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Chapter 1

The Basics

1.1 Definitions and Notation

Definition: A graph G is an ordered pair of sets G = (V,E), where V is called the vertex set and E is called

the edge set, with the property that E ⊆ [V ]2 (where [V ]2 is the set of 2-subsets of V ).

Definition: Given a graph G, we denote the vertex set of G by V (G) and the edge set of G by E(G). If
v ∈ V (G) or e ∈ E(G), we use the short hand v ∈ G or e ∈ G.

Definition: A trivial graph is one which has either 0 vertices or 1 vertex.

Definition: If the vertex v lies in the edge e, we sat that v is incident with e.

Definition: We say that the edge e = {v, w} joins v and w. We use the shorthand e = vw, and we say that
v and w are adjacent.

Definition: We say that G = (V,E) and G′ = (V ′, E′) are isomorphic if there is a bijection φ : V → V ′

which preserves edges, i.e.,

[vw ∈ E]⇐⇒ [φ(v)φ(w) ∈ E′].

Definition: A set of graphs closed under isomorphism is a graph property.

Definition: A graph G is a subgraph of G′ if V (G) ⊆ V (G′) and E(G) ⊆ E(G′). This is a partial order on
graphs.

Example: Every graph on n vertices is a subgraph of Kn, the complete graph of order n.

Definition: G is an induced subgraph of G′ if V (G) ⊆ V (G′) and

E(G) = E(G′) ∩ [V (G)]2.

So, we get an induced graph by deleting vertices, and then only deleting edges if the were incident with a
vertex which was deleted..

1



2 CHAPTER 1. THE BASICS

Definition: To contract an edge, we combine the two adjacent vertices incident with an edge e, keeping all
edges which were incident with either of the vertices.

Example: The graph

1

2

3

4 5

is contracted to

1/5

2

3

4

when we combine vertices 1 and 5.

Definition: G is a minor of G′ if G can be obtained from G′ by:

(i) deleting vertices,

(ii) deleting edges,

(iii) contracting edges.

Fact: Given a surface S, the set of graphs that can be drawn on S without edge crossings is closed downward
under the minor ordering. We will prove this later.

Kuratowski’s Theorem: G can be drawn on the plane if and only if G does not contain K5 or

K3,3 =

We will prove this later.

Minor Theorem: (Robertson-Seymour, 1980 – 2000) In any infinite collection of graphs, one is a minor
of another. This shows that given any surface, the number of minimal minors which need to be checked is
finite. This theorem spans 20 papers and about 500 pages. A sketch will likely be given at the end of the
course.

1.2 Degrees

Definition: The degree dG(v) of v is the number of edges incident with v. We abbreviate to d(v) when the
context is clear. We also define

δ(G) = min{d(v) | v ∈ G},

∆(G) = max{d(v) | v ∈ G},
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d(G) =
1

|V |
∑
v∈G

d(v) = 2 · |E|
|V |

,

ε(G) =
|E|
|V |

=
1

2
d(G).

Note that
δ(G) ≤ d(G) ≤ ∆(G).

Proposition 1.2.1: The number of vertices of odd degree is always even.

Proof: |E| = 1

2

∑
v∈G

d(v), and so
∑
v∈G

d(v) must be even. �

Proposition 1.2.2: Every graph G with at least one edge has an induced subgraph H with

δ(H) ≥ ε(G) =
1

2
d(G).

Proof: We start by deleting vertices of low degree. Make a sequence

G = G0 ⊇ G1 ⊇ · · ·

defined by: if Gi has a vertex vi of degree dGi
(vi) ≤ ε(Gi), then Gi+1 is the induced subgraph Gir vi.

Now, see that ε(Gi+1) ≥ ε(Gi) by construction.This can’t go on forever. Thus, at the end, we have a
proper subgraph which meets the criterion. �

1.3 Paths & Cycles

Definition: A path is a graph P = (V,E) of the form

V = {x0, x1, . . . , xk}
E = {x0x1, x1x2, . . . , xk−1xk}.

We say that x0 and xk are linked by P , that x0 and xk are the end vertices of P , and that x1, . . . , xk−1 are
the inner vertices of P .

According to our textbook (Diestel), the length of a path is the number edges. (Many other sources define
the length to be the number of vertices. We will stick to Diestel’s convention.)

“The” path (up to isomorphism) of length k is denoted by P k.

Notation: Given a path P = x0 · · ·xk, we use the following notations:

Pxi := x0 · · ·xi,
xiP := xi · · ·xk,

xiPxj := xi · · ·xj ,
P̊ = x1 · · ·xk−1.

Definition: Given a path P = x0x1 · · ·xk−1, the graph

P + xk−1x0

is a cycle, and it can be denoted x0x1 · · ·xk−1x0. We denote this cycle by Ck.
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Definition: Given a graph G, its girth, denoted g(G), is the minimum length of a cycle in G, and its
circumference is the maximum length of a cycle in G.

Remark: Observe that if you make the minimum degree δ(G) big (by connecting everything to get a complete
graph), then g(G) is 3. So, a natural question is: Can you have large δ(G) and large g(G) simultaneously?
Erdös proved non-constructively that the answer is yes. A random graph with large δ(G) will also have large
g(G).

Definition: A chord is an edge between two vertices of a cycle that is not in the cycle. An induced cycle is
a cycle which has no chords.

Proposition 1.3.1: Every graph contains a path of length ≥ δ(G) and a cycle of length ≥ δ(G)+1 (assuming
δ(G) ≥ 2).

Proof: Let x0x1 · · ·xk be a path of maximum length in G. We want to show that k ≥ δ(G). Since
the length is maximum, all of xk’s possible neighbors must be among x0, . . . , xk−1. Thus, k ≥ δ(G).

Now, let i < k be minimal such that xi ∼ xk (i.e., xi is the first vertex along the path which is
adjacent to xk). Then the cycle xi · · ·xkxi must contain all neighbors of xk, and so it contains more
than δ(G) + 1 vertices, and thus has length ≥ δ(G) + 1. �

Definition: The distance between two vertices x and y, denoted dG(x, y), is the length of the shortest path
the links them.

Definition: The diameter of a graph, denoted diam(G), is the greatest distance between the two vertices ofG.

Proposition 1.3.2: If G contains a cycle, then g(G) ≤ 2 diam(G) + 1.

Take a shortest cycle C. If C has length ≥ 2 diam(G) + 2, then we can find a shorter path by getting
to xdiam(G)+1 and then go back by a path of length diam(G) guaranteed by the definition of diam(G).
If the path hits the cycle, we have an even shorter cycle. �

Definition: A vertex if called central if its greatest distance to another vertex is as small as possible. This
distance is called the radius and is denoted rad(G). Note that

rad(G) = min
x∈G

max
y∈G

dG(x, y).

Remark: rad(G) ≤ diam(G) ≤ 2 rad(G).

Proposition 1.3.3: A graph of radius K and maximal degree ∆(G) = d has at most 1 + kdk vertices.

Proof: Counting out from a central vertex in “layers”, we get

|G| ≤ 1 + d+ d2 + · · ·+ dk ≤ 1 + kdk.
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1.4 Connectivity

Definition: A graph is connected if every two vertices are linked by a path.

Proposition 1.4.1: The vertices of a connected graph can be labelled v1, . . . , vn such that for all i, the
induced subgraph G[v1, . . . , vi] is connected.

Proof: Pick v1 arbitrarily. Suppose v1, . . . , vi have been chosen. Pick any x ∈ G rG[v1, . . . , vi]. By
the definition of connectedness, there is a v1−x path. Define vi+1 to be the first vertex along this path
which we have not yet labelled. (This exists because we at least know that x has not been labelled.)
Label all vertices in this fashion. By construction G[v1, . . . , vi] is connected for all i. �

Technicality: The empty graph is not connected.

Definition: Any nonempty graph can be decomposed as the union of connected components.

Definition: Suppose A,B ⊆ V (G). Let H be a subgraph of G. If all A − B paths in G pass through H,
then H separates A and B.

Definition: A vertex that separates two vertices of the same component is a cutvertex.

cutvertex

An edge that does this is called a bridge.

bridge

Definition: We say that a graph G is k-connected if |G| > k and GrX is connected for all subsets X ⊆ V (G)
with |X| ≤ k − 1. Note that if a graph is k-connected, then it is necessarily (k − 1)-connected.

Example: Kn is (n− 1)-connected.

Definition: The greatest k such that G is k-connected is denoted κ(G).

Definition: The concept of edge-connectivity is analogous; we remove edges instead of vertices. The greatest
k such that G is k-edge-connected is denoted λ(G).

Example: A connected graph with a bridge is 1-edge-connected.
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Proposition 1.4.2 / Homework Exercise: κ(G) ≤ λ(G) ≤ δ(G)

Hint: To see the first inequality take some edges which disconnect it, and find a smaller set of vertices
which also disconnects it. For the second inequality, find a vertex of minimal degree, delete all edges
around it, and this disconnects it.

Remark: The exercise above shows that a graph which has large connectivity must have large minimal
degree. The converges is false: connect two complete graphs with a bridge. The following theorem provides
a partial converse.

Theorem 1.4.3: (Mader, 1972) If the average degree of G, d(G), is at least 4k, then G contains a k-connected
subgraph.

Proof: The statement is trivial for k = 0, 1. We will change to weaker hypotheses:

(1) n = |V (G)| ≥ 2k − 1,

(2) m = |E(G)| ≥ (2k − 3)(n− k + 1) + 1.

First we must verify that these hypotheses are indeed weaker:

(1) n > ∆(G) ≥ d(G) ≥ 4k,

(2) m =
1

2
d(G)n ≥ 2kn.

We proceed by induction on n. If n = 2k − 1 then k =
1

2
(n+ 1). Thus, by (2),

m ≥ (2k − 3)(n− k + 1) + 1

= (n+ 1− 3)

(
n− 1

2
n− 1

2
+ 1

)
+ 1

= (n− 1)

(
1

2
n+

1

2

)
+ 1

= (n− 2)
1

2
(n+ 1) + 1

≥ 1

2
n(n− 1)

=

(
n

2

)
.

The only way to have at least

(
n

2

)
edges is if G = Kn ⊇ Kk+1, and Kk+1 is k-connected.

