∈ ∆ such that (β′, α) > 0. Therefore, (β′, β) > 0

where β =
∑
α∈∆

kαα. Hence, β′ − β ∈ Φ or else β = β′. Hence either β′ − β ∈ Φ+ meaning β < β′ or

β − β′ ∈ Φ+ meaning β > β′. Either way is a contradiction. �



1.21. DAY 21 - 10/17/12 41

Lemma B: If Φ is irreducible, then W acts irreducibly on E. (Hence any W -orbit on Φ spans E.)

Proof: Let E′ be a nonzero W -invariant subspace of E. Write E = E′ ⊕ E′′ where E′′ = E′⊥. Let
α ∈ Φ and v ∈ E′. Then,

E′ 3 σα(v) = v − (v, α∨)α.

So, either α ∈ E′ or α ∈ E′′. �

Lemma C: If Φ is irreducible, then there are at most two root lengths.

Proof: Let α and β be arbitrary roots. Then, there exists σ ∈W such that (σ(α), β) 6= 0 by Lemma
B. So, assume without loss of generality that (α, β) 6= 0. Now,

|β|2

|α|2
∈
{

1, 2, 3,
1

2
,

1

3

}
.

But if we had a third root γ we could get a root length of 3
2 for example, which is not possible. �

Fact: All roots of the same length are conjugate under W .

Lemma D: In an irreducible root system, the maximal root is long (if there are exactly two lengths).

Proof: Let α ∈ Φ. Let β be the unique maximal root. We show that (β, β) ≥ (α, α). Without loss
of generality, α ∈ C(∆). Then, β − α > 0. So, (γ, β − α) ≥ 0 for all γ ∈ C(∆). Well, β ∈ C(∆)
and (β, α) ≥ 0 for all α ∈ ∆. If γ = β then (β, β − α) ≥ 0 and so (β, β) ≥ (β, α). If γ = α then
(α, β − α) ≥ 0 and so (α, β) ≥ (α). Thus,

(β, β) ≥ (β, α) = (α, β) ≥ (α, α). �

Definition: Let ∆ = {α1, . . . , α`}. The Cartan matrix is the matrix (Cij) where

Cij = (αi, α
∨
j ) =

(
αi,

2αj
(αj , αj)

)
.
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1.21.1 Cartan Matrices

Consider (αi, α
∨
j ) with αi, αj ∈ ∆. We have the following examples of Cartan matrices.

Proposition: If Φ′ ⊆ E′ is another root system with base ∆′ = {α′1, . . . , α′`}, then the bijection αi 7→ α′i
extends to an isomorphism E → E′ sending Φ to Φ′. Therefore, the Cartan matrix determines Φ up to
isomorphism.

1.21.2 Coxeter Graphs and Dynkin Diagrams

Definition: To draw the Coxeter graph, we draw vertices {1, · · · , `}. We join i and j by (αi, α
∨
j ) and

(αj , α
∨
i ) edges, where i 6= j.

Example: In the first example above, which is Sl3(F ), the Coxeter graph is
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1 2

This information encodes the angle between α1 and α2 and also encodes the order of σα1
and σα2

. In this
case, the angle between them is 2π/3.

Example: In the second example above, the Coxeter graph is

1 2

The angle between them is 3π/4.

Example: In the third example above, the Coxeter graph is

1 2

The angle between them is 5π/6.

Example: In the fourth example, the Coxeter graph has no lines:

1 2

This means that the corresponding reflections commute. The angle between them is π/2.

Definition: In a Dynkin diagram, we take the Coxeter graph and draw an arrow which represents in
inequality through the edges. In all the ones above, the arrow is <.

Classification Theorem: If Φ is an irreducible root system of rank `, then its Dynkin diagram is one of
the following:

• A` (` ≥ 1):

· · ·
1 2 3 `− 1 `

In this case, W (A`) ∼= S`+1.

• B` (` ≥ 2):

· · ·
1 2 3 `− 1 `

In this case W (B`) ∼= Z`2 o S`.

• C` (` ≥ 3):

· · ·
1 2 3 `− 1 `

In this case W (C`) ∼= Z`2 o S`.
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• D` (` ≥ 4):

· · ·
1 2 3 `− 2

`− 1

`

In this case W (D`) ∼= Z`−1
2 o S`.

• E6:

• E7:

• E8:

• F4:

• G2:

Proof: See book for proof. �

Description of A`: A` has orthogonal lines e1, . . . , e`+1 in R`+1. We have

E = 〈e1 + · · ·+ e`+1〉⊥ ∼= R`,

Φ = {ei − ej | i 6= j}, |Φ+| =
(
`+ 1

2

)
,

∆ = {e1 − e2, e2 − e3, . . . , e` − e`+1}.

Now note that

α∨ =
2α

(α, α)
=

2α

2
= α.

The Cartan matrix has the form 

2 −1 − · · · · · · 0
−1 2 −1 0 · · · 0

0 −1
. . .

. . . · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 −1 −2 −1
0 · · · · · · 0 −1 2


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Description of B`: B` has orthogonal lines e1, . . . , e` in R`. We have

Φ = {±ei ± ej | i 6= j} ∪ {±ei}`i=1,

Φ+ = {ei ± ej | i < j} ∪ {ei}`i=1,

∆ = {e1 − e2, e2 − e3, . . . , e`−1 − e`, e`}.

Observe that ∣∣Φ+
∣∣ = 2

(
`

2

)
+ ` = `2.

The Cartan matrix has the form 

2 −1 − · · · · · · 0 0

−1 2 −1 0 · · · 0
...

0 −1
. . .

. . . · · · 0
...

...
. . .

. . .
. . .

. . .
...

...
0 · · · 0 −1 −2 −1 0
0 · · · · · · 0 −1 2 −1
0 · · · · · · · · · 0 −1 2


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Description of C`: C` and B` are very similar, except that

Φ = {±ei ± ej | i 6= j} ∪ {±2ei}.

