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Chapter 1

Course Notes

1.1 Introduction

We present an example of a simple problem which has not been proved. This illustrates how combinatorial
problems can be deceivingly difficult.

Erdős-Szekeres Conjecture: (1935) Any collection of 2n−2 + 1 points in the plane (in general position,
i.e., no three are collinear) contains a convex n-gon.

In the case n = 3, the proof is obvious. For n = 4, we consider sets of 5 points. Let X be a set of 5
points in general position. Let H denote the convex hull of X (connect the points, fill in the middle).
We have three subcases.

Case 1: 5 points of X lie on the boundary of H. In this case, pick any 4 points.

Case 2: 4 points of X lie on the boundary of H. Use these 4 points to form the convex 4-gon.

Case 3: 3 points of X lie on the boundary of H. Pick the two points inside. Draw the line between
them, and then two boundary points (out of the three) will lie on one side of that line. Use these
four points.

The n = 5 case was proved in 1970. The n = 6 case was proved in 2006 with a computer. Remaining
cases are unsolved.

1



2 CHAPTER 1. COURSE NOTES

1.2 Chapter 3 - Subsets, Partitions, Permutations

1.2.1 Subsets

Notation: [n] := {1, 2, . . . , n}.

Question: How many subsets of [n] are there?

Answer: 2n

Question: How many subsets of [n] have k elements?

Answer:

(
n

k

)
:=

n!

k!(n− k)!
=
n(n− 1) · · · (n− k + 1)

k!

This quantity is described as “n choose k”.

To see this using the formula on the right, the numerator gives us the number of ways to pick k
elements in which order matters, then we divide by k! to not count the same set of elements with a
different order multiple times.

Some Binomial Identities: (
n

k

)
=

(
n

n− k

)
Choosing a k-subset is the same thing as choosing the complement (n− k)-subset.

k

(
n

k

)
= n

(
n− 1

k − 1

)
The left-hand side represents picking a k-subset and selecting one element. The right-hand side
represents picking an element and then a (k − 1)-subset of the remaining elements.

(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
The k-subsets of [n+ 1] can be split into two groups: those which contain n+ 1 and those which don’t.
If a k-subset contains n+ 1, you need k − 1 more elements (first summand). If it doesn’t, you need k
more elements (second summand).

n∑
k=0

(
n

k

)
= 2n

Both sides count the number of subsets of [n].

n∑
k=0

(
n

k

)2

=

(
2n

n

)
The left-hand side counts the number of ways for each k to pick an n-subset by picking a k-subset
from n elements and a (n − k)-subset for a different n elements. Summing these, we get the number
of ways to pick n from 2n, which is the right hand side.
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1.2.2 The Binomial Theorem

Binomial Theorem: For integers n,

(1 + x)n =

n∑
k=0

(
n

k

)
xk

Proof: Expand the left hand side:

(1 + x)(1 + x) · · · (1 + x)︸ ︷︷ ︸
n times

The coefficient of xk here is

(
n

k

)
because the only way to get an xk is by picking k of the x’s out of

the n possible, and the number of ways to do this is

(
n

k

)
. �

Proposition: For n > 0, the number of subsets of [n] of even and odd size are equal.

Proof: Set x = −1 in binomial theorem. �

1.2.3 Permutations

Definition: A permutation of X is a bijection from X to itself. Usually we will use X = [n].

Notation: There are three ways to write a permutation.

(1) “passive representation” or “one-line notation”:

(π(1), π(2), . . . , π(n))

(2) “two-line notation”: (
1 2 · · · n

π(1) π(2) · · · π(n)

)

(3) “cycle notation”

(x1 x2 · · · xm) means x1 → x2 → · · · → xm → x1

Warning: In the textbook, permutations act on the right, i.e.,

xπ := π(x)

and

πσ means apply π first, then σ.

Additionally, we have the associativity

x(πσ) = (xπ)σ.

Proposition 3.5.1: The number of permutations of [n] is n!.
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Proposition 3.5.2: Every permutation can be written as the composition of cycles on pairwise disjoint
subsets. This representation is unique up to the order of the cycles and the choice of starting points in each
cycle.

Proof: To construct the cycle decomposition, use the following algorithm. Let π be a permutation of
X. While there is a point of X not assigned to a cycle, choose any such point x. Let m be the least
positive integer such that xπm = x. Then, we have the cycle:

(x xπ xπ2 · · · xπm−1).

The final decomposition is the product of all such cycles.

Why can’t we have repetition within a cycle? Say that xπi = xπj for 0 ≤ i < j < m. Then, x = xπj−i,
which contradicts how we picked m.

Why can’t there be an overlap between two different cycles? Say the overlapping cycles have x in
only one cycle and y in only the other. Suppose yπm = y and we have the overlap xπi = yπj . Then,
xπi−j+m = y, which is a contradiction. �

1.2.4 Estimates for Factorials

Big-O Notation: We say that f(n) = O(g(n)) if there exists c such that |f(n)| ≤ cg(n) for all n.

Stirling’s Formula:

n! =
√

2πn
(n
e

)n(
1 +O

(
1

n

))

Remark: Stirling’s formula is tricky to prove, so we will prove an upper bound by using the fact that

log(n!) =

n∑
k=2

log(k)

and finding an estimate. We use the Calculus 1 trick of graphing log(x) from 1 to n+ 1 and drawing boxes
below the graph of width :

2 3 4 5 n− 1 n n+ 1

y = log(x)

· · ·
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This yields us the estimate

log(n!) ≤
∫ n+1

2

log(x) dx

= [x log(x)− x]
n+1
2

≤ (n+ 1) log(n+ 1)− (n+ 1)− 2 log(2) + 2.

Hence

n! = elog(n!)

≤ e(n+1) log(n+1)−(n+1)−2 log(2)+2

=
(n+ 1)n+1e2

en+1 · 4

=

(
n+ 1

e

)n+1

· e
2

4
.

We find a lower bound in the same way. This time we draw our bars above the log(x) line from x = 1 to
x = n:

1 2 3 4 n− 1 n

y = log(x)

· · ·

which gives us the bound

log(n!) ≥
∫ n

1

log(x) dx

= [x log(x)− x]
n
1

= n log(n)− n+ 1.

Hence,

n! = elog(n!)

≥ nn

en
e

= e
(n
e

)n
.

Therefore, we have shown that:

e
(n
e

)n
≤ n! ≤

(
n+ 1

e

)n+1

· e
2

4
.
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1.2.5 Selections

There are four basic ways to select k things from n things:

— order matters order doesn’t matter

with repetition nk
(
n+ k − 1

k

)

without repetition
n!

(n− k)!

(
n

k

)

Lemma 3.7.3: The number of k-tuples of nonnegative integers that sum to n is:(
n+ k − 1

k − 1

)
=

(
n+ k − 1

n

)
Proof: “Balls and walls” technique. There is a bijection between these k-tuples and lists containing
n balls and k − 1 walls. For example:

(3, 0, 0, 2, 1) 7−→ · · · ||| ·· | ·

So, we take the n+k− 1 balls and walls together and choose which k− 1 will be walls (or analogously,
which n will be balls). �

1.2.6 Cayley’s Theorem

Definition: A graph consists of vertices with edges between them.

Note: Two labelled graphs are considered the same if they have the same vertex sets and the same edges.

Notation: If v1 and v2 are vertices, then, we say v1 ∼ v2 if v1 and v2 are adjacent, or connected by an edge.

Definition: A path is a sequence v1, v2, . . . , vk such that

vi ∼ vi+1

for all 1 ≤ i ≤ k − 1, and there is no repetition of vertices.

Definition: A cycle is a path with vk ∼ v1.

Definition: A tree is a connected graph without any cycles.

Definition: A rooted tree is a tree with a designated “root”.
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Cayley’s Theorem The number of labelled trees on n vertices is nn−2.