Now suppose that n ≥ 2k. If v ∈ G has d(v) ≤ 2k− 3, then we’re done by induction. So, suppose that
δ(G) ≥ 2k − 2. If G is connected, then we’re done. Thus, suppose that G is composed of nonempty
subgraphs G1 and G2 such that

|G1 ∩G2| ≤ k − 1

and there are no edges between G1 and G2 which are not incident with the vertices in G1 ∩ G2. By
the condition on δ(G), we know that

|Gi| ≥ 2k − 1

for i = 1, 2. If G1 or G2 satisfy (1) and (2), then we’re done by induction because

‖Gi‖ ≤ (2k − 3)(|Gi| − k + 1)

(‖G‖ denotes the number of edges of G). Therefore,

m = ‖G1‖+ ‖G2‖
≤ (2k − 3)(|G1|+ |G2| − 2k + 2).
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Note that |G1|+ |G2| ≤ n+ k − 1, and so

m ≤ (2k − 3)(n− k + 1),

a contradiction. �

1.5 Trees

Definition: An acyclic graph is called a forest. A connected forest is called a tree.

Theorem 1.5.1: The following are equivalent for a graph T .

(1) T is a tree.

(2) Any two vertices of T are linked by a unique path.

(3) T is minimally connected, i.e., T − e is disconnected for all edges e ∈ T .

(4) T is maximally acyclic, i.e., T + xy is not acyclic for all non-adjacent x, y ∈ T .

Proof:

(1) =⇒ (2): If there are two such paths, then there is some cycle.

(2) =⇒ (3): Let e = xy. e is the unique path from x to y, so there can be no other such path in
T − e.

(3) =⇒ (1): We have connectedness. If the graph had a cycle, then we could remove something and
still be connected. Therefore the graph is acyclic.

(2) =⇒ (4): Adding an edge would create two paths, hence a cycle.

(4) =⇒ (2): By maximality, T is connected. So, there exists a path. If there are two paths, then the
graph has a cycle, which can’t be true. �

Notation: Denote by xTy the unique path from x to y in a tree T .

Theorem: Every connected graph contains a spanning subtree, which has all of the same vertices but is a
tree.

Proof: Delete edges wherever you can to leave the graph connected. The result is minimally connected,
and hence a tree. �

Corollary 1.5.3: A connected graph on n vertices is a tree if and only if it has n− 1 edges.

Proof: (by induction, separately in each direction) In the base case, the graph has 1 vertex and 0
edges, and is trivially a tree.

(=⇒) If you take a tree and add a vertex, you must add exactly one edge, since adding two edges
would make a cycle. �

(⇐=) Since the graph is connected, it has a spanning subtree which must have n − 1 edges by the
previous direction. So, this tree is the whole thing. �
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Corollary 1.5.4: Let T be a tree and let G be any graph. If δ(G) ≥ |T | − 1, then G contains T as a
subgraph.

Proof: Use Corollary 1.5.2 to get a labeling. Then, pick any vertex in G as v1, and any neighbor
as v2, etc. Since δ(G) ≥ |T | − 1, we’ll never run out of neighbors. �

Definition: Sometimes we mark one vertex of a tree as a root. We call such a tree a rooted tree. Let r be
the root. We get an induced partial order of vertices:

[x ≤ y] ⇐⇒ [x ∈ rTy],

i.e., x is on the unique path between the root and y.

1.6 Bipartite Graphs

Definition: A graph G is r-partite if its vertices can be partitioned into r nonempty subsets such that there
are no edges between two vertices in the same subset. A graph is said to be bipartite if it is 2-partite.

Definition: A complete r-partite graph is an r-partite graph which has all possible edges.

Definition: Let G and H be graphs. Then, G ∗H is defined by

V (G ∗H) = V (G) ∪ V (H)

E(G ∗H) = E(G) ∪ E(H) ∪ {xy | x ∈ G, y ∈ H}.

Remark: So, a complete r-partite graph can be expressed as

Kn1,n2,...,nr := Kn1 ∗Kn2 ∗ · · · ∗Knr ,

where Kn1 is the graph which has n1 vertices and no edges. This is now the unique complete r-partite graph
with parts of size n1, n2, . . . , nr.

Notation: Kr
s := Ks, s, . . . , s︸ ︷︷ ︸

r parts

.

Definition: K1,n is called a star.

K1,5 = =

Theorem 1.6.1: [[ Could be on Quals! ]] The graph G is bipartite if and only if it has no odd cycles.

Proof:

(=⇒) (by contrapositive) It’s clear that if the graph has an odd cycle, then it cannot be bipartite
because there must be an edge between two vertices in the same part. �
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(⇐=) Suppose G does not contain an odd cycle. It suffices to consider the case where G is connected.
Let T be a spanning tree of G. Root T at the vertex r. Define

A = {v | rTv has even length},
B = {v | rTv has odd length}.

We want A and B to form the parts of a bipartite graph. So, we want each edge to have one
vertex in each set. Suppose e = xy ∈ G. If e ∈ T , then we must immediately have that x ∈ A
and y ∈ B or vice versa. If e 6∈ T , then T + e must have a cycle. By assumption, this cycle has
even length. So, xTy has an odd number of edges. So, either rTx is odd and rTy is even, or vice
versa. Therefore, x ∈ A and y ∈ B, or vice versa. This shows that A and B are the parts in our
bipartite graph. �

1.7 Minors

Definition: Recall the definition of edge contraction from section 1.1. If we contract the edge e = xy, then
we use the notation G/e, defined by

V (G/e) = V (G)− {x, y} ∪ {ve}
E(G/e) = E(G) r {f | f is incident to x or y} ∪ {vez | z is adjacent to x or y}.

Definition: Recall that if G can be obtained from H by deleting vertices, deleting edges, or contracting
edges, then we say that G is a minor of H.

Definition: If X is a graph and {Vx | x ∈ X} is a partition of G into connected subgraphs, and if

[xy ∈ E(x)]⇐⇒ [∃xy ∈ G, with x ∈ Vx and y ∈ Vy],

then we say that G is an MX. (X is the graph obtained by contracting edges, and the “M” stands loosely
for “minor” – loosely, because we have not allowed deletion of edges or vertices.)

Fact: G is an MX if and only if we can obtain X by contracting edges of G.

Definition: Diestel defines a minor with the following definition: If G is an MX and G is a subgraph of Y ,
then X is a minor of Y .

Definition: Let X be a graph. If G can be obtained by expanding edges of X with independent paths, then
G is a subdivision of X, and we say that G is a TX. If G is a TX and G is a subgraph of Y , then X is a
topological minor.



Chapter 2

Matching, Covering, and Packing

2.1 Matching in Bipartite Graphs

Definition: A set of independent edges is called at matching.

Definition: A k-regular spanning subgraph is called a k-factor.

Remark: Consider a bipartite graph with parts A and B. An alternating path starts in A at an unmatched
vertex and alternates between edges in our matching M and edges in E rM . An augmenting path is an
alternating path which ends at an unmatched vertex.

König’s Theorem (1931) For a bipartite graph, the size of the smallest cover is equal to the size of the
largest matching.

Proof: Take a maximal matching M . For every edge in M , choose an end; its end is in B if an
alternating path ends there, and its end is in A otherwise. Let U denote this set of |M | vertices. Take
ab ∈ E. We want a ∈ U or b ∈ U . So, assume that ab 6∈ M . Also, by maximality of M , we see that
M has an edge a′b′ with a = a′ or b = b′.

If a is unmatched in M , then b′ = b. But then ab is an alternating path, so b ∈ U and ab is covered.
So, suppose a = a′, as in the picture below:

a b

b′

If a ∈ U , then we’re done. So, assume a 6∈ U . Since ab′ ∈ M , we have that b′ ∈ U . So, there is an
alternating path P ending at b′. P can be extended (or shrunk) to end at b. If b is unmatched by M ,
then form an augmenting path, yielding a contradiction. If b is matched by M ¡ then this alternating
path puts b ∈ U . �

10
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Hall’s Marriage Theorem: (1935) The bipartite graph G with parts A and B contains a matching go A
(i.e., every a ∈ A is matched) if and only if |N(S)| ≥ |S| for all S ⊆ A.

Proof: The given condition is clearly necessary. To see sufficiency, suppose that G has no matching
of A. By König’s Theorem, G has a cover U with |U | < |A|. Say that U = A′ ∪ B′ with A′ ⊆ A
and B′ ⊆ B. Then,

|A′|+ |B′| = |U | < |A|.

Thus,

|B′| < |A| − |A′|

and so

B′| < |ArA′|.

Remember that G has no edges between ArA′ and B rB′. But,

|N(ArA′)| < |B′|

and so

|N(ArA′) < |ArA′|.

This is a contradiction. �

2.2 Matching in General Graphs

Definition: Define q(G) to be the number of odd components of G.

Remark: The following condition is necessary for G to have a matching:

q(Gr S) ≤ |S|

for all S ⊆ V (G). Setting S = ∅ shows us that |V (G)| must be even.

Tutte’s Theorem: (1947) The graph G has a 1-factor if and only if q(G− S) ≤ |S| for all S ⊆ V (G).

Remark: The main use of Tutte’s Theorem is as a “certificate for unmatchability”, because to test
for matchability, we have to check 2n subsets.

Proof: We have already observed the (=⇒) direction. We now show the (⇐=) direction by
contrapositive. Let G = (V,E) be a graph without a 1-factor. We want to find a “bad set” S ⊆ V
with q(G− S) > |S|.

We claim that we may take G to be edge-maximal without a 1-factor.

Proof of Claim: Suppose G′ is obtained by adding edges to a graph G and that G′ has a bad
set S. Every odd component of G′ − S contains an odd component of G− S. So, S is a bad set
for G, too.

So, if G has a bad set S, we have the following situation:
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S = Km

Ki Kj

Kk K`

and we still have no matching. (∗) In the graph above, all components of G − S are connected and
every s ∈ S is adjacent to all other vertices.

Assume that G doesn’t have a 1-factor. Then, we claim that if S is as in the graph above, then G has
a bad set (which is not necessarily S).

Proof of Claim: If S isn’t bad, then by (∗), we can match all of the vertices (which would be
a contradiction) unless |V | is off, in which case ∅ is a bad set.