Description of D`: We have that

Φ = {±ei ± ej | i 6= j},

and

∆ = {e1 − e2, . . . , e`−1 − e`, e`−1 + e`}.

Hence,

Φ+ = {ei ± ej | i 6= j}.

As noted earlier,

W ∼= Z`−1
2 o S`.

1.22.1 Weights

Definition: Let Φ ⊆ E and denote the system of coroots by

Φ∨ = {α∨ =
2α

(α, α)
| α ∈ Φ.

Definition: Let Λr = ZΦ be the root lattice and let Λcr = ZΦ∨ be the coroot lattice. Define

Λ := {x ∈ E | (x, α∨) ∈ Z ∀α ∈ Φ}.

This is the dual lattice of the coroot lattice. Λ is sometimes called the (abstract) weight lattice of Φ.
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Remark: Since (α, β∨) ∈ Z for all α, β ∈ Φ, we have that Λr ⊆ Λ. Consider A2:

α1

α1 + α2α2

Here, we have Φ∨ = Φ, α1 = e1 − e2, and α2 = e2 − 33. Let λi be defined by

(λi, α
∨
j ) = δij .

Then, the set {λi}i forms a basis for Λ. So, we know that

α1 = (1,−1, 0) and α2 = (0, 1,−1).

So, if λ1 = (a, b,−a− b), then we must have a− b = 1 and b+ a+ b = 0. This gives the solution a = 2/3 and
b = −1/3. Thus,

λ1 = (2/3,−1/3,−1/3).

By a similar calculation

λ2 = (1/3, 1/3,−2/3).
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Definition: If ∆ = {α1, · · · , α`}, define λi by (λi, α
∨
j ) = δi,j . Then, {λi}`i=1 forms a basis for Λ and the λi

are called fundamental dominant weights. We also define

Λ+ := {λ | (λ, α∨) ≥ 0, ∀α ∈ Φ+}.

Remark: We have a partial ordering on Λ:

x ≺ y if and only if y − xis a sum of positive roots.

Warning: we can have x ∈ Λ+ and x ≺ y but y 6∈ Λ+.

Now, if we have a Lie algebra L and H is a maximal toral Lie subalgebra, say that

L = H ⊕
⊕
α∈Φ

Lα.

Warning: this is not the same Φ ⊆ E as in our root system. This is Φ ⊆ H∗. We had to carefully construct
E from H∗ earlier.

In each Lα, α ∈ Φ, pick an arbitrary xα 6= 0. Then, there exists yα ∈ L−α such that if hα = [xα, yα], then
the algebra 〈xα, hα, yα〉 ∼= Sl(2, F ) is such that

[hα, xα] = 2xα

and

[hα, yα] = −2yα.
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H is spanned by hα for α ∈ Φ and {hα | α ∈ ∆} is a basis. Note that

[hα, xβ ] = (β, α∨)xβ .

We see that H ∼= H∗. For tα ∈ H, (tα, h) = α(h), with hα =
2tα

(α, α)
.

Consider
Λ+ = {λ ∈ Λ | (λ, α∨) ≥ 0, ∀α ∈ Φ+}.

Each simple Sl(2, F )-module is of the form V (n), where V (n) has a basis Vn, Vn−2, · · · , V−n and hvi = ivi.
Thus, the simple Sl(2, F )-modules correspond to nλ1 for n ∈ N0, where h corresponds to α∨1 . So, hvn = nvn
means that vn affords the eigenvalue 〈nλ1, α

∨〉.

1.23.1 Representation Theory

Let L be a semisimple Lie algebra over F . Let H be a Cartan subalgebra (CSA) . Consider the roots Φ and
the basis ∆ = {α1, . . . , α`}. Write

L = H ⊕
⊕
α∈Φ

Lα

with xα ∈ Lα, yα ∈ L−α and hα = [xα, yα].

Definition: Let V be a finite dimensional L-modules. Then, H acts diagonally on V . Hence, we can write

V =
⊕
λ∈H∗

Vλ,

where
Vλ = {v ∈ V | hv = λ(h)v ∀h ∈ H}.

Vλ is called the weight space of V for the weight λ.

Remark: Warning: these are not the same weights as before from root spaces.
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Definition: A vector v ∈ Vλ is called a maximal vector if Lαv = 0 for all α > 0.

Definition: The Borel subalgebra is

B(∆) = H +
∑
α>0

Lα.

Recall: L-modules are equivalent to U(L)-modules, where U(L) is the universal enveloping algebra.

Recall: Let L be a Lie algebra, and let T the tensor algebra of L (i.e., T =
⊕
i≥0

Ti where Ti = L⊗ · · · ⊗ L︸ ︷︷ ︸
i times

).

If we consider
I = 〈x⊗ y − y ⊗ x | x, y ∈ L〉 ⊆ T,

then T/I = S(L), where S(L) is the symmetric algebra, which is isomorphic to the polynomial algebra on a
basis of L. To get the universal enveloping algebra, we define

J = 〈x⊗ y − y ⊗ x− [x, y] | x, y ∈ L〉

and define U := T/J .
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1.24.1 Filtrations and Gradings

Define
Tm := T 0 ⊕ T 1 ⊕ · · · ⊕ Tm

and note that
T0 ⊆ T1 ⊆ T2 ⊆ · · ·

and
Ti/Ti−1

∼= T i.

Let U−1 = 0 and Um = π(Tm), where π is the induced map in the commutative diagram below.

L - T

U
? π
�
= T/J

Then, UmUp ⊆ Um+p. Let Gm := Um/Um−1. This is a vector space. We have a map

Gm ×Gp → Gm+p.

This makes

G :=

∞⊕
m=0

Gm

into a graded associative algebra.

Lemma: Consider φm : Tm → Um → Gm. This map is surjective (but Tm → Um is not) and it induces an
algebra homomorphism φ : T → G. Moreover, φ(I) = 0, so we have an induced surjective homomorphism of
algebras ω : S → G.

Theorem: (Poincaré-Birkhoff-Witt Theorem) ω : S → G is an isomorphism of graded algebras.