Proof: We’re going to “ multiply by n2 ” and find a bijection with something counted by nn:
functions from [n] to [n]. For each labelled tree, choose two vertices. Call them the “head” and the
“tail”. Call the path between them a “backbone” and call the resulting object a “vertebrate”. Note
that the head and the tail can be equal.

Now, we can view each vertex on the tree as being part of a subtree whose root is on the backbone.
We can specify a vertebrate with the following information.

(1) A backbone: K = {v1, . . . , vk} ⊆ [n].

(2) A permutation of K (from head to tail).

(3) A partition of [n] rK into sets T1, T2, . . . , Tk.

(4) For each i, the structure of the subtree rooted at vi on the vertices Ti ∪ {vi}.

Consider functions f : [n] → [n]. Recall that a point m is f -periodic if f t(m) = m for some t. Note

that if m is periodic, then f(m), f2(m), . . . are all periodic. It’s clear that f acts as a permutation
on its periodic points. If we take a nonperiodic point x there exists t big enough so that f t(x) is a
periodic point.

The periodic points are equivalent to the backbone points vi. Define

Ti := {nonperiodic m | the first periodic f t(m) is vi}.

So, we specify a function f : [n]→ [n] with the following information.

(1) Periodic points: K = {v1, . . . , vk} ⊆ [n].

(2) Permutation on K: f
∣∣
K

.

(3) A partition of [n] rK into sets T1, T2, . . . , Tk.

(4) For each i, a tree on Ti ∪ {vi} representing the action of f on non-periodic points.

So it’s clear that the functions from [n] to [n] are in bijection with the “vertebrates”. Since there are
n2 vertebrates per labelled tree, the number of labelled trees is

nn

n2
= nn−2. �

1.2.7 Bell Numbers

Definition: The nth Bell number, denoted Bn, is the number of (set) partitions of [n] (with nonempty parts).

Notation: Rather than writing the partition {{1}, {2}, {3}}, we abbreviate it to 1/2/3.

Example: We can find B3 by listing the partitions of [3]:

1/2/3 12/3 13/2 23/1 123

So, B3 = 5.
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Theorem: We have the recurrence for Bn:

Bn =

n∑
k=1

(
n− 1

k − 1

)
Bn−k

Proof: Let k denote the size of the block containing n. We choose the other k − 1 elements in this
block, then partition the other n− k elements. �

1.2.8 Combinatorial Generation

There are four aspects to combinatorial generation:

(1) Listing

(2) Ranking (Objects → N)

(3) Unranking (N → Objects)

(4) Random Selection

There are two types: Recursive (GenerateAll) and Iterative (NextSubset).

Example: As an example, we will look at listing the power set of [n], denoted by “2[n]” or “P([n])”.

GenerateAll(n):
If n = 0:

Return {∅}
Else:

Set S := GenerateAll(n− 1)
Make a new copy of each subset in S and add n to this copy

Return S

NextSubset(S):
Find the greatest element not in S
If i does not exist:

S is the last subset

Else:

Return S r {i+ 1, . . . , n} ∪ {i}

If we use set n = 3 and iterate NextSubset starting with ∅, we get:

∅, {3}, {2}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}.

If we make a indicator table and put a 1 in column 1, 2, or 3 based on what digits are in the set, we get

n = 3 1 2 3 Decimal Representation

∅ 0 0 0 0
{3} 0 0 1 1
{2} 0 1 0 2
{2, 3} 0 1 1 3
{1} 1 0 0 4
{1, 3} 1 0 1 5
{1, 2} 1 1 0 6
{1, 2, 3} 1 1 1 7
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So, to list these sets, we can use binary numbering.

Example: Next we will try to generate

(
[n]

k

)
.

GenerateAll(n,k):
If k > n or k < 0:

Return ∅
Elseif k = 0:

Return {∅}
Else:

Set S = GenerateAll(n− 1, k − 1)
Adjoin n to all sets in S
Set T = GenerateAll(n− 1, k)
Return S ∪ T

A possible ordering for this listing is lexicographic (or dictionary) ordering.. For example

1 3 5 6 ≺` 1 3 5 7.

More precisely,

a1 a2 · · · ak ≺` b1 b2 · · · bk

if there is some index j with 1 ≤ j ≤ k such that

(1) aj < bj ,

(2) ai = bi for all 1 ≤ i < j.

Example: The lexicographical ordering of

(
[5]

3

)
is:

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}.

For an iterative algorithm, we need to figure out how to find the next subset in lexicographic order given a
subset.

Next(S):
Suppose S = {s1 < s2 < · · · < sk}
Find the greatest index i such that si + 1 6∈ S
If i does not exist:

S is the last set

Else:

Let j denote the number of elements of S greater than si (so j = k − i)
Return S r {si, si+1, · · · , sk} ∪ {si + 1, si + 2, · · · , si + j + 1︸ ︷︷ ︸

j elements

}

Definition: We may also consider co-lexicographical order (or “co-lex” order). (Note: the textbook calls
this “reverse order”, which is misleading. We define this order by:

a1 a2 · · · ak ≺c b1 b2 · · · bk

if and only if

ak ak−1 · · · a1 ≺` bk bk−1 · · · b1.
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Example: In our example above, the co-lex order is:

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}.

Now we demonstrate an iterative algorithm to find the next subset in co-lex order.

CLNext(S):
Set S := {s1 < · · · < sk}
Find the least i such that si + 1 6∈ S
If i does not exist:

S is the last set

Else:

Return S r {s1, · · · , si} ∪ {s1 + 1, 1, 2, · · · , i− 1︸ ︷︷ ︸
i−1 elements

}
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1.3 Chapter 5 - The Principle of Inclusion-Exclusion

1.3.1 PIE

Suppose there are 100 pupils, and they play some combination of the sports: Cricket, Tiddlywinks, Space
Invaders. We know that: (we abbreviate the fact that 45 people play cricket by “45 C”, etc.)

45C, 53T, 55S, 28CT, 32CS, 35TS, 20CTS.

How many people don’t play any of these games?

We can solve this with a Venn Diagram. We start from the innermost part and work outward. At the last
step we subtract everything in the diagram from 100 to find the number of students who play no sport.

T = 10

C = 5 S = 8

CTS = 20

TS = 15CT = 8

CS = 12

None = 22

The rigorous way to solve these problems is with the Principle of Inclusion-Exclusion, or PIE.

Theorem 5.1.1: (PIE) Let the universe be X with subsets A1, . . . , An ⊆ X. If I ⊆ [n], then define

AI :=
⋂
i∈I

Ai, A∅ = X.

Then, the number of elements of X which lie in none of the Ai is∑
I⊆[n]

(−1)|I||AI |.

Proof: Let x ∈ X. We count its contribution to the sum. We’d like it to contribute zero times if it
lies in some Ai and contribute exactly once if it doesn’t.

If x does not lie in any Ai, then the only contribution of X is as an element of A∅, and its contribution
is 1.

Otherwise, x lies in at least one set Ai. Set J = {i | x ∈ Ai} and let j = |J |. Notice that x ∈ AI if
and only if I ⊆ J . So, the contribution of x is

∑
I⊆J

(−1)|I| =

j∑
i=0

(
j

i

)
(−1)i = 0. �
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Applying this example to the above problems tells us that the number of students who play no sports is

100− 45− 53− 55 + 28 + 32 + 35− 20 = 22.

Application: (Surjections) A surjection is a function [n]→ [k] which is onto. The universe X is the set of
all functions [n]→ [k]. Define Ai to be the set of all functions [n]→ ([k] r {i}). Then, for I ⊆ [k], it’s clear
that AI is the set of functions [n]→ ([k] r I). Clearly,

|AI | = (k − |I|)n.

So, the number of surjections is

∑
I⊆[k]

(−1)|I||AI | =
∑
I⊆[k]

(−1)|I|(k − |I|)n =

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

Corollary: Set k = n. Then, the number of surjections (in this case, bijections) [n]→ [n] is

n∑
i=0

(−1)i
(
n

i

)
(n− i)n.