Set

S := {v ∈ V | v is adjacent to all of V − v}.

If S satisfies (∗), then we’re done. So, if S does not satisfy (∗), then some component of G− S is not
complete, i.e. has nonadjacent vertices a and a′. Let a shortest aPa′ path in G− S begin abc. (Note
that c might be a′. That’s fine.) We have the situation below.

a

b

c

Note that b 6∈ S. Therefore, there is some d such that bd 6∈ E.

By edge maximality, we may construct matchings M1 of G+ ac and M2 of G+ bd.

M1

M2

M1 M2 M1

M2

M1

a

b

c

d

Take a maximal part starting at d that alternates between M2 edges and M1 edges. Suppose it ends
at v. If we stop at an M1 edges, then v = b. If we stop at an M2 edge, then v ∈ {a, c}.

Let P be this path. If v = b, set C = P + bd. If v ∈ {a, c}, set C = P + vb + bd. Either way C has
even length, and every second edge is in M2. The only edge of C not in G is bd.

Take M2, and replace its edges along C with the M1 edges along C (along with possibly vb - but this
is an M1 edge). This gives a matching of G, which is a contradiction. �



2.2. MATCHING IN GENERAL GRAPHS 13

Petersen’s Theorem: (1891) Every bridgeless cubic graph (“cubic” means every vertex has degree 3) has
a 1-factor.

Proof: (via Tutte’s Theorem) Let S ⊆ V (G). If there are no odd components of G− S, we’re done.
Otherwise, choose an odd component C of G− S. Note that∑

v∈C
degG(v) = 3|C|

is odd. Similarly, ∑
v∈C

degG[C](v) = 2 · (# of edges in G[C]),

which is even. So, there are an odd number of edges which go from C to S. Could there be only one of
these edges? No, because then this edge would be a bridge. Hence there are at least 3 of these edges.
This is true for each C we could have picked. Hence,[

# edges in G from S to G− S
]
≥ 3q(G− S).

But, since G is cubic, [
# edges in G from S to G− S

]
≤ 3|S|.

Hence q(G− S) ≤ |S|. Therefore, by Tutte’s Theorem, G has a 1-factor. �



Chapter 3

Connectivity

Recall: G is k-connected if G−X is connected (and nonempty) for all X ⊆ V (G) with |X| < k.

Remark: This definition of k-connectedness does not help much in proofs. A better formulation is given by
the following theorem.

Menger’s Theorem: (1927) If G is k-connected, then every two vertices in G can be linked by k independent
paths. We will prove this (in fact, a stronger version) later.

3.1 2-Connected Graphs and Subgraphs

Whitney’s Ear Decomposition: (1932) The graph G is 2-connected if and only if there is a sequence
G0, G1, . . . , G` = G where G0 is a cycle and Gi+1 is obtained from Gi by adding a Gi-path (a path whose
two end vertices are in Gi).

Proof: It’s clear that if a graph satisfies this sequence property, then it is 2-connected, since (loosely)
anytime we remove a vertex, we’re always left with two halves of a cycle. It remains to show that
every 2-connected graph has such a sequence.

Let G be 2-connected. Then, G contains a (nontrivial) cycle (see Homework 1) G0. Therefore, G
has a nontrivial maximum subgraph H which has an ear decomposition (at worst, it’s just the cycle
G0).

We claim that H is an induced subgraph. If it were not induced, there would be vertices x, y ∈ V (H)
such that xy ∈ E(G), but xy 6∈ E(H). But, we can add the edge xy to H and it is still an ear
decomposition, violating maximality. Hence, H is an induced subgraph.

So, if H 6= G, then there must be a missing vertex y ∈ G − H. Since G is connected, there is some
vertex x ∈ H such that xy ∈ E(G). Since G is 2-connected, if we remove the vertex x, then y must still
be connected to h ∈ H via some path xPh. Then, xyPh is an ear in out decomposition, which again
violates maximality of H. Therefore, H is missing no vertices (and since it’s an induced subgraph, it’s
missing no edges). Therefore, H = G, and so G has an ear decomposition. �

14
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Block Decomposition: A maximal connected subgraph without a cutvertex is called a block. (Note: a
subgraph with 1 or 2 vertices is a maximal connected subgraph without a cutvertex, but is not 2-connected.)
So, a block in G is either:

(1) a maximal 2-connected subgraph,

(2) a bridge, or

(3) an isolated vertex.

Remark: By maximality, two blocks can intersect in at most one vertex: if two blocks intersected in two
vertices, then we could remove one and leave the two blocks connected, which means the two vertices aren’t
cutvertices and so the blocks aren’t maximal.

Remark: If two blocks intersect in one vertex, then that vertex is a cutvertex of G.

Remark: A cutvertex lies in at least 2 blocks.

Remark: Every edge lies in a unique block.

Remark: We can form the bipartitie block graph as follows:

A = {cutvertices of G}
B = {blocks of G}

v ∼ Biff v ∈ B.

Proposition 3.1.1: If G is connected, then its block graph is a tree.

3.2 The Structure of 3-Connected Graphs

Lemma: If G is 3-connected and |G| > 4, then G has an edge e such that G/e is 3-connected.

Proof: Suppose otherwise that G is 3-connected, but has no such edge. Then, for every edge xy ∈ G,
we see that G/xy has a separating set S (of vertices) with |S| ≤ 2. In fact |S| = 2 because if |S| = 1
then we could have separated G with that vertex, together with either x or y, a contradiction to
3-connectedness. We must have that S = {vxy, z} where z ∈ V (G) r {xy}.

Any two vertices separated by S in G/xy are separated by {x, y, z} in G. Since G is 3-connected,
no proper subset of {x, y, z} separates G. Each of x, y, z must be adjacent to every component C of
G− {x, y, z}.

Choose an edge xy, a vertex z, and a component C so that:

(i) G/xy is not 3-connected,

(ii) G− {x, y, z} is disconnected,

(iii) C is a component of G− {x, y, z},

(iv) |C| is as small as possible.

Also, choose v to be a neighbor of z in C. Then, G/zv is also not 3-connected. So, there is a vertex
w such that {v, z, w} separates G.
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Let D be a component of G− {z, v, w} which contains neither x nor y. The vertex v has neighbors in
D which all lie in C. Therefore, D $ C, a contradiction. �

Theorem: (Tutte, 1961) G is 3-connected if and only if there is a sequence G0, . . . , Gn such that:

(1) G0 = K4 and Gn = G,

(2) Gi = Gi+1/xy for an edge xy ∈ Gi+1 with d(x), d(y) ≥ 3.

Proof: The (=⇒) direction is given by the previous lemma. (The condition on the degrees is due to
the fact that if d(x) or d(y) is 2, then that vertex is connected to only the other of x, y and one other
component, which is not possible.)

Conversely, suppose G0, . . . , Gn is such a sequence. We want to show that if Gi is 3-connected, then
Gi+1 is also 3-connected. Let Gi = Gi+1/xy. Suppose that Gi+1 is not 3-connected. So, there is a set
S with |S| ≤ 2 such that Gi+1 − S is disconnected. Let C1 and C2 be two components of Gi+1 − S.
Without loss of generality, let C1 ∩ {x, y} = ∅. If {x, y} ⊆ C2, then S separates Gi = Gi+1/xy, a
contradiction. Thus, one of x or y lies in S.

If there is a vertex v ∈ C2 r {x, y}, then Gi isn’t 3-connected. So, without loss of generality, x ∈ S
and C2 = {y}. This is a contradiction to out hypothesis that d(y) ≥ 3 since at most y is adjacent to
the two vertices in S. �

3.3 Menger’s Theorem

Menger’s Theorem - Statement 1: If G is k-connected, then there are k “edge disjoint” paths between
any two of its vertices.

Menger’s Theorem - Statement 2: Let A,B ⊆ V (G). The minimum number of vertices separating A
from B is equal to the maximum number of A−B paths.

Definition: Define K(G,A,B) to be the minimum number of vertices separating A from B. Note that

K(G,A,B) ≤ min(|A|, |B|).

In this definition, we do count trivial (one vertex) paths. Also, if A ⊆ B, then

K(G,A,B) = |A|

and if B1 ⊆ B2 then,
K(G,A,B1) ≤ K(G,A,B2).

Remark: Statement 2 above is strictly stronger. To see this, let G be k-connected and let |A|, |B| ≥ k.
Then, we see that the minimum number of vertices separating A from B is at least k.

Menger’s Theorem - Statement 3: Let k = K(G,A,B). For n < k, if there are n disjoint A− B paths
P1, . . . , Pn, then there exists n + 1 (vertex) disjoint A − B paths Q1, . . . , Qn+1 such that every B-endpoint
of a Pi is the B-endpoint of some Qj .

Remark: Statement 3 is strictly stronger than statement 2, and more convenient to prove.

Proof: (by induction) We proceed by induction on β = |G| − |B|. In the base case β = 0 we have
that G = B and so A ⊆ B. Hence, k = |A|, and the rest is trivial.

Now suppose we have n < k disjoint A−B paths P1, . . . , Pn. Label their endpoints in A and B by ai
and bi respectively.
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a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

...

Because n < k, the set {b1, . . . , bn} does not separate A from B. So, there is a path R from A to
B r {b1, . . . , bn}. If R does not intersect P1, . . . , Pn, then we’re done. Otherwise, let x be the last
vertex of R in P1, . . . , Pn.

Relabel the paths so that x ∈ Pn. Recall the following notation: xPn is the part of the path Pn which
starts with x and Pnx is the part of the path Pn which ends with x.

Define B′ = B ∪ xPn ∪ xR. Note that |B′| ≥ |B| since x ∈ B′ but x 6∈ B (otherwise x would
be an endpoint). We can now apply induction, after updating the path Pn := Pnx, to the paths
P1, . . . , Pn−1, Pn. Note that

k(G,A,B′) ≥ k(G,A,B)

because B′ ⊇ B. By induction, there are disjoint A−B′ paths Q′1, . . . , Q
′
n+1 with endpoints

b1, . . . , bn−1, x, y.