Definition: V is a standard cyclic module if V = U(L)v+ for some maximal vector v+. Well,

L =
∑
α<0

Lα︸ ︷︷ ︸
ni

⊕ H︸︷︷︸
hi

⊕
∑
α>0

Lα︸ ︷︷ ︸
pi

.

We have
piv

+ = 0,

hiv
+ ∈ Fv+.
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Consider a Lie algebra L with dimension n. Let

F = U0 ⊆ U1 ⊆ U2 ⊆ · · ·

be a filtration of U(L). Let Um be the image in U of

Tm = T 0︸︷︷︸
=F

⊕ T 1︸︷︷︸
=L

⊕ T 2 ⊕ · · · ⊕ Tm ⊆ T (L).
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By the Poincaré-Birkhoff-Witt Theorem, we have that Um/Um−1
∼= Sm(L). By using the “stars and

bars” technique, we see that

dim(Sm(L)) =

(
m+ n− 1

n− 1

)
=

(
m+ n− 1

m

)
(since we’re counting the number of ways to pick a monomial of degree m from n different variables.)

Remark: Observe that
gr(U) =

⊕
m

Um/Um−1
∼=
⊕
m

Sm(L) = S(L)

as graded algebras. Additionally, if L = L0 ⊕ L1, then S(L) ∼= S(L0)⊗ S(L1).

Remark: If H is a subalgebra of L, then we claim that U(H) ↪→ U(L). Take a basis β of H and extend
to a basis β ∪ γ of L. Then, U(H) has a basis of monomials in β and U(L) has a basis of elements of the
form m ·n where m is a monomial in β and n is a monomial in γ. This is by the Poincar’e-Birkhoff-Witt
Theorem.

Remark: Suppose that L is semisimple. Then, we can write

L =
∑
α<0

Lα︸ ︷︷ ︸
=:N

⊕H ⊕
∑
α>0

Lα︸ ︷︷ ︸
=:P

.

Now, U(L) ∼= U(N)⊗ U(H)⊗ U(P ) as algebras. This is called the triangular decomposition.

Lemma: Let L be finite dimensional and semisimple. Let V be an L-module (possibly infinite dimensional).
Let Vλ be the λ-weight space. Then,

(a) Lα maps Vλ into Vλα for α ∈ Φ.

(b) V ′ =
∑
λ∈H∗

Vλ is a direct sum and V ′ is an L-submodule of V .

(c) If dim(V ) <∞, then V = V ′.

Proof of (a): Suppose that v ∈ Vλ and x ∈ Lα. Then,

h(xv) = (hx− xh+ xh)v

= ([h, x] + xh)v

= (α(h)x+ xh)v

= (α(h) + λ(h))(xv)

= (α+ λ)(h)(xv). �

1.25.1 Standard Cyclic Modules

Definition: Let L,Φ,∆ be as usual, and write

L =
⊕
α<0

Lα ⊕H ⊕
⊕
α>0

Lα.

Set V = U(L)v+ where v+ is a maximal vector. Note that Lαv
+ = 0 for α >) and v+ ∈ Vλ for some λ. We

say that V is a standard cyclic module.

Theorem: Let V be a standard cyclic module with maximal vector v+ ∈ Vλ. Let Φ+ = {β1, . . . , βm}. Then,
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(a) V is spanned by vectors yβ`11 , . . . , yβ
`m
m where y ∈ L−α (for α > 0) and `i ∈ Z+. In particular, V is the

direct sum of its weight spaces.

(b) The weights of V are of the form

µ = λ−
∑̀
i=1

kαiαi

for ki ∈ Z+. So, all weights satisfy µ < λ.

(c) For each µ ∈ H∗, dim(Vµ) is finite and dim(Vλ) = 1. Also, Vλ = 〈v+〉.

(d) Each submodule of V is the direct sum of its weight spaces.

(e) V is an indecomposable L-module with a unique maximal submodule and irreducible quotient.

(f) Every nonzero homomorphic image of V is a standard cyclic module.

Corollary: Every finite dimensional irreducible module is standard cyclic.
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Theorem: Let W,V be standard cyclic modules of highest weight λ. If V and W are irreducible, then they
are isomorphic.

Proof: Let X = V ⊕W . Let v+, w+ be maximal vectors in V,W and define x+ := (v+, w+). Then,
x+ is a maximal vector in X. Let Y := U(L)x+ ⊆ X. Y is a standard cyclic module.

Let p : X → V and p′ : X → W be the projections. Then p(x+) = v+ and p′(x+) = w+. So,
Im(p)

∣∣
Y

= V and Im(p′)
∣∣
Y

= W . Hence, both V and W must be isomorphic to the unique simple
quotient of Y , and hence V ∼= W . �

Remark: Our object now is to construct standard cyclic modules with highest weight λ∗. This is called the
induced module construction.

Example: Let G be a group with H ≤ G. Consider FH ↪→ FG. For any FH-module M , the FG-module

FG⊗FH M

is the induced module.

Example: Let g be a Lie algebra and f a subalgebra. Then, for any left f-module (i.e., left U(f)-module),
we can form the g-module

U(g)⊗U(f) M.

Construction: Consider rings R and S with 1 and a homomorphism φ : R → S. Then, SSR is an (S,R)
bimodule by the action

(s, r)(a) = (sa)φ(r) = s(aφ(r)).

Now, write the Lie algebra L as

L =
∑
α<0

Lα ⊕H ⊕
∑
α>0

Lα.

Set
B := B(∆) = H ⊕

∑
α>0

Lα︸ ︷︷ ︸
=:P
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be a submodule. Note that P is an ideal of B and that B/P ∼= H. Let λ ∈ H∗ and consider

B - H
λ- F

We can consider λ as a homomorphism from B to F . Let Fλ = 〈v+〉 denote the 1-dimensional module on
which B acts by

b · x = λ(b) · x

for x ∈ Fλ. Next define
Z(λ) = U(L)⊗U(B) Fλ.