But, we know that a bijection is a permutation of n and so there are n! of these. Hence,

n! =

n∑
i=0

(−1)i
(
n

i

)
(n− i)n.

This is an unexpected identity!

Application: (Derangements) A derangement is a permutation with no fixed points. Define the universe
to be all permutations. Let Ai be the set of permutations which fix i and let AI be the set of permutations
which fix all of I. Then,

|AI | = (n− |I|)!.
So, the number of derangements of [n] is∑

I⊆[n]

(−1)|I|(n− |I|)! =

n∑
i=0

(
n

i

)
(−1)i(n− i)!

=

n∑
i=0

n!

i!(n− i)!
(−1)i(n− i)!

= n!

n∑
i=0

(−1)i

i!

This sum is the truncated series for e−1, and it converges very quickly. In fact, for n ≥ 2, the number of
derangements of [n] is the nearest integer to n!e−1. To see this, we want to find that∣∣∣∣∣n!

∞∑
i=0

(−1)i

i!
− n!

n∑
n=0

(−1)i

i!

∣∣∣∣∣ < 1

2

n!

∣∣∣∣∣
∞∑

i=n+1

(−1)i

i!

∣∣∣∣∣ < 1

2∣∣∣∣∣
∞∑

i=n+1

(−1)i

i!

∣∣∣∣∣︸ ︷︷ ︸
≤ 1/(n+1)!

<
1

2n!



1.3. CHAPTER 5 - THE PRINCIPLE OF INCLUSION-EXCLUSION 13

We want
1

(n+ 1)!
<

1

2n!

and so 2 < n+ 1 which gives n > 1.

1.3.2 A Generalization

Proposition 5.2.1: Let I ⊆ [n]. The number of elements which lie in Ai precisely when i ∈ I is∑
J⊇I

(−1)|JrI||AJ |.

Proof: Define for k ∈ [n]rI the set Bk = AI∪{k}. Then, by the Principle of Inclusion-Exclusion,
the number of elements which are in no Bk is∑

k⊆[n]rI

(−1)|K||BK |

where Bk :=
⋂
k∈K

Bk and B∅ := AI . �

Remark: Suppose we have functions f, g : 2[n] → R (e.g. J 7→ |AJ |) which satisfy

g(I) =
∑
J⊇I

f(J).

In relation to the earlier problem, we would set

g(I) :=

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = |AI | = [the # of elements that lie in all Ai for i ∈ I]

and

f(J) := [the # of elements that lie in Ai precisely when i ∈ J ].

We would like to invert our earlier statement and ask if it’s always true that

f(I) =
∑
J⊇I

(−1)|JrI|g(J) ?

Proposition 5.2.2: If f, g : 2[n] → R satisfy

g(I) =
∑
J⊇I

f(J),

then

f(I) =
∑
J⊇I

(−1)|JrI|g(J).

(This is a generalization of the Principle of Inclusion-Exclusion, but is also relevant to Möbius inversion for
the set 2[n].)
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Proof: (This proof is different than the proof in the text.) Expand the right-hand side:

∑
J:J⊇I

(−1)|JrI|g(J) =
∑
J:J⊇I

(−1)|JrI|
∑

K:K⊇J

f(K)


=

∑
J,K:K⊇J⊇I

(−1)|JrI|f(K)

=
∑

K:K⊇I

 ∑
J:K⊇J⊇I

(−1)|JrI|f(K)


=

∑
K:K⊇I

|KrI|∑
j=0

(−1)j
(
|K r I|

j

)
f(K)



=
∑

K:K⊇I


f(K)

|KrI|∑
j=0

(−1)j
(
|K r I|

j

)
︸ ︷︷ ︸
=

 1, |K r I| = 0
0, |K r I| 6= 0


= f(I). �

Proposition 5.2.3: (replace “⊇” with “⊆” in Proposition 5.2.2) If f, g : 2[n] → R satisfy

g(I) =
∑
J⊆I

f(I)

then

f(I) =
∑
J⊆I

(−1)|IrJ|g(J).

Proof: Define f(I) := f([n] r I) and g(J) := g([n] r J). Define I := [n] r I and J := [n] r J . Now
we see that

g(I) = g(I) =
∑
J⊆I

f(J) =
∑
J⊇I

f(J) =
∑
J⊇I

f(J).

So, by Proposition 5.2.2.

f(I) =
∑
J⊇I

(−1)JrIg(J).

Hence,

f(I) =
∑
J⊇I

(−1)JrIg(J).

Since J ⊇ I is the same condition as J ⊆ I and since J r I = I r J we get

f(I) =
∑
J⊆I

(−1)|IrJ|g(J)

which completes the proof. �
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Example: How many permutations of [n] are there where at least one of the first two entries is even? We
break this into two cases, either n is even or n is odd.

If n is even, then the number of permutations which start with two even numbers is(n
2

)(n
2
− 1
)

(n− 2)!

and the number of permutations which start with an even then an odd is(n
2

)(n
2

)
(n− 2)!

(and this is the same as the number of permutations which start with an odd then an even. Add these
together to get the answer.

1.3.3 Stirling Numbers

Definition: The (signed) Stirling numbers of the first kind s(n, k) are defined by

(−1)n−ks(n, k) = [# of permutations of [n] with k disjoint cycles].

Definition: The Stirling numbers of the second kind S(n, k) are defined by

S(n, k) = [# of set partitions of [n] into k blocks.]

Proposition 5.3.1:

(a)

n∑
k=1

(−1)n−ks(n, k) = n!.

(b)

n∑
k=1

S(n, k) = Bn.

Proposition 5.3.2:

(a) s(n, n) = S(n, n) = 1.

(b) s(n+ 1, k) = −ns(n, k) + s(n, k − 1).

(c) S(n+ 1, k) = kS(n, k) + S(n, k − 1).

Proof of (a): Trivial. �

Proof of (c): Consider a set partition of [n+ 1]. There are S(n, k − 1) partitions where the element
n+1 lies in its own block and kS(n, k) partitions where n+1 is in a block with other elements. Adding
these together gives all possibilities. �

Proof of (b): First consider the unsigned version

|s(n+ 1, k)| = |ns(n, k)|+ |s(n, k − 1)|.

The |s(n, k − 1)| term counts the cases where n + 1 is in its own cycle (i.e., is a fixed point). The
|ns(n, k)| term counts the number of ways to insert n + 1 into one of the already existing k disjoint
cycles. So, the unsigned version holds.

For the signed version, observe that either all terms are positive or all are negative, so we either have
the unsigned version already or we can multiply by −1 to get it, which proves the theorem for the
signed version. �
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Definition: (x)n := x(x− 1) · · · (x− n+ 1)︸ ︷︷ ︸
n terms

. This is called the falling factorial. We can either think of x as

a number (and get a numerical result), or as a variable (and get a polynomial).

Proposition 5.3.3:

(a) (x)n =

n∑
k=1

s(n, k)xk.

(b) xn =

n∑
k=1

S(n, k)(x)k.

Remark: Stirling constructed the Stirling numbers of the first kind to prove part (a), which is why
they have the sign.

Proof: We proceed by induction on n. For n = 1, both are trivially true (x = x).

For part (a), we assume true for n, i.e., we assume that

(x)n =

n∑
k=1

s(n, k)xk.