Label these so that Qi
′ is an A − bi path, for i = 1, . . . , n − 1, and Q′n is an A − x path, and Q′n+1

is an A − y path. Now, we need to turn these into A − B paths. We have three cases, depending on
where y is.

(Case 1) (y ∈ xPn) Since y must be a new endpoint (by the induction), we know that y 6= x. Set

Qi = Q′i, for i = 1, . . . , n− 1,

Qn = Q′nx ∪ xR,
Qn+1 = Q′n+1y ∪ yPn.

(Case 2) (y ∈ xR) We have the following picture. In this case, set

Qi = Q′i, for i = 1, . . . , n− 1,

Qn = Q′nx ∪ xPn,
Qn+1 = Q′n+1y ∪ yR.

(Case 3) (y ∈ B) Note that y 6∈ {b1, . . . , bn−1, x}. This is the good case. We take In this case, set

Qi = Q′i, for i = 1, . . . , n− 1,

Qn = Q′nx ∪ xPn,
Qn+1 = Q′n+1.

The proof is now complete. �



Chapter 4

Planar Graphs

4.1 Topological Prerequisites

Definition: A straight line segment is defined by

p+ λ(q − p) : 0 ≤ λ ≤ 1

where p and q are points.

Definition: A polygon is a subset of R2 which is the union of finitely many straight line segments and is
homeomorphic to the unit circle.

Definition: A homeomorphism is a continuous bijection with a continuous inverse.

Definition: A polygonal arc is the union of finitely many straight line segments which is homeomorphic to
[0, 1].

Definition: If P is an arc between points x and y, then the interior of P is P̊ := P r {x, y}.

Remark: Let O ⊆ R2 be an open set. For x, y ∈ O, define x ∼ y if x and y can be linked by an arc in O,
or if x = y. This is an equivalence relation. The equivalence classes are called the regions of O.

Definition: We say that the closed set X ⊆ R2 separates O if O rX has more than one region.

Definition: The frontier of a set X ⊆ R2 is the set of all points x ∈ X such that every neighborhood of x
meets both X and R2 rX. (The usual term for this set is boundary.)

Definition: A set is bounded if it is contained in some disc.

Jordan Curve Theorem: For every polygon P ⊆ R2, the set R2 rP has two regions, exactly one of which
is bounded. Both have P as their frontier.

Lemma 4.1.2: Let P1, P2, and P3 be three arcs, all between the same endpoints but otherwise disjoint.
Then,

18
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(1) R2 r (P1 ∪ P2 ∪ P3) has three regions, with frontiers P1 ∪ P2, P2 ∪ P3, and P2 ∪ P3.

(2) If P is an arc between a point in P̊1 and a point in P̊3 and if P̊ lies in the region of R2 r (P1 ∪ P2 ∪ P3)
that contains P̊2, then P̊ ∩ P̊2 6= ∅.

Lemma 4.1.3: Let X1, X2 ⊆ R2 be disjoint sets, each the union of finitely many points and arcs. Let P be
an arc from a point in X1 to a point in X2 whose interior lies in a region of R2 r (X1 ∪X2). Then, Or P̊ is
a region of R2 r (X1 ∪X2 ∪ P ).

Remark: Let Sn be the n-dimension (unit) sphere. Then, S2 r (0, 0, 1) is homeomorphic to R2. This is
called the stereographic projection.

Definition: Let π : S2 r (0, 0, 1)→ R2 be a homeomorphism. If P ⊆ R2 is a polygon and O is the bounded
region of R2 r P . Then, we make the following definitions. C := π−1(P ) is a circle in S2. Note that π−1(O)
and S2 r π−1(P ∪ O) are the regions of C.

Theorem 4.1.4: Let φ : C1 → C2 be a homomorphism between two circles on S2 (this always exists). If O1

is a region of C1 and O2 is a region of C2, then φ can be extended to a homeomorphism

φ : C1 ∪ O1 → C2 ∪ O2.

(This is not true on the plane.)

4.2 Plane Graphs

Definition: A plane graph is a pair (V,E) of subsets of R2 such that:

(1) Every edges is an arc between two elements of V .

(2) Different edges have different endpoints.

(3) The interior of any edge is disjoint of V ∪ E.

Essentially, we want to be able to draw the graph G without any two edges crossing.

Definition: The graphs we studied earlier will be called abstract graphs.

Definition: The plane graph G divides R2 into the regions of R2rG. These regions are called the faces of G.

Remark: Every (finite) plane graph G is bounded. So, G a unique outer face. All other faces are inner faces.

Lemma 4.2.1: Let G be a plane graph with edge e.

(1) If X is the frontier of a face of G, then either e ∈ X or e̊ ∩X = ∅.

(2) If e lies on a cycle in G, then e lies on the frontier of exactly two faces of G.

(3) If e does not lie on a cycle in G, then it lies on exactly one face of G.

Corollary 4.2.2: The frontier of a face is always the point-set of a subgraph.



20 CHAPTER 4. PLANAR GRAPHS

Proposition 4.2.3: A plane forest has exactly one face.

Lemma 4.2.4: If a plane graph has different faces with the same boundaries, then G is a cycle.

Proof: See book. Use (2) of Lemma 4.2.1.

Proposition 4.2.5: In a 2-connected plane graph, every face is bounded by a cycle.

Proof: See book. Use Whitney’s Ear Decomposition.

Proposition 4.2.6: A plane graph on at least three vertices maximally planar (i.e., any edge we try to add
forces a crossing, with the current drawing) if and only if it is a plane triangulation (the frontier of every face
is a K3).

Euler’s Formula: For every surface S there is a constant χ such that for every connected graph G drawn
on S,

F + V − E = χ,

where F is the number of faces, V is the number of vertices, and E is the number of edges.

Theorem 4.2.7: Let G be a connected plane graph with n vertices, m edges, and ` faces. Then,

n−m+ ` = 2.

Proof: Use induction on m. The base case is m = n− 1. In this case, G is a tree, and so ` = 1. Thus

n−m+ ` = n− (n− 1) + 1 = 2.

Now assume G has m edges, and that we have proved the theorem for all graphs with < m edges. Let
e be an edge in a cycle (which must exist because we have added at least one edge to a tree). We know
that e lies on the boundary of two faces f1 and f2. Hence, G− e has one fewer face of G. (Define

f1,2 = f1 ∪ e̊ ∪ f2.

Then,
F (G) r {f1, f2} = F (G− e) r {f1,2}.)

This completes the theorem. �

Remark: Suppose we have a plane triangulation with n vertices, m edges, and ` faces. Every edge lies on
the boundary of 2 faces. Every face has 3 edges on its boundary. So, we can double-count the set

(e, f) : e is on the boundary of f.

We see that
2m = 3`

and so

` =
2

3
m.

Additionally, by Euler’s Formula,

n−m+ ` = 2

n−m+
2

3
m = 2

n− 1

3
m = 2

3n−m = 6

m = 3n− 6.
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Hence we have the following corollary.

Corollary 4.2.8: A plane graph with at least 3 vertices has at most 3n− 6 edges.

Remark: We can prove that K5 is not planar by noting that n = 5 and m =
(

5
2

)
= 10, and so

3n− 6 = 15− 6 = 9 6≥ m.

Remark: Additionally, K3,3 is not planar, even though it does not violate the inequality in the corollary.
However, we can prove that it is not planar in a different way. For bipartite graphs, every face has at
least 4 edges on its boundary (since bipartite graphs can’t have cycles of even length). Hence, by a similar
double-counting argument, we get that

4` ≤ 2m.

Hence,

4 ≤ 2n−m,

i.e.,

m ≤ 2n− 4.

K3,3 does in violate this bound. Therefore, K3,3 is not planar.

Recall: S is a subdivision of H if S can be obtained from H by replacing edges with independent paths. We
say that H is a topological minor of G if G contains (as a (not necessarily induced) subgraph) a subdivision
of H.

Remark: If G contains a K5 or a K3,3 as a topological minor, then G can’t be drawn on the plane.

4.4 Planar Graphs: Kuratowski’s Theorem

Kuratowski’s Theorem: G contains a K5 or a K3,3 as a topological minor if and only if G is not planar.

Proposition 1.7.2 (ii): If ∆(X) ≤ 3, and G contains X as a minor, then G contains X as a topological
minor. Hence, if G contains K3,3 as a minor, then G also contains K3,3 as a topological minor.

Proposition 4.4.2: If G contains a K5 or a K3,3 minor, then G also contains a K5 or K3,3 topological
minor. (Warning: It is not true that if G contains a K5 minor then G must also contain a K5 topological
minor.)

Proof: After considering Proposition 1.7.2 (ii) above, it remains to show that if G has a K5 minor,
then G also contains a K5 or K3,3 topological minor.

Suppose G contains a K5 minor. Let K ⊆ G be minimal such that K contains a K5 minor. (Note,
we are minimal on vertices and then edges.) We can contract along “branch sets” of K to get K5. By
minimality, each branch set is a tree and there is precisely one edge between any two branch sets.

Let Vx be the tree induced by a branch set. Extend Vx to a tree Tx by including its four neighbors
(one in each other branch set).

By minimality again, Tx has precisely 4 leaves. If every Tx is a subdivision of K1,4, then G contains
K5 as a topological minor, and so we’re done. So, now assume that some Tx is not a subdivision of
K1,4. Then, the only possibility is that Tx has two vertices of degree 3. Therefore, G has a K3,3 minor,
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and so the proof is complete by Proposition 1.7.2 (ii). �

Lemma 4.4.3: Every 3-connected graph without a K5 or a K3,3 minor is planar.

Proof: We use induction on |G|. The base case is G = K4, and its clear that the lemma is true for
this G.

Now, since G is 3-connected, it has an edge so that G/xy is 3-connected. Also, G/xy does not contain
K5 or K3,3, so by induction, G/xy is planar. Now, define X = NG(x) r {y} and Y = NG(y) r {x}.
Fix a plane drawing of G/xy. Let F be the face of G/xy − vxy containing vxy. Note that G/xy − vxy
is 2-connected (at least). So, f is bounded by a cycle C.

Label the vertices C ∩X as x1, x2, . . .. If Y is completely contained in one of these subfaces then we’re
done. If y is adjacent to two vertices in different subfaces, which do not lie in X, then we can contract
to get a K3,3 (see book for details), a contradiction. This works so long as Y is adjacent to at least
one non-X vertex.