We claim that Z(λ) is a standard cyclic module with highest weight λ, maximal vector 1 ⊗ v+, such that
U(L) is free as a right U(B)-module. Now,

U(L) ∼= U(B)⊗F S(L/B)

as U(B)-modules. By construction, Z(λ) is generated by 1⊗ v+.

If α > 0 and x ∈ Lα ⊆ B, then
x(1⊗ v+) = x⊗ v+ = 1⊗ xv+ = 0.

So, 1⊗ v+ is killed by all Lα, α > 0. For h ∈ H,

h(1⊗ v+) = h⊗ v+ = 1⊗ hv+ = 1⊗ λ(h)v+ = λ(h)(1⊗ v+).

So, 1⊗ v+ is indeed a maximal vector with highest weight λ.

Now, write
Z(λ) = U(L)⊗U(B) Fλ.

By PBW,
U(L) = U(N)⊗F U(B).

Hence,

Z(λ) = U(N)⊗F U(B)⊗U(B) Fλ

= U(N)⊗F Fλ

as U(N)-modules. So, Z(λ) has a basis of the form

yi1β1
, . . . , yimβm ⊗ v

+

where β1, . . . , βm are the positive roots and i1, . . . , im are nonnegative integers.

Definition: Let V (λ) be the unique irreducible quotient of Z(λ). Then, we have constructed a unique
irreducible standard cyclic module V (λ) for each λ ∈ H∗.

Question: Every finite irreducible module must be of the form V (λ) for some λ ∈ H∗ (since it contains a
maximal vector). For which λ ∈ H∗ is V (λ) finite dimensional?

Remark: We can half-answer this question with the following necessary condition. If V (λ) is finite
dimensional, then V (λ) is a finite dimensional module for each

Sα ∼= Sl2(F )

for α ∈ Φ+. Hence, from what we know about representations of Sl2(F ), we must have

λ(hα) ∈ Z+
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for α ∈ Φ+.

Definition: λ ∈ H∗ is a dominant integral weight if λ(hα) ∈ Z+ for all α ∈ Φ+.

Definition: Define HZ := 〈hi | i ∈ ∆〉Z ⊆ H. These are the dominant integral weights which are elements
of the dual lattice to HZ in H∗.
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Recall: V (λ) is the irreducible standard cyclic module with highest weight λ ∈ H∗.

Definition: We say that λ is integral if λ(hαi) ∈ Z for {α1, . . . , α`} = ∆.

Remark: The set of integral weights forms a Z-lattice in H∗ dual to the lattice Z∆ ⊆ H. We can identity
the integral weights with the lattice Λ ⊆ E, where E is a Euclidean space.

Definition: Define
Λ+ = {λ ∈ Λ | λ(hi) ≥ 0}

for all i = 1, . . . , `. These are called the dominant weights. Note that we also have

Λ+ = {λ ∈ Λ | (λ, α∨) ≥ 0, ∀α ∈ Φ+}.

Theorem: If λ ∈ H∗ is dominant integral, then the irreducible L-module V = V (λ) is finite dimensional
and its sets of weights Π(λ) is permuted by W with dim(Vµ) = dim(Vσµ) for all σ ∈W .

Corollary: The map λ 7→ V (λ) is a one-to-one correspondence from Λ+ to the set of isomorphism classes
of finite dimensional irreducible L-modules.

Lemma: (Properties of The Universal Enveloping Algebra) Let ∆ = {α1, . . . , α`}. Let xi, yihi be standard
generators of Si ∼= Sl2(F ) ⊆ L (for i ∈ [`]). Then,

(a) [xj , y
k+1
i ] = 0 for all i 6= j.

Proof:

[xj , y
k+1
i ] = xjy

k+1
i − yk+1

i xj

= (xjyi)y
k
i − (yixj)y

k + (yixj)y
k
i − yiyki xj

= [xj , yi]y
k
i + yi[xj , y

k
i ].

The first term is zero because it is contained in Lαi−αj , which is zero. The second term is zero
by induction. �

(b) [hj , y
k+1
i ] = −(k + 1)αi(hj)y

k+1
i

(c) [xi, y
k+1
i ] = −(k + 1)yki (k · 1− hi)

Theorem: Let φ : L → gl(V ) be the representation of L on V = V (λ). Let v+ ∈ Vλ be a maximal vector.
Let mi := λ(hi). The mi ∈ Z+ by assumption.

(1) ymi+1
i v+ = 0.
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Proof: Let w = ymi+1
i v+. By part (a) of the previous lemma, xjw = 0 for j 6= i. So,

xiw = xiy
mi+1
i v+

= ymi+1
i xiv

+ − (mi + 1)ymii (mi · 1− hi)v+. = ymi+1
i xiv

+ (mi · 1− hi)v+ = 0)

So, if w 6= 0 then it would be a maximal vector, but off the wrong weight, this is a contradiction.
�

(2) Span(v+, yiv
+, · · · , ymii v+) is a nonzero Si0submodule (finite dimensional) in V .

(3) V is the sum of finite dimensional Si modules.

Proof: Let V ′ ⊆ V be the sum of all Si-submodules of V . Then, V ′ 6= 0 by (2). Let W be
any finite dimensional Si-submodule. The spam of {xαW,hiW} for α ∈ Φ and αi ∈ ∆ is a finite
dimensional and an Si-submodule. So, V ′ is stable. Hence, V ′ = V since V is irreducible. �

(4) For 1 ≤ i ≤ `, φ(xi) and φ(yi) are locally nilpotent and in End(V ). Every element of V lies in some
finite dimensional Si-module W and φ(xi)

∣∣
W

and φ(yi)
∣∣
W

are nilpotent.

(5) Let SiL = exp(φ(xi)) exp(φ(−yi)) exp(φ(xi)). Si is a well-defined automorphism of V .

(6) If µ is any weight of V , then Si(Vµ) = Vσiµ where σi is the reflection with respect to αi.

(7) Π(λ) is stable under W .