Now,

(x)n+1 = (x)n(x− n)

= (x− n)

n∑
k=1

s(n, k)xk

=

n∑
k=1

s(n, k)xk+1 −
n∑
k=1

ns(n, k)xk

=

n+1∑
j=2

s(n, j − 1)xk −
n∑
k=1

ns(n, k)xk (using j := k + 1)

=

n+1∑
k=1

[
s(n, k − 1)xk − ns(n, k)xk

]
=

n+1∑
k=1

s(n+ 1, k)xk. � (Proposition 5.3.2(b))

For part (b), we assume true for n, i.e., we assume that

xn =

n∑
k=1

S(n, k)(x)k.
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Now,

xn+1 = xxn

= x

n∑
k=1

S(n, k)(x)k

=

n∑
k=1

S(n, k)(x)k((x− k) + k)

=

n∑
k=1

S(n, k)(x)k(x− k) +

n∑
k=1

S(n, k)(x)kk

=

n∑
k=1

S(n, k)(x)k+1 +

n∑
k=1

kS(n, k)(x)k

=

n+1∑
j=2

S(n, j − 1)(x)k +

n+1∑
k=1

kS(n, k)(x)k (using j := k + 1)

=

n+1∑
j=1

S(n, j − 1)(x)k +

n+1∑
k=1

kS(n, k)(x)k

=

n+1∑
k=1

[S(n, k − 1)(x)k + kS(n, k)(x)k]

=

n+1∑
k=1

S(n+ 1, k). � (Proposition 5.3.2(b))

Remark: We can find a formula for S(n, k) which will help with calculations. Remember that the number
of surjections [n]→ [k] is:

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

We can look at a surjection as a set of preimages of [k], i.e., a partition of [n] into k parts and then ordered
to say which part is which preimage. This gives the following proposition.

Proposition 5.3.5:

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

1.3.4 Even & Odd Permutations

Definition: The sign of a permutation π, denoted sign(π) is defined by

sign(π) := (−1)n−[# of disjoint cycles in π].

We say that a permutation is even if sign(π) = +1 and that a permutation is odd if sign(π) = −1.

Remark: This definition is not the usual definition of an even/odd permutation taught in an algebra class,
but the definition coincides.
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Remark: The number of even permutations is equal to the number of odd permutations for all n ≥ 2. To
see this, recall

(x)k =

n∑
k=1

s(n, k)xk

(x)(x− 1) · · · (x− n+ 1) =

n∑
k=1

(−1)n−k · [# of permutations with k disjoint cycles] · xk.

Now set x = 1 (remember n ≥ 2) and see that

0 =

n∑
k=1

(−1)n−k · [# of permutations with k disjoint cycles].

So, the cases where k is even and where k is odd must cancel out (from the −1 power) and thus the number
of each is the same.

Definition: Define c(π) := [# of disjoint cycles of π], so that sign(π) = (−1)n−c(π).

Proposition 5.5.2: If π is a permutation of [n] and if τ is a transposition, then

c(πτ) = c(π)± 1.

Proof: Let τ = (i j). If i, j are in different disjoint cycles of π, then switching them links two disjoint
cycles together, which decreases the number of cycles by 1. If i, j are in the same disjoint cycle of π,
then switching them breaks the cycle into two pieces. �.

Remark: This proves that our definition of even/odd cycles coincides with the usual algebraic definition
(once the trivial base case is verified).
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1.4 Chapter 6 - Latin Squares and SDRs

1.4.1 Latin Squares

Definition: A Latin square is an n × n matrix with entries from [n] such that each symbol occurs once in
each row and column.

Example: Start with a permutation, for example (3 5 2 1 4) and shift it for each row:
3 5 2 1 4
5 2 1 4 3
2 1 4 3 5
1 4 3 5 2
4 3 5 2 1

 .

Question: How many Latin squares are there for a given n? Well, we just showed that there are at least n!.

Definition: Two Latin squares S and T are orthogonal if

|{(Si,j , Ti,j)}| = n2.

Remark: This is the start of a subject called “design theory” which is relevant throughout the book.

1.4.2 SDRs

Definition: A system of distinct representatives (or, SDR) for a family A1, . . . , An ⊆ X is an n-tuple
(x1, . . . , xn) such that:

(a) xi ∈ Ai for all i (representatives),

(b) xi 6= xj for i 6= j (distinct).

Example: Let A1 := {1, 2, 3} and A2 := {1, 3, 4}. The possible SDRs for this family are:

(1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 4).

There are 7 = 32 − 2 possible SDRs, because there are 32 ordered pairs in total and two with xi = xj .

Notation: A(J) :=
⋃
j∈J

Aj .

(Phillip) Hall’s Marriage Theorem: The family A1, . . . , An ⊆ X has an SDR if and only if

(HC): |A(J)| ≥ |J | for all J ⊆ [n].

The condition (HC) is called Hall’s Condition.

Proof:
(=⇒) If there is an SDR (x1, . . . , xn) then for all J ⊆ [n], we have {xj | j ∈ J} ⊆ A(J). Since all xj
are distinct, |A(J)| ≥ |{xj | j ∈ J}| = |J |.



20 CHAPTER 1. COURSE NOTES

(⇐=) We proceed by (strong) induction on n. Clear for n = 1.

Definition: We call an index set J critical if |A(J)| = |J |.

We consider two cases.

Case 1: (There is no critical set except ∅ and possibly [n].) Choose xn ∈ An and define

A′j := Aj r {xn}.

We claim that Hall’s Condition still holds on the sets A′1, . . . , A
′
n−1. Let J ⊆ [n− 1]. Then,

|A′(J)| ≥ |A(J)| − 1

> |J | − 1.

Hence |A′(J)| ≥ |J | and so by induction, there exists an SDR for the family.

Case 2: (There is a critical set which is not ∅ or [n].) Take J to be a minimal (by cardinality)
nonempty critical set. By induction {Aj | j ∈ J} has an SDR which uses all of A(J). For i 6∈ J
define

A∗i := Ai rA(J).

We claim that Hall’s Condition still holds on the sets A∗i for i 6∈ J . Pick some K ⊆ [n]rJ . Then,

A∗(K) = A(K ∪ J) rA(J).

So,

|A∗(K)| = |A(K ∪ J) rA(J)|
= |A(K ∪ J)| − |A(J)| (since A(J) ⊆ A(K ∪ J))

≥ |K ∪ J | − |A(J)|
= |K ∪ J | − |J |
= |K|. (since J ∩K = ∅)

Hence the theorem is true in this case.

So, the inductive step holds. �

(Marshall) Hall’s Variant: Suppose |Ai| ≥ r for all i, and the sets A1, . . . , An satisfy Hall’s Condition.
Then the number of SDRs for A1, . . . , An is at least{

r!, r ≤ n
(r)n, r ≥ n .

Proof: We adapt the proof of the previous theorem. The base case is clear.

Case 2: (r ≤ |J | < n) By induction, the family {Aj | j ∈ J} has ≥ r! SDRs.

Case 1: (r > |J |). In this case, we have ≥ r choices for xn. Each A′j has ≥ r − 1 elements. If r ≤ n
then r− 1 ≤ n− 1, so we have ≥ (r− 1)! SDRs on {A′j}, so there are ≥ r! SDRs in total. If r > n
then r − 1 > n− 1, so {A′j} has ≥ (r − 1)n−1 = (r − 1) · · · (r − n+ 1) SDRs, so we have ≥ (r)n
SDRs in total. �
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Theorem 6.2.4: Suppose that A1, . . . , An ⊆ [n] and suppose there is some r such that:

(a) |Ai| = r for all i,

(b) each element of [n] occurs in precisely r of the sets Ai.

Then, we have at least r! SDRs.

Proof: Fix J ⊆ [n]. We want

|A(J)| =

∣∣∣∣∣∣
⋃
j∈J

Aj

∣∣∣∣∣∣ ≥ |J |.
We will double count the set

{(j, x) | j ∈ J, x ∈ Aj}.

Counting “j first”, we get |J |r elements. Counting “x” first we get ≤ |A(J)|r elements. Well, then

|J |r ≤ |A(J)|r,

i.e., |A(J)| ≥ |J |. �

1.4.3 How Many Latin Squares?

Definition: Let L(n) denote the number of Latin squares of size n.

Remark: We showed the lower bound L(n) ≥ n! because we take any permutation for the first row and then

just shift it for any other row. Additionally, we have the obvious upper bound L(n) ≤ nn2

because nn
2

is the
number of ways to make any square of size n with entries from [n]. A better upper bound is L(n) ≤ (n!)n,
which comes from the fact that each row must be a permutation (no duplicates within a row).