Assume instead that Y ⊆ X and |X ∩ Y |. By a similar argument (again, see book for details), G
contains a K5, a contradiction. All cases are now covered. �

Remark: To show Kuratowski’s Theorem, we need to drop the “3-connected” hypothesis in the previous
lemma.

Lemma 4.4.4: Let X be a set of 3-connected graphs. Let G be a graph with κ(G) ≤ 2 (i.e., G is at most
2-connected). Let G1, G2 ⊆ G satisfy

G1 ∪G2 = G

|G1 ∩G2| = κ(G).

(Note that the union is taken over vertices and edges.) If G is edge-maximal without a topological minor in
X, then so are G1 and G2, and G1 ∩G2 = K2.

Proof: Set S := V (G1 ∩ G2). Note that every v ∈ S has a neighbor in every component of Gi − S
for i = 1, 2 (otherwise, S r {v} would disconnect G, a contradiction to κ(G) = |S|). Also note that
adding any new edge results in a topological minor in X.

If S = ∅, then G is disconnected. However, we can now add an edge between them (a bridge), which
can’t be part of a topological minor. Hence G is not edge-maximal, a contradiction.

If S = {v}, then choose neighbors vi ∈ Gir{v}, for i = 1, 2, which exist by the earlier observation that
every v ∈ S has a neighbor in every component of Gi r S for i = 1, 2. Consider G+ v1v2. Suppose we
did have a topological minor in X. Then, the branch sets can cross from G1 to G2 at most twice (once
through v1v2 and once through v), but all other branch sets must lie in either G1 or G2, since if both
G1 and G2 had a non-crossing branch set, then we could delete the two branch sets going through v
and v1v2 to disconnect it, which contradicts the fact that all topological minors in X are 3-connected.
So, edge-maximality is contradicted. Hence, |S| 6= 1.

Suppose S = {x, y}. Suppose first that xy 6∈ E(G). Consider G+ xy. If G+ xy contains a topological
minor x ∈ X, then, again, assume all branch sets meet G1. However, G2 has an xy path. So, G has
a topological minor from X, which is a contradiction. Hence we know that xy ∈ E(G). It remains to
show that G1 and G2 are both also edge-maximal. Add a new edge e to G1. Then, we can pull this
minor back into G1, showing that G1 is edge-maximal without a topological minor in X. Analogously,
so is G2. �
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Lemma 4.4.5: If |G| ≥ 4 and G is edge maximal without a topological K5 or K3,3 minor, then G is
3-connected.

Proof: (induction on |G|) If |G| = 4, this is shown easily. Now suppose |G| > 4 and that G
is edge-maximal without a topological K5 or K3,3 minor, and κ(G) ≤ 2. Choose G1, G2 as in
Lemma 4.4.4. Then, G1 and G2 are planar (by induction, and previous lemmas). We know
that xy ∈ E(G), where x and y are as in the previous lemma. Choose drawings of Gi with xy
on the outer face. Choose zi ∈ Gi also on the outer face. So, G + z1z2 has a plane drawing,
because if G + z1z2 is planar, it can’t have a K5 or K3,3 topological minors, contradicting the
edge-maximality of G. �

Remark: Combining all of the above lemmas proves Kuratowski’s Theorem.

4.6 Plane Duality

Definition: To get the dual of a graph, make a vertex for each face, and connect two such vertices through
all edges which are adjacent to both faces. Note that this may result in a multigraph with loops.

Definition: Consider a plane multigraph G and another plane multigraph G∗ with faces F and F ∗,
respectively. They are duals if and only if there exist bijections:{

F → V ∗ := V (G∗)
f 7→ v∗(f)

,{
V → F ∗

v 7→ f∗(v)
,{

E → E∗

e 7→ e∗(e)
,

which satisfy conditions:

(1) v∗(f) ∈ f (i.e., the vertex of a face lies in the face),

(2) |e∗(e) ∩G| = |e̊∗ ∩ e̊| = |e ∩G∗| = 1,

(3) v ∈ f∗(v) (i.e., each old vertex lies in its new face).

For these bijections to exist, both G and G∗ must be connected.

Remark: Any two duals of G are topologically equivalent. So, we can say “the dual” instead of “a dual”.

Remark: (G∗)
∗

= G.

Proposition 4.6.1: For any connected plane multigraph G, the set C ⊆ E(G) forms a cycle if and only if

C∗ := {e∗ : e ∈ C}

is a minimal cutset of G∗.

Proof: Two vertices v∗(f1) and v∗(f2) lie in the same component of G∗ −C∗ if and only if f1 and f2

lie in the same region of R2 − C.

Conversely, let D ⊆ E(G) be such that D∗ is a cutset of G∗. If D has no cycle, then it’s a forest, and
so it has 1 face, which means that D∗ is not a cutset, which is a contradiction.

Therefore, D contains a cycle, and thus if D is minimal, then D is precisely the edges of this cycle. �
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Remark: So, taking duals interchanges cycles and minimal cutsets:

[ cycles ]
∗←−−−→ [ minimal cutsets ]

Definition: G∗ is the abstract dual of G if

E(G∗)
∗←−−−→ E(G)

and the minimal cutsets of G∗ correspond to the cycles of G.

Theorem 4.6.3: (Whitney, 1933) A graph is planar if and only if it has an abstract dual.

Proof:

(=⇒) If G is planar, then every component of G has a plane dual. Each of the duals has one vertex
for the outer face. Pasting the outer face vertices together gives an abstract dual. All edges in a
minimal cutset have to come from one component’s dual, so it is a cycle. �

(⇐=) Proof omitted. Uses algebraic graph theory. �



Chapter 5

Coloring

5.1 Coloring Maps and Planar Graphs

Definition: A coloring of G by the set S is a mapping

c : V (G)→ S

such that

c(v) 6= c(w)

if v ∼ w in G. If G has an S-coloring, then we say that G is |S|-colorable.

Definition: The smallest k so that G is k-colorable is called its chromatic number, and is denoted χ(G).

Remark: The 2-colorable graphs are exactly the bipartite graphs.

Four Color Theorem: Every planar graph is 4-colorable.

Remark: The above theorem was first stated in 1852. It was first (correctly) proved by Appel-Hakin in
1976. The paper was 400 pages long, and additionally used a computer program to check other cases.

Remark: Why are planar graphs so nice?

- Euler’s Formula: vertices + faces = edges + 2.

- G is and edge-maximal planar graph if and only if it is a plane triangulation.

Remark: Consider a plane triangulation. By double counting the tuples (f, e) with e on the boundary of
f , we see that

3f = 2e

and so

f =
2

3
e.

Applying Euler’s Formula,

n+
2

3
e = e+ 2

25
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and so

e = 3n− 6.

Therefore, for any plane graph G, we have that

edges ≤ 3n− 6.

We can now prove the following theorem.

Six Color Theorem: Every plane graph is 6-colorable.

Proof: Note that the average degree is

d(G) =
2|E|
n
≤ 2(3n− 6)

n
= 6− 12

n
< 6.

So, there is some vertex of degree < 6. Remove this vertex. Color the resulting graph by induction.
Add the vertex back. It has at most 5 neighbors, so there is a color left over for this vertex. �

Five Color Theorem: (≈ Kempe, circa 1870. Kempe thought this was a proof of the five color theorem.
Heawood found an error in 1890 but showed that Kempe’s proof did show 5-colorability.) Every plane graph
G is 5-colorable.

Proof: (by induction) Proceed by induction on n. Let v ∈ G be a vertex v with d(v) ≤ 5, by the
same argument as above. By induction, G − v has a 5-coloring. We’re done unless d(v) = 5 and
each neighbor of v has a different color. Let {vi : i ∈ [5]} be the neighbors of v, labeled in clockwise
order. Using topological notions, v is connected to each of these five neighbors by an arc, which to us
means a sequence of straight line segments. Call si for i ∈ [5] the first line segment leaving v heading
for neighbor vi. Consider a disc D which intersects only the si. Without loss of generality, let vi be
colored with color i.

Claim: Every v1 − v3 path P ⊆ G− v separates v2 from v4 in G− v. Equivalent, the cycle

C := vv1Pv3v

separates v2 from v4 in G. (Most of proofs of this theorem do not formally prove this claim, but we
will using topological arguments.) Consider the two regions of D r (s1 ∪ s3). These two regions are
each contained entirely in a face of C. So, D ∩ S2 and D ∩ S4 lie in different faces of C. Thus, v2 and
v4 lie in different faces of C, which proves the claim.

Let H1,3 be the subgraph of G − v induced by vertices colored 1 or 3. Let C1 be the component of
H1,3 containing v1. If C1 does not contain v3, then we can flip all of the colors in C1 between 1 and
3, which doesn’t change v3, but does change v1 into being colored 3. Then, we can set the color of v
to 3 and we’re done.

Otherwise, C1 does contain v3, and so C1 contains a color-alternating v1 − v3 path P ⊆ H1,3. By the
earlier claim, this path separates v2 from v4 in G− v. Consider the similarly defined graph H2,4, the
subgraph of Gv induced by vertices colored 2 or 4. Note that P ∩H2,4 = ∅. Hence, there is no v2 − v4

path in H2,4. So, if we split H2,4 into two or more components, we know that v2 and v4 are in different
components. Now, flip all of the colors in the component containing v2, so that v2 is colored 4, and
make v have color 2. �
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5.2 Coloring Vertices

Question: How can we relate the number of edges in a graph G with its chromatic number χ(G)?

Definition: Given a coloring of G, the set of vertices colored by a particular color is called a color class.

Remark: Every color class forms an independent set.

Remark: If χ(G) = k, then in any k-coloring of G, there is an edge between every pair of color classes.
Hence, we get the following bound: The number m of edges of G satisfies

|E(G)| =: m ≥
(
k

2

)
.

Hence,

m ≥ 1

2
k(k − 1)

m ≥ 1

2
k2 − 1

2
k

0 ≥ 1

2
k2 − 1

2
k −m

k ≤ 1

2
+

√
1

4
+ 2m.

This proves the following proposition.

Proposition 5.2.1: Every graph G with m edges satisfies

χ(G) ≤ 1

2
+

√
1

2
+ 2m.