(8) Π(λ) is finite. Indeed, the set of W -conjugates of all dominant integral functions µ < λ is finite.

(9) dim(V ) <∞¡ and so Π(λ) is finite and for each µ ∈ Π(λ), dim(Vµ) <∞. Since

V =
⊕

µ∈Π(λ)

Vµ

uj we conclude dim(V ) <∞.
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Example: Let L := Sl(n, F ) be the set of n×n matrices of trace 0. Let H be the diagonal subalgebra. Let
V = Fn be the natural module. We have the following (any matrix elements not shown are 0):

h1 =


1 0
−1

0
. . .

0 0

 h2 =


0 0

1
−1

. . .

0 0

 ,

xα1 =


0 1 0

0
0

. . .

0 0

 xα2 =


0 0

0 1
0

. . .

0 0

 ,

[h1, xα] =


0 1 0

0
0

. . .

0 0

−


0 −1 0
0

0
. . .

0 0

 = 2x,
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etc. Now note that V is irreducible. Suppose {v1, v2, · · · , vn} is the standard basis,

v1 =



1
0
0
...
0
0


, v2 =



0
1
0
...
0
0


, · · · vn =



0
0
0
...
0
1


.

Well, 
1
−1

0
. . .

0




1
0
0
...
0

 =


1
0
0
...
0

 .

So, h1v1 = v1. Hence, v1 is a weight vector for H, corresponding to weight ω1. If i > 1, we can see that
hiv1 = 0. Next, h1v2 = −v2 and h2v2 = v2. So, v2 is a weight vector with weight ω2 − ω1. Continuing the
calculation, we see that vi for i < n is a weight vector with weight ωi − ωi−1. Lastly, vn is a weight vector
with weight −ωn−1.

To check that v1 is a maximal vector, we verify that
0

0 ∗
0

. . .

0




1
0
0
...
0

 =


0
0
0
...
0

 .

So, v1 is a maximal vector, and V = V (ω1).

To construct V (ωi), consider the exterior powers ΛiV .

Definition: If V is any vector space, then the exterior algebra is

T (V )/〈v ⊗ v | v ∈ V 〉

where T (V ) is the tensor algebra defined by

T (V ) =
⊕
i≥0

T i(V )

where

Ti(V ) = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
i terms

.

T (V ) is a graded ring and 〈v ⊗ v | v ∈ V 〉 is homogeneous. Thus, the exterior algebra is graded and can be
written

Λ(V ) =
⊕
i≥0

Λi(V ).
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Recall: Define

Λ+ = {λ ∈ Λ | (λ, α∨) ≥ 0, ∀α ∈ ∆}.

Then, V (λ) is a simple finite dimensional module with highest weight λ ∈ Λ+.

Notation: Π(λ) := {µ | V (λ)µ 6= 0}.

Objective: For µ ∈ Π(λ), we want to find dim(V (λ)µ), called the weight multiplicity of µ in V (λ).

Definition: A set of weights Π ⊆ Λ is saturated if for all λ ∈ Π, α ∈ Φ, and 0 ≤ i ≤ (λ, α∨), we have that
the weight λ− iα ∈ Π. We say that a saturated set Π has highest weight λ ∈ Λ+ if µ < λ for all µ ∈ Φ.

Note: If Π is saturated, then Π is invariant under W , since

σα(µ) = µ− 〈µ, α∨〉α.

Lemma: Let Π be a saturated set of weights with highest weight λ ∈ Λ+. Then, Π is finite.

Lemma: For λ ∈ Λ+, Π(λ) – the set of weights of V (λ) – is saturated with highest weight λ.

Lemma: Let Π be a saturated set of weights with highest weight λ ∈ Λ+. If µ ∈ Λ+ and µ < λ, then µ ∈ Π.

Proof: Let µ′ := µ+
∑
α∈∆

kαα, where kα ≥ 0. Suppose that µ′ ∈ Π. We will show that for some α ∈ ∆

with kα > 0, we can lower kα by 1 and the resulting weight is still in Π. Then, starting with λ ∈ Π
and repeating, we get µ ∈ Π. We can assume that µ 6= µ′. So, there exists α with kα > 0. Hence,

0 <

(∑
α∈∆

kαα,
∑
α∈∆

kαα

)
.

So, there exists β ∈ ∆ such that kβ > 0 and(∑
α∈∆

kαα, β

)
> 0

and hence (∑
α∈∆

kαα, β
∨

)
≥ 0.

Also, (µ, β∨) ≥ 0. Since β ∈ ∆, µ ∈ Λ+. Hence,

(µ′, β∨) =

(
µ+

∑
α∈∆

kαα, β
∨

)
> 0

since µ′ ∈ Π and Π is saturated. So, µ′ − β ∈ Π. �

Corollary: Π(λ) = {σµ | µ ∈ Λ+, µ < λ, σ ∈W}.
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Remark: We can derive important formulas like Freudenthal’s Multiplicity Formula, Kostant’s
Formula and Weyl’s Character Formula.

Definition: One important weight that appears in all of the formulae is

δ :=
1

2

∑
α∈Φ

α.

This has the property that
σα(δ) = δ − α.

Lemma: Let λi for i ∈ [`] be the ith fundamental dominant weight (i.e., (λi, α
∨
j ) = δi,j). Then,

δ =
∑̀
i=1

λi.

In particular, (δ, α∨) > 0 for all α ∈ Φ+.

Proof: First note that

(δ − αi, αi) = (σi(δ), αi)

= (σ2
i (δ), σi(αi)

= (δ,−αi)
= −(δ, αi).

So, 2(δ, αi) = (αi, αi). And hence (
δ,

2αi
(αi, αi)

)
= 1,

i.e.,
(δ, α∨) = 1

for all i. Therefore,
δ = λ1 + · · ·+ λ`. �

Lemma: Let µ ∈ Λ+ and ν = σ−1µ for some σ ∈W . Then,

(ν + δ, ν + δ) ≤ (µ+ δ, µ+ δ)

with equality only if µ = ν.