Theorem 6.3.2: L(n) ≥
n∏
r=1

r!

Proof: Build a Latin square row by row, at each state letting Ai denote the elements that haven’t
occurred yet in column i. Apply Theorem 6.2.4. �

Remark: Let n = 4. Then L(4) ≥ 4!3!2! = 288. However, the actual number is L(4) = 576, and we will
prove this in a homework problem. To see some additional Latin squares of size 4, we have 4! possibilities
for the first row, and without loss of generality (by reordering columns) we can assume that the first row is
1234. Then, the second row must be a derangement, or which there are[

4!

e

]
= 9

possibilities, and this number is bigger than the previous 3!. Since each row must be a derangement, we have
a better upper bound

L(n) ≤ (n!)

(
n!

e

)n−1
=

(n!)n

en−1
.
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Remark: We can evaluate our lower bound from Theorem 6.3.2 using logarithms:

log(L(n)) ≥
n∑
r=1

log(r!)

≥
n∑
r=1

[r log(r)− r]. (using the integral trick)

≥ 1

2
n2 log(n) +O(n2)

So, log(Ln) ≈ 1

2
n2 log(n).

Using the same trick with the (awful) upper bound L(n) ≤ nn2

, we see that

log(L(n)) ≤ n2 log(n).

The question is: which approximation is closer, the version with the
1

2
or the version with the 1?

1.4.4 Quasigroups and Groups

Definition: Let M be an n× n matrix. Define the determinant by

det(M) =
∑
π∈Sn

(−1)sign(π)
n∏
i=1

Mi,iπ.

(Recall that iπ = π(i) using the notation of the book.)

Definition: Let M be an n× n matrix. Define the permanent by

per(M) =
∑
π∈Sn

n∏
i=1

Mi,iπ.

Examples:

per

 0 1 0
1 0 0
0 0 1

 = 1.

per

 1 0 ∗
∗ 1 0
0 0 1

 = 1.

per

 1 1 0
0 1 1
0 1 1

 = 1 · per

(
1 1
1 1

)
+ 1 · per

(
0 1
0 1

)
= 1 · per(1) + 1 · per(1) = 2.

Definition: A doubly stochastic matrix has nonnegative entries for which every row and column sums to 1.

Example:

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 is a doubly stochastic matrix. Also,

per

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 = 3!

(
1

3

)3

=
2

9
.



1.4. CHAPTER 6 - LATIN SQUARES AND SDRS 23

Example:

per

 1/2 1/2 0
1/4 0 3/4
1/4 1/2 1/4

 =
1

2
per

(
0 3/4

1/2 1/4

)
+

1

2
per

(
1/4 3/4
1/4 1/4

)

=
1

2

(
0 +

3

8

)
+

1

2

(
1

16
+

3

16

)
=

3

16
+

2

16

=
5

16
.

Remark: It seems that looking at permanents of doubly stochastic 3× 3 matrices, the smallest we can get

is
2

9
. This is described by the following.

van der Waerden Conjecture: Let M be a doubly stochastic n× n matrix. Then,

per(M) ≥ n!

nn

with equality if and only if every entry of M equals
1

n
.

Remark: This is a tricky proof. It was finally proved in 1979 after being open for over 80 years.

Remark: Suppose A1, . . . , An are subsets of [n]. Define the matrix M by

Mi,j =

{
1, if i ∈ Aj
0, otherwise

.

For example, define A1 := {1, 2}, A2 := {1, 3}, A3 := {2, 3}. Then,

M =

 1 1 0
1 0 1
0 1 1

 .

Observe that

per(M) = 2,

which corresponds to the fact that the family {A1, A2, A3} has two SDRs.

Proposition 6.5.1: With A1, . . . , An and M defined as above, we have that

per(M) = [# of SDRs of the family A1, . . . , An].

Proof: Every nonzero term in per(M) corresponds to a permutation such that Mi,iπ = 1 for all 1, so
that i ∈ Aiπ for all i. Conversely, SDRs correspond to permutations. �
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Proposition 6.5.2: Let A1 . . . , Ar be a family of subsets of [n], with r a positive integer. If

(a) |Ai| = r,

(b) every element lies in r sets,

then the number of SDRs is ≥ n!
( r
n

)n
.

Proof: Form the matrix M as before. Then,
1

r
M is doubly stochastic, and

per

(
1

r
M

)
≥ n!

nn
.

Also,

per

(
1

r
M

)
=

1

rn
per(M)

and so

per(M) ≥ n!
( r
n

)n
. �

Remark:

L(n) ≥
n∏
r=1

n!
( r
n

)n
=

(
n!

nn

)n n∏
r=1

rn

=
(n!)2n

nn2

≥

(n
e

)2n2

nn2 .

So,

log(L(n)) ≥ 2n2 log(n)− 2n2 − n2 log(n)

= n2 log(n)− 2n2.

Hence, our earlier question is answered and we can now see that the number of Latin squares is much closer

to n2 log(n) than to
1

2
n2 log(n).

1.4.5 Orthogonal Latin Squares

Euler’s 36 Officers Problem (1783): There are 36 officers which make up 6 regiments and 6 ranks. For
every regiment, there is an officer of every rank. Can we put them in a 6× 6 array so that in every row and
every column, we see every rank? We are looking for two Latin squares of order 6 so that when we put them
together, every pair of entries occurs. This is called an orthogonal Latin square. These are also sometimes
called Graeco-Latin squares.

Euler conjectured that the answer was no. This was proved by Tarry in 1901.
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Proposition 6.6.1: If n > 2 is a prime power, then there is a pair of orthogonal Latin squares of order n.

Proof: Because n is a prime power, there is a finite field Fn with n elements. For nonzero m ∈ Fn,
define

(Am)i,j = im+ j

where computation is being done over the field. For example, if n = 5 and m = 3, then,

A3 =


4 0 1 2 3
2 3 4 0 1
0 1 2 3 4
3 4 0 1 2
1 2 3 4 0

 .

First we show that in a row, no element appears twice. Assume that,

im+ j1 = im+ j2

(in the field). Then, j1 = j2. So, no element appears twice in a row. Now assume that

i1m+ j = i2m+ j

(in the field). Then, i1 = i2. So, no element appears twice in a column. So, each Am is a Latin square.

Lastly, we need to check that each pair Am1 and Am2 for m1 6= m2 is orthogonal. So, we need to show
that every pair (a, b) occurs. We need to show that the system{

im1 + j = a
im2 + j = b

}
has a solution. But since we’re in a field, a system with two equations and two unknowns (with
m1 6= m2) has a unique solution. �

1.4.6 Direct Products

Example:

(
1 2
2 1

)
×

 1 2 3
2 3 1
3 1 2

 =


1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 3 4
6 5 2 1 4 3

 .

The entry in position (i, j) of block (a, b) is equal to (T(a,b) − 1)m + Si,j where S is the first component of
the product (of size m×m) and T is the second component of the product (of size n× n).

Proposition 6.6.2: If S1 and S2 are orthogonal Latin squares of order m and T 1 and T 2 are orthogonal
Latin squares of order n, then S1 × T 1 and S2 × T 2 are orthogonal Latin squares of order mn.

Proof: We want to show that (x, y) occurs. Let qx, qy, rx, ry be so that

x = qxm+ rx

y = qym+ ry

for rx, ry < m. Use the division algorithm on each equation individually to find these.
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Because T 1 and T 2 are orthogonal, there are indices a, b such that

T 1
a,b = qx,

and
T 2
a,b = qy.

Similarly, there exist i, j such that
S1
i,j = rx,

and
S2
i,j = ry. �

Remark: Write n as 2p13p25p3 · · · . With the above methods, as long as p1 6= 1, we can create a pair of
orthogonal Latin squares of order n, i.e., we can create a pair of orthogonal Latin squares of order n as long
as n 6≡ 2 (mod 4).