Remark: Recall that the girth of a graph is the length of the smallest cycle. It may seem reasonable that
a graph has a small girth if and only if it has a large χ(G). However, Erdős showed that there exist graphs
with arbitrarily large girth and arbitrary large χ(G). We will prove this in Chapter 12.

Proposition: We have the bound
χ(G) ≤ ∆(G) + 1.

This is found by use of the Greedy Coloring Algorithm:

List the vertices v1, v2, . . . , vn.
Give vi the smallest color not taken by its neighbors in v1, . . . , vi−1.

Remark: We have equality in the bound above when G is a complete graph or an odd cycle (or unions of
such). We will soon prove that these are the only two such cases.

Remark: In the Greedy Coloring Algorithm, we want to list the vertices from high degree to low
degree. To do this, choose vn such that d(vn) = δ(G), then remove vn and repeat. The coloring number of
Gn, denoted col(G), is the least number k such that there is a vertex enumeration v1, . . . , vn such that

dG[v1,...,vi](vi) < k

for all i. We’ve already shown the following proposition.
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Proposition 5.2.2:

χ(G) ≤ col(G) = max{δ(H) | H ≤ G}+ 1.

Corollary 5.2.3: Every graph G is a subgraph of minimum degree at least χ(G)− 1.

Theorem 5.2.4: (Brooks, 1941) Let G be a connected graph. If G is neither complete nor an odd cycle,
then χ(G) ≤ ∆(G).

Proof: (by induction) Proceed by induction on |G|. The base case |G| = 1 is trivial. The case
∆(G) ≤ 2 is also trivial: these are paths and cycles, and we’re specifically excluding odd cycles.

Suppose ∆(G) ≥ 3, and that χ(G) > ∆(G). We want to show that G is a complete graph.

Take any vertex v ∈ G and define H := G − v. We claim that χ(H) ≤ ∆(G): every component H ′

of H satisfies χ(H ′) ≤ ∆(H ′) by induction, unless H ′ is one of the exceptions. If H ′ is an exception,
then H ′ = Kn or H ′ = C2n+1. So, v must have been adjacent to some w of H ′ which then has degree
at least χ(H ′) in G. This proves the claim.

Since χ(H) ≤ ∆(G) but χ(G) > ∆(G), the neighbors of v use all ∆(G) colors. Therefore, d(v) = ∆(G),
i.e. v has maximum degree.

Given a ∆-coloring of H and colors i and j, let Hi,j denote the subgraph spanned by vertices of colors
i and j. Let vi denote the neighbor of v which has color i. For all i 6= j, vi and vj lie on a common
component Ci,j of Hi,j (to see this, we use a similar idea as the Kempe chain trick of the 5 Connected
Theorem: otherwise, we could swap colors i and j in one of these components and be finished, which
would be a contradiction.)

5.3 Coloring Edges

Definition: Define χ′(G) to be the edge chromatic number of G. This is the smallest number of colors
needed such that any two incident edges have different colors.

Remark: We have the following trivial lower bound:

χ′(G) ≥ ∆(G).

König’s Theorem: (1916) For bipartite graphs G, we have equality in the above bound, i.e, χ′(G) = ∆(G).

Proof: (by induction) We use induction on |E(G)|. Set ∆ := ∆(G) and take an edge xy ∈ E(G).
Consider a ∆-edge-coloring of G − xy. In our coloring of G − xy, there are colors α, β ∈ {1, . . . ,∆}
which are missing at x and y, respectively.

If α = β, use this color for xy. Otherwise, take the longest walk which starts at x and alternates
between α and β edges. We claim that this walk is actually a path, i.e., it can’t revisit a vertex: if it
did revisit a vertex, this would violate the edge-coloring. Next, we claim that this walk/path does not
end at y: otherwise there would be an odd cycle which violates the fact that G is bipartite. So, we
can switch β and α along this path, which forces β to be missing at both x and y, allowing us to color
xy with color β. �
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Vizing’s Theorem: (1964) For every graph G,

∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Graphs for which χ′(G) = ∆(G) are called “class 1 graphs” and graphs for which χ′(G) = ∆(G) + 1 are
called “class 2 graphs”.

Proof: (by induction) Use induction on |E(G)|. Set ∆ := ∆(G). For the rest of the proof, “coloring”
means “(∆ + 1)-edge-coloring”.

For every e ∈ G, the graph G − e has a coloring (by induction). Every v ∈ V (G) is missing a color
β ∈ {1, . . . ,∆ + 1}. For any other color α, there is a maximal α/β walk starting at v.

Suppose G has no coloring. Then, for every xy ∈ E(G), and any coloring of G − xy, in which α is
missing at x and β is missing at y, the α/β path from y ends at x. (Here we used the same two claims
as in the proof of the previous theorem.)

Let xy0 ∈ E(G) be an edge. Let α be missing at x in some coloring of G−xy0 and denote this coloring
by

c0 : E(G− xy0)→ {1, . . . ,∆ + 1}.

Let y0, y1, . . . , yk be a maximal sequence of distinct neighbors of x in G so that c0(xyi) is missing at
yi−1.

For every G− xyi, we define a coloring by

ci(e) :=

{
c0(xyj+1), e = xyj , j ∈ {0, 1, . . . , i− 1}
c0(e), otherwise

The map ci deletes xyi and shifts all colors before it down.

Let β be missing at yk in c0. In ck, β is still missing at yk. So, x has a β edge in every ci. So, x has
a β edge in every ci. So, some edge xyi is colored β in c0. Take an α/β path P from yk in G − xyk
colored by ck. Then, P ends at x in a β edges, and

β = c0(xyi) = ck(xyi−1).

So, yi−1 is missing β in c0.

Look at the α/β path from yi−1 in G− xyi−1 colored by ci−1. This path starts with yi−1Pyk. But in
c0 and ci−1 there is no β edge at yk. �

5.4 List Coloring

Definition: Let G = (V,E) be a graph. Consider a family of sets (Sv)v∈V . We say that G is (Sv)-colorable if
there is a valid coloring c such that c(v) ∈ Sv for all v. We say that G is k-list-colorable if G is (Sv)-colorable
for all families (Sv)v∈V with |Sv| = k for all v ∈ V .

Definition: The least k for which G is k-list colorable is its list-chromatic (or choice) number, char(G).

Remark: This makes coloring harder: char(G) ≥ χ(G), for all graphs G.

Definition: The analogous notion is edge-list-coloring, which has the same property char′(G) ≥ χ′(G).
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Remark: Brooks’ Theorem holds for list-colorings:

char′(G) = ∆(G) or ∆(G) + 1.

Remark: The following result still holds:

[large char(G)] =⇒ [there is a subgraph with large average degree].

Theorem: (Alon, 1993) There is a function f : N → N such that if d(G) ≥ f(k), then char(G) ≥ k. For
χ(G), this is false: consider Kn,n.

Theorem: (Thomassen, 1994) Every planar graph is 5-list-colorable.

Proof: We use induction on |G| ≥ 3 to prove a stronger statement:

(∗) : Suppose that every inner face of G is bounded by a triangle, and its outer face by the cycle
C = v1 · · · vkv1. Suppose further that v1 is colored 1 and v2 is colored 2. Suppose that every
other vertex of C has a list of 3 colors, and each vertex of G − C has a list of 5 colors. Then,
this coloring can be extended from these lists.

From (∗), we get the theorem: Extend G to a plane triangulation and suppose the outer face is bounded
by v1v2v3v1. Color v1, color v2 different than v1, and use (∗) to extend the coloring.

In the base case, |G| = 3, and so G is a triangle. By inspection (∗) holds. Now assume |G| ≥ 4.

(Case 1:) Assume C has a chord vw. The edge vw splits G into two graphs G1 and G2 (where the
chord is in both graphs). Color G1 by induction. Then color G2 by induction.

(Case 2:) Assume C has no chord. Label the neighbors of vk as v1, u1, . . . , um, vk−1. It follows
that (see book for details) that these neighbors lie on a path (with possible relabeling of the ui)
P = v1u1u2 · · ·umvk−1. Set the cycle C ′ = P ∪ (C − vk). vk has 3 colors. At least two of these
aren’t the color 1. Delete these two colors from each ui, so that each ui has a list of 3 colors.
Delete vk and use induction with the new outer cycle C ′. Put vk back in. It has two possible
colors, which don’t conflict with v1 or any ui. The only other neighbor is vk−1, so we can pick a
color vk.

This completes the proof. �

List Coloring Conjecture: char′(G) = χ′(G) for all graphs G.

Remark: This is another example of how edge coloring behaves very differently than vertex coloring.

Definition: Let G be a graph and let D be an orientation of G. So, an edges in G becomes an oriented edge
in D. We say that D is an oriented graph. We have the following notation:

N+(v) := {u | D has an edge v → u},
d+(v) :=

∣∣N+(v)
∣∣ .

Definition: We say that U ⊆ D is a kernel if

(i) U is an independent set,

(ii) for every v ∈ D − U , there is an edge from v to a vertex in U .
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If D 6= ∅, then its kernel (if it has one) is also nonempty.

Lemma 5.4.3: Let H be a graph and let (Sv)v∈H be a family of lists. If H has an orientation D with
d+(v) < |Sv| for every v, and every induced subgraph has a kernel, then H can be colored with the lists
(Sv)v∈H .

Proof: We use induction on |H|. The base case |H| = 0 is trivial. Consider a graph H with |H| > 0.
Let α be a color occurring in one of the lists. Let D be an orientation as specified by the hypothesis.

Define D′ as the graph induced by vertices v with α ∈ Sv. Let U be the kernel of D′. Color every
vertex in U by α, and remove α from the other lists of vertices in D′ to get lists (S′v)v∈V . Note that
d+(v) < |S′v| for v ∈ D − U . So, by induction, we can color H − U with the lists (S′v)v∈V . �

Galvin’s Theorem: (1995) If G is a bipartite graph, then char′(G) = χ′(G) = ∆(G).

Proof: Let G have bipartition X ∪ Y . Let χ′(G) = k. Let c : E(G)→ [k] be a k-edge coloring of G.
We know that char′(G) ≥ χ′(G). Our goal is to use Lemma 5.4.3 to show that the line graph of G
(denoted H) is k-choosable.