Proof: Well,

(ν + δ, ν + δ) = (σ(ν + δ), σ(ν + δ))

= (µ+ σδ, µ+ σδ)

= (µ+ δ, µ+ δ)− 2(µ, δ − σδ).

Since σδ < δ (look at modules with highest weight δ), we have that δ−σδ is the sum of positive roots.
So, the right-hand term is nonnegative. This gives the inequality

(ν + δ, ν + δ) ≤ (µ+ δ, µ+ δ).

We have equality if and only if (µ, δ− σδ) = 0, which occurs if and only if (µ, δ) = (µ, σδ) = (ν, δ). To
see this, note that (µ− ν, δ) = 0 and µ− ν is a sum of positive roots. So, equality holds if and only if
µ = ν. �
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Definition: Let Π be a set of vectors. We say that Π is saturated if for all µ ∈ Π, 0 ≤ i ≤ (µ, α∨), and
α ∈ Φ, we have µ− iα ∈ Π.

Definition: A saturated set Π has highest weight λ if µ < λ for all µ ∈ Π. If λ ∈ Λ+, then

Π(λ) = {µ ∈ Λ | V (λ)µ 6= 0}

is a saturated set of weights with highest weight λ.

Lemma: If Π is saturated with highest weight λ and µ ∈ Λ+ and µ < λ, then µ ∈ Π.

Corollary: Π(λ) = {σµ | µ ∈ Λ+, µ < λ, σ ∈W}.

Definition: Define

δ =
1

2

∑
α∈Φ+

α = λ1 + · · ·+ λ`

where λi ∈ Λ+ is defined by (λi, α
∨
j ) = δij . Recall that these are called the fundamental dominant weights.

Lemma: Let µ ∈ Λ+ and ν := σ−1µ for some σ ∈W . Then,

(µ+ δ, µ+ δ) ≤ (ν + δ, ν + δ)

with equality if and only if µ = ν.

Lemma: Let Π be a saturated set of weights with highest weight λ ∈ Λ+. If µ ∈ Π, then

(µ+ δ, µ+ δ) ≤ (λ+ δ, λ+ δ).

Proof: By the previous lemma, we can assume that µ ∈ Λ+. Let λ = µ + Σ where Σ is the sum of
the positive roots. Then,

(λ+ δ, λ+ δ)− (µ+ δ, µ+ δ) = (λ+ δ, λ+ δ)− (λ+ δ − Σ, λ+ δ − Σ)

= (λ+ δ,Σ) + (Σ, µ+ δ)

≥ (λ+ δ,Σ)

≥ 0

with equality if and only if Σ 6= 0. �

1.30.1 Freudenthal’s Multiplicity Formula

Theorem: Let m(µ) = dim(V (λ)µ) for µ ∈ Λ. The m(µ) are given recursively by

((λ+ δ, λ+ δ)− (µ+ δ, µ+ δ))m(µ) = 2
∑
α>0

∞∑
i=1

m(µ+ iα)(µ+ iα, α).

The starting point of the recursion is m(λ) = 1.
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Example: Let L = Sl(3, F ). Then,

Φ+ = {α1 = (1,−1, 0), α2 = (0, 1,−1), α1 + α2 = (1, 0,−1)}.

We know Λ ⊆ (1, 1, 1)⊥, and we calculate that

λ1 =

(
2

3
,−1

3
,−1

3

)
λ2 =

(
1

3
,

1

3
,−2

3

)
λ1 =

2

3
α1 + α2 λ2 =

1

3
α1 +

2

3
α2

α1 = 2λ1 − λ2 α2 = 2λ2 − λ1

δ = (1, 0,−1).

Choose λ = λ1 + 3λ2 =

(
5

3
,

2

3
,−7

3

)
. We calculate the first level of recursion

µ = λ− α1 = (λ1 + 3λ2)− (2λ1 − λ2) = −λ1 + 4λ2 =

(
2

3
,

5

3
,−7

3

)
= λ− α2 = (λ1 + 3λ2)− (2λ2 − λ1) = 2λ1 + λ2 =

(
5

3
,−1

3
,−4

3

)
.

We have
(λ1, α

∨
1 ) = 1, and (λ, α∨2 ) = 3.

Hence,

λ+ δ =

(
8

3
,

2

3
,−10

3

)
µ+ δ =

(
5

3
,

5

3
,−10

3

)
.

Thus,

((λ+ δ, λ+ δ)− (µ+ δ, µ+ δ)) =
168

9
− 150

9
=

18

9
= 2.

Then,

2m(µ) = 2
∑
α>0

∞∑
i=1

m(µ+ iα)(µ+ iα, α)

= 2m(λ)(λ, α1)

= 2m(λ) · 1.

Therefore, m(µ) = m(λ) = 1.
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Theorem: (Freudenthal’s Formula) Consider V (λ) with λ ∈ Λ+. Define m(µ) := dim(V (λ)µ) and

δ :=
1

2

∑
α>0

α = λ1 + · · ·+ λ`,

where (λi, α
∨
j ) = δi,j and ∆ = {α1, . . . , α`}. Then

m(µ) [(λ+ δ, λ+ δ)− (µ+ δ, µ+ δ)] = 2
∑
α>0

∞∑
i=1

m(µ+ iα)(µ+ iα, α).

Additionally, for µ ∈ Π(λ), we have that

{ν | µ < ν < λ} is finite.
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Proof: (Outline)

(1) Consider a Casimir element in the center of U(L). It is of the form

cL =
∑
i

xiyi

where {xi}i is a basis of L and {yi}i is a dual basis with respect to some nondegenerate associative
form (in this case, we’ll use the Killing form). This element will play a similar role as in the proof
of Weyl’s Theorem. cL acts on any V (λ) as a scalar, say c. If

L = H ⊕
⊕
α

Lα,

then the specific form of cL is ∑̀
i=1

hiki +
∑
α∈Φ

xαzα

where {hi}i and {xα}α are standard bases and {ki}i and {zα}α are dual bases with respect to
the Killing form.