Remark: Euler knew all of this, and he conjectured that there was no pair of orthogonal Latin squares in
the case n 6≡ 2 (mod 4). However, in 1959, Parker (with the help of his UNIVAC computer) found a pair for
n = 10 (in less than an hour!). He later proved the theorem below.

Theorem: Orthogonal Latin squares exist unless n = 2, 6.
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1.5 Chapter 7 - Extremal Set Theory

Remark: In this chapter, we will look at families of subsets of [n] with some condition and ask how large
they can be.

1.5.1 Intersecting Family of Sets

Definition: The family F is intersecting if A ∩B 6= ∅ for all A,B ∈ F .

Proposition 7.1.1: The largest intersecting family of subsets of [n] has 2n−1 subsets.

Proof: We can attain 2n−1 by fixing an element in all sets. We can’t have more than 2n−1 because
we can only pick one element from each pair (A,AC). �

Example 1: Fix some i ∈ [n] and let

F := {A ⊆ [n] | i ∈ A}.

Example 2: If n is odd, set n = 2m+ 1 and observe that

2n−1 =

(
2m+ 1

m+ 1

)
+

(
2m+ 1

m+ 2

)
+ · · ·+

(
2m+ 1

2m+ 1

)
.

Set

F :=
{
A ⊆ [n]

∣∣∣ |A| ≥ ⌈n
2

⌉}
.

This is equivalent to picking the sets from the right half of a row of Pascal’s Triangle. Now, for A,B ∈ F ,
we have

|A ∩B| = |A|+ |B| − |A ∪B| > n

2
+
n

2
− n = 0.

Example 3: If n is even, take all subsets of cardinality >
n

2
and one set from each pair (A,AC) with |A| = n

2
.

Example 4: Consider the subset of [7]:

S := {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}.

Define

F := {A ⊆ [7] | A ⊇ [some set in S]}.

Then |F| = 27−1 = 26 = 64, and this is an intersecting family of sets. This is derived from a Steiner triple
system, which we’ll study further in the future.

Definition: The family F is t-intersecting if |A ∩B| ≥ t for all A,B ∈ F .

Theorem 7.1.2: (Erdős-Ko-Rado) Given k and t, there are n1 and n2 with n1 ≤ n2 such that

(1) If n ≥ n1, then the largest t-intersecting family in

(
[n]

k

)
has

(
n− t
k − t

)
sets.

(2) If n ≥ n2, the only way to achieve this is by fixing a t element subset.
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1.5.2 Sperner Families (Antichains)

Definition: F is Sperner if A 6⊆ B and B 6⊆ A for all A,B ∈ F .

Sperner’s Theorem: [[ Could be on Quals! ]] We have |F| ≤
(

n

bn/2c

)
for all Sperner families F ⊆ 2[n].

Moreover, equality holds only if

F =

(
[n]

bn/2c

)
or F =

(
[n]

dn/2e

)
.

Remark: The original proof was much more complicated. The one presented here is called the LYM
proof (after Lubell Yamamoto Meshalkin) and is very well known.

Proof (LYM): A saturated chain (called just a “chain” for the remainder of the proof) in 2[n] is a
chain

∅ = A0 $ A1 $ A2 $ · · · $ An = [n].

There is a bijection between these and permutations:

Ai = {π(1), · · · , π(i)}, π(i) = Ai rAi−1.

Note that F contains at most one element of every chain. Suppose |A| = k. Then A is contained in
k!(n− k)! chains. So, as a proportion, A is contained in

k!(n− k)!

n!
=

1(
n

k

)
of all chains. The number of chains which contain an element of F is∑

A∈F
|A|!(n− |A|)! = n!

∑
A∈F

1(
n

|A|

)
≤ n! = (the total number of chains).

So, ∑
A∈F

1(
n

|A|

) ≤ 1.

The summand is smallest when |A| = bn/2c or |A| = dn/2e. Hence,

1 ≥
∑
A∈F

1(
n

|A|

) ≥ ∑
A∈F

1(
n

bn/2c

) =
|F|(
n

bn/2c

) .
Hence

|F| ≤
(

n

bn/2c

)
and the same is true for dn/2e. This proves the first part of the theorem.

When n is even, to achieve equality, we must have F =

(
[n]

n/2

)
.

When n is odd, we may worry about having |A| = bn/2c and |B| = dn/2e. Suppose to the contrary
that this situation happens for A,B ∈ F . Then, we can remove elements of A and add elements of B
one at a time:

A = A0 $ B0 % A1 $ B1 % · · · % Ak $ B.

This is a contradiction because if A = A0 is in the Sperner family, then B0 cannot be. Hence, A1 is in
the Sperner family, and so B1 cannot be. Repeating this process, B is not in the Sperner family. �
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1.5.3 The de Bruijn-Erdős Theorem

Theorem: Let F be a family of subsets of [n] such that every two sets in F intersect in exactly one element.
Then |F| ≤ n. Moreover, equality holds if and only if (up to relabeling) F = {A1, . . . , An} and :

(a) Ai = {i, n}, or

(b) Ai = {i, n} for i ≤ n− 1 and An = [n− 1], or

(c) n = q2 + q + 1, |Ai| = q + 1, and every element lies in q + 1 sets.

Proof: We start with some notation:

• F := {A1, . . . , Ab}

• ri := [# of sets containing i] (the “replication number”)

We make the following assumptions:

• b ≥ n (otherwise there is nothing to prove),

• [n] 6∈ F (otherwise its impossible for the other sets to intersect each other if n > 2),

• no element lies in every set (otherwise we’re in case (a) above and we’re done).

We start by double counting three things:

(1) Pairs (Aj , i) with i ∈ Aj . We can count these pairs by

b∑
j=1

|Aj | =
n∑
i=1

ri =: N.

(2) Triples (Aj , Ak, i) such that i ∈ Aj ∩Ak and j 6= k. We can count these triples by

b(b− 1) =

n∑
i=1

ri(ri − 1).

This is true because any two sets intersect in a unique element, so we can pick from b sets to pick
Aj and from b − 1 sets to pick Ak. Alternatively, we can count by i, first picking one of the ri
sets that i is in, then picking one of the remaining sets that i is in.

(3) Triples (Aj , i, i
′) with {i, i′} ⊆ Aj and i 6= i′. We can count these triples by

n(n− 1) ≥
b∑
j=1

|Aj |(|Aj | − 1).

The left hand side is the number of ways to pick any two elements where order matters, and the
right hand side is the number of ways to pick any two elements where order matters which are in
the same set, from all b sets.

We’ve assumed b ≥ n, so focus on A1, . . . , An. We now claim that the family {AC1 , . . . , ACn } satisfies
Hall’s Condition, i.e., ∣∣∣∣∣∣

⋃
j∈J

ACj

∣∣∣∣∣∣ ≥ |J |
for all J ⊆ [n]. By DeMorgan’s Law, we’re claiming that∣∣∣∣∣∣∣

⋂
j∈J

Aj

C
∣∣∣∣∣∣∣ ≥ |J |.
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We show this in three cases:

Case 1: (|J | = 1) Since [n] 6∈ F , |ACj | ≥ 1 = |J |.

Case 2: (2 ≤ |J | ≤ n − 1) By assumption the intersection of two or more sets has size at most 1,
and so it’s complement has size at least n− 1, while |J | is at most n− 1.

Case 3: (|J | = n) By assumption, no element is in all the sets. So, this intersection is empty and its
complement is everything. So in this case we have equality.

Hence Hall’s Condition is satisfied. So, (after relabeling) we have that i ∈ ACi , i.e., i 6∈ Ai, for all
i ∈ [n].

Now we claim that if i 6∈ Aj , then ri ≤ |Aj |. To see this, note that the sets containing i must intersect
Aj in different points (otherwise, they would intersect each other in more than one point). This proves
the claim.

Now, by our double-counting in (3), we have

n(n− 1) ≥
b∑
j=1

|Aj |(|Aj | − 1)

=

 b∑
j=1

|Aj |2
−N (double counting in (1))

≥

 n∑
j=1

r2j

−N (claim above)

=

n∑
i=1

ri(ri − 1) (double counting in (1))

= b(b− 1). (double counting in (2))

So, b ≤ n, which shows the first part of the theorem.