We assign the following orientation to the edges of H. Suppose e, e′ ∈ E(G) meet, and that c(e) < c(e′).
Then, if e and e′ meet in X, we assign e′ → e. If e and e′ meet in Y , we assign e→ e′.

So, what is d+
D(e)? If c(e) = i, then e → e′ for edges e′ that meet e in X with c(e′) ∈ [i − 1], and

for edges e′ that meet e in Y with c(e′) ∈ [k] r [i]. So, d+
D(e) < k = |Sv|. This satisfies half of the

Lemma.

How about the kernel condition? We claim that every D′ ⊆ D has a kernel. Proceed by induction
on |D′|. If |D′| = 0 or |D′| = 1, then it’s true. Now set E′ = V (D′) ⊆ E(G). For x ∈ X at which
E′ has an edge, let ex ∈ E′ be the edge at X with minimum c-value. Let U = {ex | x ∈ X}. Every
edge e′ ∈ E′ r U meets some edge in U , and each of these edges e′e is oriented e′ → e. If U is an
independent set, it is a kernel and we’re done.

Let e, e′ ∈ U be adjacent. Then, e and e′ meet in Y . Suppose c(e) < c(e′). So e → e′. By induction
D′ − e has a kernel U ′. If e′ ∈ U ′, we’re done. If not, then U ′ has an edge e′′ with e′ → e′′. We have
two situations.

If e′ and e′′ meet in X, then c(e′′) < c(e′). Then, e′ isn’t the minimal c-value for its vertex in x, a
contradiction to the definition of U .

If e′ and e′′ meet in Y , then c(e′) < c(e′′). Then, c(e) < c(e′) < c(e′′) and so c(e) < c(e′′), so that
e→ e′′ and U is a kernel of D′. �

5.5 Perfect Graphs

Remark: All subgraphs in this section are induced subgraphs, unless otherwise stated.

Definition: ω(G) is the greatest r such that Kr ⊆ G. This is called the clique number.

Definition: α(G) is the greatest r such that K
r ⊆ G. This is called the independence number.

Definition: G is perfect if χ(H) = ω(H) for all induced H ⊆ G.
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Remark: The class of perfect graphs is closed under induced subgraphs, but is not closed under minors.

Example: The cycle of length 6 is perfect, but the cycle of length 5 (which is its minor) is not.

Definition: A graph is called chordal if all of its cycles of length at least 4 have a chord. These graphs are
sometimes called triangulated graphs.

Remark: Suppose G has induced subgraphs G1, G2, and S. If G = G1 ∪G2 and S = G1 capG2, then G is
formed by “pasting together” G1 and G2 along S.

Proposition 5.5.1: A graph is chordal if and only if it can be constructed recursively by pasting together
along complete graphs, starting from complete graphs.

Proof:

(⇐=) Consider a graph G constructed by pasting G1 and G2 along the complete graph S = G1 ∩G2.
Let C be an induced cycle of G of length at least 4. Then, C lies entirely in G1 or G2: otherwise,
it has two non-adjacent vertices in S which would have to be connected. This is a contradiction
since G1 and G2 are chordal by induction. �

(=⇒) Proceed by induction on |G|. The base case is trivial. Let G be a chordal graph. If G is
complete, we’re done immediately. So, assume that a and b are non-adjacent vertices of G. Let
X ⊆ V (G) r {a, b} be a minimal set of vertices separating a from b (of course, X may be empty,
in which case we’re pasting along a K0, and we’re done by induction).

By construction G−X is disconnected. Let C be the component of G−X containing a. Define

G1 := G[V (C) ∪X],

G2 := G− C,
S := G[X].

We need to show that S is complete. Suppose to the contrary that there are nonadjacent s, t ∈ S
such that s and t are non-adjacent. Let P1 be a minimal s− t path in G1 and let P2 be a minimal
s− t path in G2. But, then we’ve made an induced cycle of length at least 4, a contradiction. �

Proposition 5.5.2: Chordal graphs are perfect.

Proof: We proceed by induction on the recursive construction in Proposition 5.5.1. In the base
case, the graphs are complete, hence obviously chordal.

Now suppose that G is constructed by pasting G1 and G2 along the complete graph S. Let H be an
induced subgraph of G. Define

H1 := H ∩G1,

H2 := H ∩G2,

T := H ∩ S.

T is still a complete graph. First, ω(H) = max{ω(H1), ω(H2)} ≥ |T |. By induction, color H1 with
ω(H1) colors and color H2 with ω(H2) colors. We can permute the colors so that they agree on T ,
and then we’re done. �
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Weak Perfect Graph Theorem: (Lovász, 1972) G is perfect if and only if G is perfect.

Theorem: (Lovász, 1972) G is perfect if and only if |H| ≤ α(H)ω(H) for all induced subgraphs H of G.

Strong Perfect Graph Theorem: (Chutnovsky, Robertson, Seymour, Thomas, 2002) G is perfect if and
only if G has no induced C5, C7, C9, C5, C7, or C9.



Chapter 7

Extremal Graph Theory

7.1 Substructures in Dense Graphs

Remark: In this chapter, we explore how we can relate global invariants of graphs with local structures
which exist in the graphs. For example, how many edges must a graph have to ensure the existence of a Kr

subgraph? This kind of question falls under the category of extremal graph theory.

Example: If we are trying to ensure an H minor, the answer is that we need |E| ≥ c|V | for some c. So, we

just need to push d(G) =
2|E|
|V |

up high enough?

Example: What if we want an H subgraph? Consider H = C4. Erdős constructed graphs with arbitrary
large chromatic number and girth. Additionally, every graph G has a subgraph with δ(G) ≥ χ(G) − 1. In
Chapter 1, we showed that large minimum degree implies high connectivity. These all show that the typical
global invariants being large will not force the existence of a C4 subgraph. The same reasoning holds for any
H containing any cycle of length at least 4.

Remark: If we let our parameters depend on n = |G|, then the above is possible. For example, if we
require δ(G) ≥ n− 1, then G = Kn and certainly G contains a C4 subgraph if n ≥ 4. We need to insist on
positive edge density:

|E|(
|V |
2

) > 0.

Of course, for any particular graph, this number is strictly positive, but when we refer to dense graphs, we’re
really talking about a sequence of graphs:

inf (edgedensity(Gi)) > 0.

When we refer to sparse graphs, we mean

sup (edgedensity(Gi)) = 0.

This terminology is frequently abused.

34
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Definition: Let H be a fixed graph and n ≥ |H|. What is the greatest number of edges an n-vertex graph
can have without containing an H subgraph. A graph with this many edges any no copy of H is called
extremal for H. This number of edges is denoted ex(n,H).

Remark: We showed in the above remark that if H is not a forest, then ex(n,H) does not grow linearly
with respect to n.

Definition: Say that we want to find the extremal graphs which do not have a H = Kr subgraph? If r = 3,
we can split G into a complete bipartite graph on sets of equal (or off by 1) size. Generalizing for r, we
can split G into an (r − 1)-partite graph such that all parts have equal (or off by 1) size. This is called the
Turan graph T r−1(n).

Definition: Define tr−1(n) = ‖T r−1(n)‖.

Turan’s Theorem: (1941) For all r > 1 and n, every graph G 6⊇ Kr with n vertices and tr−1(n) edges is a
T r−1(n).

Proof: We proceed by induction on n. If n ≤ r− 1, then by definition T r−1(n) is the complete graph
on < r vertices, so we’re done.

Suppose n ≥ r. Take G to be extremal for Kr. Then G is edge-maximal, and so G ⊇ Kr−1. Call this
subgraph K. Well,

‖G−K‖ ≤ tr−1(n− r + 1),

since every vertex of G−K has at most r − 2 neighbors in K. Now,

‖G‖ ≤ tr−1(n− r + 1) + (n− r + 1)(r − 1) +

(
r − 1

)
.

The Turan graph has exactly this many edges, thus

|G| = tr−1(n).

So, T r−1(n) is extremal for Kr. Since G is extremal, it has tr−1(n) edges.

Let
V (K) = {x1, . . . , xr−1}.

For i = 1, . . . , r − 1, define
Vi = {v ∈ G : vxi 6∈ E.

Note that xi ∈ Vi. If some Vi contained an edge, then those two vertices plus {x1, . . . , xr−1} r {vi}
would form a Kr. So, G is an (r − 1)-partite graph, and by algebra its parts differ by 1. �

Exercise: tr−1(n) ≤ 1

2
n2 · r − 2

r − 2
.

Erdős-Stone Theorem: (1946) For all integers r ≥ 2 and s ≥ 1 and every ε > 0, there is an integer n0

such that every graph on n ≥ n0 vertices with at least tr−1(n) + εn2 edges contains a Kr
s (as a subgraph),

i.e., a complete r-partite graph with s vertices in each part.

Corollary: When we combine Turan’s Theorem and the above exercise, it follows that

ex(n,Kr)(
n

2

) → r − 2

r − 1
.
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What about other avoiding graphs?

Corollary 7.1.3: For every graph H with at least one edge,

ex(n,H)(
n

2

) → χ(H)− 2

χ(H)− 1
.

Proof: Let r = χ(H). Then, H can’t be colored with r − 1 colors. So, H 6⊆ T r−1(n). Thus,

ex(n,H) ≥ tr−1(n)

and so

lim
n→∞

ex(n,H)(
n

2

) ≥ χ(H)− 2

χ(H)− 1
.

Color H with r colors and let s be the size of the largest color class. Then, H is contained (as a
subgraph) Kr

s . By Erős-Stone, we can fix ε > 0 and let n ≥ n0 to show that if we have at least
tr−1(n) + εn2 edges, then we have a Kr

s and hence an H subgraph.

So,

tr−1(n)(
n

2

) ≤ ex(n,H)(
n

2

) ≤ ex(n,Kr
s )(

n

2

) ≤ tr−1(n) + εn2(
n

2

) =
tr−1(n)(
n

2

) +
2ε

1− 1

n

≤ tr−1(n)(
n

2

) + 4ε.

Thus, letting n→∞ and then ε→ 0, the upper and lower bounds match. �

Remark: For H = Ks,s,

c1n

(
2−

2

r + 1

)
≤ ex(n,Ks,s) ≤ c2n

(
2−

1

r

)
.