Note that the terms hiki and xαzα each send every weight space Vµ to itself. So, cL preserves
each Vµ.

(2) Compute the traces of each hiki and xαzα on each Vµ. It’s easy to calculate the traces of the
hiki. The other calculations are difficult.

To compute the trace of xαzα on Vµ, we consider V (λ) as a module for Sα = 〈xα, zα, hα〉 =
Sl(2, F ). Let κ be the Killing form on L. Let {h1, . . . , h`} be a basis for K and let {k1, . . . , k`}
be a dual basis with respect to κ

∣∣
H×H . Pick nonzero xα ∈ Lα to be arbitrary. Then, there exists

a unique zα ∈ L−α satisfying

κ(xα, zα) = 1.

Before, we had standard generators xα, yα, and hα of Sα. If we choose the same xα, then we get
that

zα =
(α, α)

2
yα,

tα = [xα, zα] =
(α, α)

2
hα,

[xα, zα] =
(α, α)

2
hα,

[xα, yα] = hα.

So,

cL =
∑̀
i=1

hiki +
∑
α∈Φ

xαzα ∈ U(L).

It must be checked that cL ∈ Z(U(L)).

Consider an irreducible Sα-module of highest weight m ∈ N, with hαv0 = mv0. Let {v0, . . . , vm}
be the basis we used for the module earlier, where v0 was the vector killed by xα and hv0 = mv0,
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and vi =
yiα
i!
v0. Now, we have

hαvi = (m− 2i)vi,

yαvi = (i+ 1)vi+1,

xαvi = (m− i+ 1)vi−1,

tαvi = (m− 2i)

(
(α, α)

2

)
vi,

zαvi = vi+1,

xαvi = i(m− i+ 1)

(
(α, α)

2

)
vu−1.

So,

(xαzα)vi = (m− i)(i+ 1)

(
(α, α)

2

)
vi.

Let µ ∈ Π(λ) be such that µ + α 6∈ Π(λ) for all α > 0. For each such µ, we get a simple Sα
submodule of V (λ) of highest weight m = (µ, α∨).

The α-string of weights through µ is

µ, µ− α, µ− 2α, · · · , µ−mα.

Consider the action of Sα on

Vµ + Vµ−α + Vµ−2α + · · ·+ Vµ−mα.

This is a direct sum of simple Sα-modules with highest weight m′, with m′ ≤ m.

1.32 Day 32 - 11/16/12

Continuing from last class, we defined

cL =
∑̀
i=1

hiki +
∑
α∈Φ

xαzα.

cL acts on V (λ) = V as some scalar c. We want to compute

trVν (cL) = cm(ν).

Well,

trVν (cL) =
∑

i = 1` trVν (hiki) +
∑
α∈Φ

trVν (xαzα)

= m(µ)(µ, µ) +
∑
α∈Φ

trVν (xαzα).

Fix α. Let µ = ν + kα ∈ Λ+ ∩Π(λ) such that µ+ α 6∈ Π(λ). Consider the subspace∑
k≥0

Vµ−kα.

This is an Sα-module and so it is a direct sum of simple Sα-modules. Let m := (µ, α∨). m is the highest
Sα-weight occuring.
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In a simple Sα-module with highest weight m − 2i, the basis vector corresponding to weight µ − kα is the
vector vk−i of the module with highest weight m− 2i. We find that

xαzαvk−i =

(
(m− i− k)(k − i+ 1)

(α, α)

2

)
vk−i.

After some algebra, if we assume that 0 ≤ k ≤ m/2, then

trVµ− kα
ν

(xαzα) =

k∑
i=0

m(µ− iα)(µ− iα, α).

Lemma: For any ω ∈ Λ,
∞∑

i=−∞
m(ω + iα)(ω + iα, α) = 0.

Now let µ ∈ Π(λ) be our previous ν. By the lemma,

∞∑
i=1

m(µ− iα)(µ− iα,−α) = m(µ)(µ, α) +

∞∑
i=1

m(µ+ iα)(µ+ iα, α).

Hence,

trVµ(cL) =
(µ, µ)m(µ)∑̀
i=0

hikI

+
∑
α∈Φ

∞∑
i=0

m(µ+ iα)(µ+ iα, α)

= (µ, µ)m(µ) +
∑
α>0

m(µ)(µ, α) + 2

∞∑
i=0

m(µ+ iα)(µ+ iα, α).

This completes the proof of Freudenthal’s Formula. �

1.32.1 Formal Characters

Notation: Consider the group ring Z[Λ]. Since Λ is an additive group, to avoid confusion, we take as a basis
for the group ring the set

{e(λ) | λ ∈ Λ}

with

e(λ)e(µ) = e(λ+ µ).

Definition: If V is a finite dimensional module, and for µ ∈ Λ we have m(µ) = dim(Vµ), then the
formal character of V is

Ch(V ) =
∑
µ

m(µ)e(µ) ∈ Z[Λ].

Lemma: Ch(V ⊗F W ) = Ch(V ) Ch(W ).
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Recall: Z[Λ] is the group ring of Λ, the group of integral weights. Z[Λ] has basis {e(λ) | λ ∈ Λ}. Since Λ is
also additive, we convert the group addition in Λ into multiplicative notation using

e(λ+ µ) = e(λ)e(µ).

Definition: If V (λ) is the simple L-module with highest weight λ ∈ Λ+, then

Chλ =
∑

µ∈Π(λ)

m(µ)e(µ) ∈ Z[Λ]

is the formal character. Note that m(µ) = dim(V (λ)µ).

Definition: For any µ ∈ Λ∗, let Sym() be he sum of all e(ν), where ν is a W -conjugate of µ. Note that
Sym(µ) ∈ Z[Λ].

We know that Π(λ) is a saturated set of weights with highest weight λ. So, Π(λ) is a union of W -orbits of
weights, such that the unique dominant weight in each orbit is ≤ λ. So we see that

Chλ =
∑

µ ∈ Λm(µ)e(µ)

=
∑
µ∈Λ+

µ<λ

m(µ) Sym(µ)

and m(µ) 6= 0 for all µ ∈ Λ+ and µ < λ.