It remains to show the equality cases. To have equality, we need:

• ri = |Ai| for all i, and

• n(n− 1) =
∑
|Aj |(|Aj | − 1), i.e., every two elements lie in some set together, and

• if i 6∈ Aj , then ri = |Aj |.

We handle two cases.

Case 1: (rx 6= ry for some x 6= y) If x, y 6∈ Aj , then rx = |Aj | = ry, which is a contradiction. So,
every set has either x or y in it (or both). Now choose z so that rz 6= rx and by the above, every
set has either x or z (or both). Since we said every two elements lie in a set together, there must
be some set which contains y and z. Then, every other set must contain x. This case ends up
being case (b) in the equality condition.

Case 2: (rx = ry for all x, y) Let q be defined such that rx = q+1, i.e., q := rx−1. Well, |Aj | = q+1
for all j. Now fix some x. Then, q + 1 sets contain x, and each has q other elements. So,

n = 1 + (q + 1)q = q2 + q + 1.

This is case (c) in the equality condition.

The proof is now complete. �
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1.6 Chapter 8 - Steiner Triple Systems & Design Theory

1.6.1 Steiner Systems

Historical Note: In the “Lady’s and Gentleman’s Diary” in 1845, they asked: given integers `,m, n with
` < m < n what is the largest family

B ⊆
(

[n]

m

)

such that every L ∈
(

[n]

`

)
lies in at most one set in B. The readers of the “Lady’s and Gentleman’s

Diary” were not able to solve this. However, a guy named Kirkman (who was a vicar) became interested in
mathematics upon seeing this problem and provided a solution for the ` = 2,m = 3 case.

Proposition 7.1.1: Given the setup in the note above,

|B| ≤

(
n

`

)
(
m

`

) .

Proof: We double-count the pairs (L,B) where L ∈
(

[n]

`

)
and B ∈ B with L ⊆ B. Well, we can

count this by

# pairs = |B|
(
m

`

)
and

# pairs ≤
(
n

`

)
.

Solving this for |B| gives us the result. �

Remark: This is a mostly naive and obvious bound, as is usual when working with families of sets.
We care much more about when equality holds.

Definition: When we have equality, every `-element set lies in precisely one set in B. This is a Steiner system
S(`,m, n).

Definition: When ` = 2 and m = 3 we call it a Steiner triple system and denote STS(n) := S(2, 3, n).

Example: We can draw STS(7) as:

2 31

7

64
5
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Remark: We can ask: for what values of n do STS(n) exist?

n STS(n)
0 Yes
1 Yes
2 No
3 Yes
4 ?
5 ?
6 ?
7 Yes

The n = 0, 1, 2 cases are vacuous. If n = 0, 1 there are no pairs and there are no triples. If n = 2, there is a
pair, but no triple to put it in. We will return to the n = 4, 5, 6 case later.

Proposition: Let B be an STS(n). Then every element lies in
n− 1

2
triples (for n > 0).

Proof: Fix x. Count pairs (y,B) where x, y ∈ B ∈ B. Well,

# pairs = n− 1.

Say that x lies in b triples, then,

# pairs = 2b.

So, b =
n− 1

2
. �

Remark: This tells us that n must be odd (or zero) in order to have a Steiner triple system. This
answers the question for n = 4 and n = 6 in the above table: there do not exists such systems.

Proposition: |B| = n(n− 1)

6
.

Proof: We double-count the pairs (x,B) with x ∈ B ∈ B. Well,

# pairs =
n(n− 1)

2

and

# pairs = |B| · 3.

So,

|B| = n(n− 1)

6
. �

Remark: This rules out the case n = 5 in our table above.

Remark: Consider the cases n ≡ 1, 3, 5 (mod 6).

• If n = 6k + 1, then
n(n− 1)

6
=

(6k + 1)(6k)

6
is an integer.

• If n = 6k + 3, then
n(n− 1)

6
=

(6k + 3)(6k + 2)

6
is an integer.
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• If n = 6k + 5, then

n(n− 1)

6
=

(6k + 5)(6k + 4)

6
=

(6k + 5)(3k + 2)

3
is not an integer.

This proves Theorem 7.1.2: if STS(n) exists, then either n ≡ 1 (mod 6) or n ≡ 3 (mod 6). We next show
that in either case we can build a Steiner triple system.

1.6.2 A Direct Construction

Construction of STS(n) for n ≡ 3 (mod 6):

Set n ≡ 3 (mod 6). So, n = 3m where m is odd. We label the elements with three copies of Zm, so
that

X := {ai, bi, ci | i ∈ Zm}.

We have two types of blocks of B:

(1) Diagonal blocks: aibici

(2) Blocks of the form aiajbk, bibjck, cicjak, where i 6= j and i+ j ≡ 2k (mod m).

Consider the case i + j ≡ 2k (mod m). Given k, i (or k, j), we can solve for the remaining term
(uniquely, modulo m): because m is odd, gcd(2,m) = 1, and so 2 has multiplicative inverse (m+ 1)/2
modulo m, and thus given i, j we can also find k uniquely.

We need to check that every pair lies in a unique block. We have three cases (all calculations performed
modulo m):

Case 1: If we have ai, aj with i 6= j then this uniquely determines the block aiajb(i+j)/2.

Case 2: If we have bi, bj or ci, cj with i 6= j, then again this uniquely determines a block as in the
previous case.

Case 3: Consider ai, bi. These are contained in aibici. If they were contained in another block, it
would have to be aiajbi which would force i + j = 2i and so i = j, which we eliminated in our
definition of blocks of this form.

Case 4: If we have bi, ci or ai, ci, then this is similar to the previous case.

Case 5: If we have ai, bk then this is in the block aib2k−ibk.

Case 6: If we have ai, ck or bi, ck, this is similar to the previous case.

This completes the proof. �

Remark: The construction of a Steiner triple system for n ≡ 1 (mod 6) is recursive, and is complicated.
Before we present it, we look at some less general constructions.

Proposition 8.5.2: Let B1, . . . , Bt ∈
(
Zn
3

)
so that for every nonzero u ∈ Zn, there is a unique i ∈ [t] and

then a unique x, y ∈ Bi so that u = x− y. Set

B := {Bi + z | i ∈ [t], z ∈ Zn}

where
Bi + z := {b+ z | b ∈ Bi}.

Then, (Zn,B) is an STS. These are called Netto systems.
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Proof: Take x, y ∈ Zn with x 6= y. When are x, y ∈ Bi + z? Exactly when x− z, y − z ∈ Bi. Notice
that

(x− z)− (y − z) 6= 0

and so there is a unique i and unique x− z, y − z ∈ Bi such that

x− y = (x− z)− (y − z).

Every x 6= y ∈ Zn this lies in a unique triple Bi + z. �

Example: Consider n = 7 and B1 = {0, 1, 3}. Then, the differences (modulo 7) are

1 = 1− 0 2 = 3− 1 3 = 3− 0 4 = 0− 3 5 = 1− 3 6 = 0− 1

and these are unique. So, the construction gives us the triples:

(0, 1, 3) (1, 2, 4) (2, 3, 5) (3, 4, 6) (4, 5, 0) (5, 6, 1) (6, 0, 2).

Drawing this:

0 54

1

62
3

and we see that this is the same as our previous drawing of STS(7).

Recall: Earlier, we double counted:

# of triples =
n(n− 1)

6
= tn

where t =
n− 1

6
. So, in this case we need n ≡ 1 (mod 6).

Construction:

Take p ≡ 1 (mod 6) to be prime. Then, Zp contains a primitive 6th root of unity. Recall that the
multiplicative group Z∗p of Zp has order p − 1 and is cyclic. Since 6 | p − 1 we have 6 |

∣∣Z∗p∣∣. There

exists x such that Z∗p = {x, x2, x3, . . . , xp−1 = 1}. Define z := x(p−1)/6 and observe that now z is a 6th

root of unity in Zp. So, z6 = 1, and

0 = z6 − 1 = (z3 − 1)(z + 1)(z2 − z + 1).