If H is a forest, then

ex(n, F ) ≤ cn.

Conjecture (Erdős - Sós, 1963),

ex(n,Tree) ≤ 1

2
(edges in tree− 1)n.

Definition: Let X,Y ⊆ V (G) be disjoint. Define ‖X,Y ‖ to be the number of X − Y edges. Define the
density by

d(X,Y ) :=
‖X,Y ‖
|X||Y |

.

Definition: Fix some ε > 0. The pair (A,B) of disjoint subsets of V (G) is ε-regular if for all X ⊆ A and
Y ⊆ B satisfying |X| ≥ ε|A| and |Y | ≥ ε|B|, we have

|d(X,Y )− d(A,B)| < ε.

Remark: In an ε-regular pair, the edges are distributed fairly uniformly.
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7.4 Szemerédi’s Regularity Lemma

Definition: Suppose {V0, V1, . . . , Vk} is a partition of V (G). Call V0 the “exceptional part”. This is an
ε-regular partition of G if:

(1) |V0| ≤ ε|V (G)|,

(2) |V1| = · · · = |Vk|,

(3) all but at most εk2 of the pairs (vi, vj) are ε-regular.

Szemerédi’s Regularity Lemma: For every ε > 0 and integer m ≥ 1, there is an integer M such that
every graph of order at least m admits and ε-regular partition {V0, V1, · · · , Vk} with m ≤ k ≤M .

Proof: See book.

Lemma 7.4.1: Let (A,B) be an ε-regular pair of density d. Take Y ⊆ B with |Y | ≥ ε|B|. Then, all but at
most ε|A| of the vertices in A have (each) at least (d− ε)|Y | neighbors Y .

Proof: Let X ⊆ A be the set of vertices in A with fewer than (d− ε)|Y | neighbors in Y . So,

d(X,Y ) <
|X|(d− ε)|Y |
|X||Y |

= d− ε.

Therefore, |X| < ε|A| because (A,B) is ε-regular. �

Definition: Let G have ε-partition {V0, V1, . . . , Vk}. Suppose |V1| = · · · = |Vk| =: `. Given d ∈ (0, 1], let R
be the graph on V1, . . . , Vk in which two parts are adjacent if they are an ε-regular pair of density at least d.
We say that R is a regularity graph with parameters ε, `, and d.

Definition: Given s ∈ N replace Vi in R by an independent set V si of s vertices and replace the edges of R
by complete bipartite graphs between these s-sets. Denote the graph we obtain by Rs.

Lemma 7.4.2: For all d ∈ (0, 1] and ∆ ≥ 1, there exists an ε0 > 0 with the following property: If G is a
graph and ∆(H) ≤ ∆, s ∈ N, and R is a regularity graph of G with parameters ε ≤ ε0 and ` ≥ s/ε0, and d,
then

[H ⊆ Rs] =⇒ [H ⊆ G].

Proof: Given d and ∆, choose ε0 < d small enough so that

∆ + 1

(d− ε0)∆
≤ 1.

Let G, H, s, and R be as states. Let {v0, v1, . . . , vk} be the ε-regular partition of G that gives rise to
R. So,

|V1| = · · · = |Vk| = ` ≥ s

ε0
.

Suppose H is a subgraph of Rs with vertices u1, . . . , uk. Each ui lies in one of the s-sets V sj of Rs.
This defines a map σ : i 7→ j. We want an embedding

ui 7→ vi ∈ Vσ(i) ⊆ G.

Thus, we need the vi to be distinct and vi ∼ vj whenever ui ∼ uj . We choose the vi inductively.
Throughout the induction, maintain a target set Yi ⊆ Vσ(i) for each i. Initially, Yi = Vσ(i). Once vi is
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chosen, Yi = {vi}. Whenever we choose a vj with j < i, if uj ∼ ui, delete all vertices of vi that are
not adjacent to vj . The evolution of Yi is

Vσ(i) = Y 0
i ⊇ · · · ⊇ Y ii = {vi}.

We need to ensure that |Y i−1
i | > 0. Suppose we are choosing vj , and consider each i > j with uj ∼ ui.

There are at most ∆ such indices i. For each of these i, we want to make

Y ji = N(vj) ∩ Y j−1
i

large.

Recall Lemma 7.4.1 above. Applying this with A = Vσ(j), B = Vσ(i) and Y = Y j−1
i , we are done

unless |Y j−1
i | ≤ ε|Vσ(j)| = ε`. Otherwise the lemma says all but at most ε` choices of vj will be such

that
|Y ji | = |N(vj) ∩ Y j−1

i | ≥ (d− ε)|Y j−1
i |. (∗)

Do this simultaneously for all of the at most ∆ choices of i for which ui ∼ uj . This means that we

must avoid ≤ ∆ε` of vj from Vσ(j), and thus also from Y j−1
j ⊆ Vσ(j). The goal is to show

|Y j−1
j −∆ε` ≥ s.

If we can show this, then a good choice of vj exists: since σ(j′) = σ(j) for at most s − 1 vertices u′j
with j′ < j, so there will be an unused vj left for ui. Now,

|Y ji | −∆ε` ≥ (d− ε)∆`−∆ε`

≥ (d− ε0)∆`−∆ε0`

= ((d− ε0)∆ −∆ε0)`

≥ ε0`
≥ s.

Thus we can avoid bad vj forever. �

Proof of Erdős-Stone: Let |G| = n and ‖G‖ ≥ tr−1(n) + γn2. Set d := γ and ∆ := ∆(Kr
s ) = (r− 1)s. We

may assume ε0 <
γ

2
< 1.

Let m >
1

γ
and choose ε ≤ ε0 small enough so that

δ := 2γ − ε2 − 4ε− d− 1

m
> 0.

Suppose that

n ≥ Ms

ε0(1− ε0)
≥M ≥ m.

The Regularity Lemma gives a family {V0, V1, . . . , Vk} with m ≤ k ≤M . Set

` := |V1| = · · · = |Vk|.

Then, n ≥ k` and

` =
n− |v0|

k
≥ n− εn

k
≥ n− εn

M
= n

(1− ε)
M

≥ Ms

ε0(1− ε0)

(1− ε
M

≥ s

ε0
.

Let R be the regularity graph with parameters ε, `, d. The lemma applies to R, so it suffices to show that R
has a Kr. The goal is to show that ‖R‖ ≥ tr−1(k). We know that

tr−1(k) =
k2

2

r − 2

r − 1
.
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How many edges involve V0? Inside V0, there are at most(
|V0|
2

)
≤ 1

2
ε2n2

edges. Outside of V0, there are at most
|V0k`| ≤ εnk`

edges.

There are also regular pairs between non-regular pairs (Vi, Vj). By the Regularity Lemma, there are at
most εk2 such pairs, each with at most `2 edges, for a total of at most εk2`2 edges.

There are also edges between pairs (Vi, Vj) which are ε-regular but have insufficient density to be part of the

regularity graph. Each such pair has strictly fewer than d`2 edges, and there are at most
1

2
k2 such pairs, for

a total of strictly fewer than
1

2
k2d`2 edges.

There are also edges inside of a particular Vi for i 6= 0. There are at most
1

2
`2k such edges.

The remaining edges are between pairs (Vi, Vj) of sufficient density. The only upper bound for this number
of edges is ‖R‖`2, where ‖R‖ is the number of edges in the regularity graph.

Therefore,

‖G‖ ≤ 1

2
ε2n2 + εnk`+ εk2`2 +

1

2
k2d`2 +

1

2
`2k + ‖R‖`2.

Hence,

‖R‖ ≥
‖G‖ − 1

2
ε2n2 − εnk`− εk2`2 − 1

2
k2d`2 − 1

2
`2k

`2

=
k2

2

‖G‖ − 1

2
ε2n2 − εnk`− εk2`2 − 1

2
k2d`2 − 1

2
`2k

k2

2
`2



≥ k2

2

 tr−1(n) + γn2 − 1

2
ε2n2 − εnk`

n2

2
− 2ε− d− 1

k



≥ k2

2


tr−1(n)

n2

2︸ ︷︷ ︸
= r−2

r−1

+ 2γ − ε2 − 4ε− d− 1

m︸ ︷︷ ︸
= δ>0


≥ k2

2

(
r − 2

r − 1
+ δ

)
≥ tr−1(k). �
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graph property, 1

Hall’s Marriage Theorem, 11
homeomorphism, 18
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incident, 1
independence number, 31
induced cycle, 4
induced subgraph, 1
induced subgraph order, 1
inner faces, 19
inner vertices, 3
interior, 18
isomorphism

of graphs, 1

Jordan Curve Theorem, 18

k-connected, 5, 14
k-factor, 10
kernel, 30
König’s Theorem, 10
Kuratowski’s Theorem, 2, 21, 23

length of a path, 3
linked, 3
List Coloring Conjecture, 30
list-chromatic number, 29
list-colorable, 29

Mader, 6
matching, 10
Menger’s Theorem, 14, 16
minimal cutset, 23
minor, 2, 9
minor order, 2
Minor Theorem, 2
MX, 9

order
induced subgraph, 1
minor, 2

orientation, 30
oriented edge, 30
oriented graph, 30
outer face, 19

P k, 3
path, 3
perfect, 31
plane graph, 19
polygon, 18
polygonal arc, 18
positive edge density, 34

q(G), 11

r-partite, 8
rad(G), 4
radius, 4
regions, 18, 19

regularity graph, 37
root, 8
rooted tree, 8

separates, 5, 18
Six Color Theorem, 26
sparse graphs, 34
star, 8
stereographic projection, 19
straight line segment, 18
Strong Perfect Graph Theorem, 33
subdivision, 9, 21
subgraph, 1
subgraph order, 1
Szemerédi’s Regularity Lemma, 37

topological minor, 9, 21
tree, 7
triangulated, 32
trivial graph, 1
Turan’s Theorem, 35
Tutte, 16
Tutte’s Theorem, 11
TX, 9

V (G), 1
vertex set, 1
Vizing’s Theorem, 29

Weak Perfect Graph Theorem, 33
Whitney’s Ear Decomposition, 14
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