1.33.1 Weyl’s Character Formula

Definition: For σ ∈W , define sgn(σ) = detE(σ) = (−1)`(σ).

Definition: For γ ∈ Λ+, define

w(γ) =
∑
σ∈W

sgn(σ)e(σ(γ)) =

(∑
σ∈W

sgn(σ)σ

)
(e(γ)).

Weyl’s Character Formula: Let δ :=
1

2

∑
α>0

α. Let λ ∈ Λ+. Then,

w(δ) Chλ = w(λ+ δ).

Corollary:

dim(V (λ)) =

∏
α>0

(λ+ δ, α∨)∏
α>0

(δ, α∨)
.

w
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1.34.1 Invariant Polynomial Functions

Let V be a finite dimensional vector space. Consider

S(V ∗) ≡ P (V ),

the ring of polynomial functions on V . (When we consider functions rather than formal polynomials, we
allow two different polynomials to be equal as functions. For example x = x2 over F2.)

If H is a Cartan subalgebra, then P (H) is generated as an algebra by {λk | λ ∈ Λ, k ∈ Z+}.

Definition: W acts on H, H∗, and P (H). Let P (H)W be the subalgebra of functions fixed by W .

For example, if L = gl(n, F ) and H is the subalgebra of diagonal matrices and P (H) = F [x1, . . . , xn] where
xi(h) = ith diagonal entry of h and W ∼= Sn permutes the variables, then

P (H)W = the algebra of symmetric polynomials.

Definition: For f ∈ P (H) let sym(f) ∈ P (H)W be the orbit sum of W -orbits of f . Then,

{sym(λk) | λ ∈ Λ+, k ∈ Z+}

spans P (H)W .

Remark: Let L be a semisimple Lie algebra. Let

G = Int(L) = 〈exp(adx) = 1 + adx+
(adx)2

2!
+ · · · | x is nilpotent〉 ⊆ Aut(L).

G acts on L and hence on L∗ by (σf)(x) = f(σ−1(x)). Hence it also acts on P (L) = S(L∗). Consider P (L)G,
the subalgebra of G-invariant polynomial functions.

Example: Let L = Sl(n, f). Then,

(exp(adx))(y) = (exp(x))y(exp(x))−1.

So, G = Int(L) acts as conjugation by some invertible matrices. Thus,

tr(yk) = tr((σ−1y)k)

for all σ ∈ G. So, the function y 7→ tr(yk) is an invariant polynomial function.

Remark: More generally, if φ : L→ gl(V ) is irreducible, then the function x 7→ tr(φ(x)k) lies in P (L)G.

If h ∈ H, then

φ(h) ∼


−u1(h)

u2(h)
. . .

ur(h)

 ,

φ(h)k ∼


u1(h)k

u2(h)k

. . .

ur(h)k

 .



1.35. DAY 35 - 12/03/12 63

The ui are the weights of the representation. So, f
∣∣
H

is a sum of λk for λ ∈ Λ. Consider the restriction map

P (L)→ P (H)

defined by

f 7→ f
∣∣
H
.

We have P (L)G ⊆ P (L) and P (H)W ⊆ P (H). We claim that if f ∈ P (L)G, then f
∣∣
H
∈ P (H)W .

Additionally, we claim (Chevalley’s Theorem) that the map θ : P (L)G → P (H)W is surjective.

Proof of second claim: Recall that P (H)W is generated by sym(yk) for λ ∈ Λ+. So, it suffices to
prove that for all λ ∈ Λ+ and k ∈ Z, there exists f ∈ P (L)G such that f

∣∣
H

= sym(yk). Use induction
on Λ+ with the partial order ≺. �
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Definition: Define p(λ) to be the number of sets {kα}α>0 of nonnegative integers such that
∑
α

kαα = −λ.

As functions p = chZ(0) and p(µ− λ) = dim(Z(λ)µ).

Definition: Define

q :=
∏
α>0

(εα/2 − ε−α/2)

= εδ ∗
∏
α>0

(ε0 − ε−α)

= ε−δ ∗
∏
α>0

(εα − ε0).

Definition: The Weyl function is defined for any α > 0 by

fα(ν) :=

{
1, if ν = −kα, k ∈ Z+

0, otherwise
.

Really,

fα = “ ε0 + ε−α + εα + · · · ′′.

Lemma A:

(a) p =
∏
α>0

fα.

(b) (ε0 − ε−α) ∗ fα = ε0.

(c) q = ε0 ∗
∏
α>0

(ε0 − ε−α).

Lemma B: Let σ ∈W . Then, σq = (−1)`(σ)−sgn(σ)q.

Proof: It suffices to prove for σα a simple reflection. Well, σα maps α 7→ −α, and permutes all other
positive roots. �



64 CHAPTER 1. COURSE NOTES

Lemma C: q ∗ p ∗ ε−δ = ε0.

Lemma D: chZ(λ)(µ) = p(µ− λ) = (p ∗ ελ)(µ).

Lemma E: q ∗ chZ(λ) = ελ+δ.

Definition: Let Mλ be the collection of L-modules V such that

(1) V is a direct sum of weight spaces,

(2) ζ acts on V by scalars Xλ(z), z ∈ ζ,

(3) The formal character of V belongs to χ.

Lemma: Let V ∈Mλ. Then, V has a maximal vector.

Proof: (sketch) For λ ∈ H∗, set

θ(λ) := {µ ∈ H∗ | µ ≺ λ and µ ∼ λ}.

If µ ∈ θ(λ), then θ(µ) ≤ θ(λ). Then there exists σ such that σ(µ+ δ) = (λ+ δ).

Proposition: Let λ ∈ H∗.

(a) Z(λ) has a (finite) composiution series.

(b) Each composition factor of Z(λ) is of the form V (µ), for µ ∈ θ(λ).

(c) V (λ) occurs only once as a composition factor of Z(λ).
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