Since z is a primitive 6th root of unity, we can’t have z3−1 = 0 or z+1 = 0. Therefore, z2−z+1 = 0,
i.e., z2 = z − 1.

Let B1 := {0, 1, z} and consider the following table.

u x− y
1 1− 0
z z − 0
z2 z − 1
z3 z2 − z = 0− 1
z4 0− z
z5 0− z2 = 1− z
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Let t = (p− 1)/6. Let s1, . . . , st be coset representatives for (z) in Z∗p. Each a can be written uniquely
as

a = siz
j .

Each siz
j can be written uniquely as

siz
j = si(x− y) = six− siy

for x, y ∈ {0, 1, z}. Now set
Bi := {0, si, siz}.

For n = 7 we can pick z = 3 and we get B1 = {0, 1, 3}.

For n = 13 we can pick z = 4 which generated 〈4〉 = {4, 3, 12, 9, 10, 1}. Pick coset representatives 1
and 2. Then,

B1 = {0, 1, 4}

and
B2 = {0, 2, 8}.

Construct STS(13) from the algorithm.

1.6.3 A Recursive Construction

Definition: Suppose (X,B) is a Steiner triple system. If Y ⊆ X such that

(
Y,B ∩

(
Y

3

))
is an STS, then

Y is a subsystem of (X,B).

Proposition 8.3.1: If we have

(1) an STS(v) with an STS(u) subsystem, and

(2) an STS(w),

then we can build an STS(u+w(v−u)). If w > 0, this Steiner triple system contains an STS(v) subsystem.
If v > u > 0 and w > 0, then this Steiner triple system contains an STS(7) subsystem.

Proof: The picture below demonstrates the general idea of the construction:

STS(u)

STS(v)

STS(v)

STS(v)

w copies

Let the STS(v) be labeled as {a1, . . . , au}︸ ︷︷ ︸
STS(u)

∪{bi | i ∈ Zm} where m := v − u. Let the STS(w) be

labeled as {c1, . . . , cw}. Set X := {a1, . . . , au} ∪ {dp,i | p ∈ [w], i ∈ Zm}.



36 CHAPTER 1. COURSE NOTES

The blocks are:

(1) the blocks for each copy of STS(v),

(2) the blocks of the form {dp1,i1 , dp2,i2 , dp3,i3}, where

(i) cp1 , cp2 , cp3 is a triple in the STS(w)

(ii) i1 + i2 + i3 ≡ 0 (mod m)

Is each pair in a unique block? What about (dp1,i1 , dp2,i2) where p1 6= p2? The STS(w) contains
a unique triple {cp1 , cp2 , cp3}. Then, there is a unique i3 such that i1 + i2 + i3 = 0 in Zm. So,
{dp1,i1 , dp2,i2 , dp3,i3} is this unique triple.

Now suppose v > u > 0 and w > 0. Then, m = v−u is even (the only Steiner triple system of even size
is the trivial one of size 0). Choose any point a in the STS(u). Number the points of STS(v)rSTS(u)
so that ab0bm/2 is a triple of STS(v). Suppose c1c2c3 is a triple of STS(w). Then we can construct
triples ad1,m/2d1,0, ad2,m/2d2,0, and ad3,m/2d3,0. Then, consider the subsystem:

d2,0

d1,0

d3,0

a

d1,m/2

d3,m/2

d2,m/2

The proof is complete. �

Theorem: Let A := {n | STS(n) exists} and let B := {n | STS(n) exists with an STS(7) subsystem}.
Then, A contains all integers congruent to 1 or 3 modulo 6, and B = Ar {0, 1, 3, 9, 13}.

Proof: We apply the above proposition with the following values:

Hypothesis (u, v, w) Conclusion

n ∈ A (0, n, 3) 3n ∈ A
n ∈ B (0, n, 3) 3n ∈ B
n ∈ A, n > 1 (1, n, 3) 1 + 3(n− 1) = 3n− 2 ∈ B
n ∈ A, n > 3 (3,m, 3) 3n− 6 ∈ B
n ∈ B (7, n, 3) 3n− 14 ∈ B

Consider the residue classes n ≡ 1, 3, 7, 9, 13, 15 (mod 18). In the below table, we don’t worry about
k = 1 because we have already shown the existence of most of the base cases.

Need Get

6k + 1 ∈ A 18k + 1 = 3(6k + 1)− 2 ∈ B
6k + 3 ∈ A 18k + 3 = 3(6k + 3)− 6 ∈ B
6k + 3 ∈ A 18k + 7 = 3(6k + 3)− 2 ∈ B
6k + 3 ∈ B 18k + 9 = 3(6k + 3) ∈ B
6k + 9 ∈ B 18k + 13 = 3(6k + 9)− 14 ∈ B
6k + 7 ∈ A 18k + 15 = 3(6k + 7)− 7 ∈ B

We now claim that every n ≡ 1, 3 (mod 6) with n ≥ 15 lies in B, i.e., B = Ar {0, 1, 3, 9, 13}. Assume
toward a contradiction that n is a minimal counterexample.

If n = 18k + 1 then 6k + 1 6∈ A and so 6k + 1 < 15. Thus k <
14

6
, which forces 18k + 1 < 43. So

n = 19 or n = 37. Well, 19 = 1 + 9(3− 1) and 37 = 1 + 3(13− 1) and the proposition applies in both
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cases (we’ve previously built STS(13), which is necessary here).

We don’t need to check 18k + 3 or 18k + 7 because according to the table, those are always in A. It
remains to check 18k + 9, 18k + 13, and 18k + 15, but these follow the same argument. �
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1.7 Chapter 9 - Finite Geometry

1.7.1 Linear Algebra over Finite Fields

Theorem: There is a field of order q if and only if q = pm for some prime p and m ∈ N. This field is unique
and is denoted GF(q).

Definition: The matrix A is in reduced echelon form if:

(1) The first nonzero entry in every row is a 1.

(2) If the ith row is nonzero, so is the (i − 1)st and the leading 1 in the (i − 1)st row lies to the left of the
leading 1 in the ith row.

(3) The leading 1’s are the unique nonzero entries in their columns.

1.7.2 Gaussian Coefficients

Definition: V (n, q) denotes the vector space of dimension n over GF(q).

Proposition 9.2.1: The number of vectors in V (n, q) is qn.

Proof: There are n entries. For each, we have q choices. �

Definition:

[
n

k

]
q

is the number of k-dimensional subspaces of V (n, q).

Definition: [n]q :=
qn − 1

q − 1
.

Remark: lim
q→1

[n]q = lim
q→1

qn − 1

q − 1
= lim
q→1

1 + q + q2 + · · ·+ qn−1 = n.

Definition: [n]q! := [n]q[n− 1]q · · · [1]q. These are called “q-analogues”.

Theorem 9.2.2: [
n

k

]
q

=
[n]q!

[k]q![n− k]q!
=

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

Proof: Choose rows (vectors) in order to build a linearly independent set. For the first vector, there
are qn − 1 choices. For the second vector, there are qn − q choices. Proceeding this way, we see that
the number of linearly independent sets of k vectors in V (n, q) is

(qn − 1)(qn − q)(qn − q2) · · · (qn − qk−1) = (qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)q1+2+···+(k−1).
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However, we wanted to count subspaces, not matrices. So, we have overcounted. Well,

# of subspaces =
# of linearly independent sets of k vectors in V (n, q)

# of linearly independent sets of k vectors in V (k, q)

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)q(

k
2)

(qk − 1)(qk−1 − 1) · · · (q − 1)q(
k
2)

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
. �

Example:

[
4

2

]
q

= # of 2-dimensional subspaces of V (4, q). To see this, we can construct matrices in reduced

echelon form:

Form # of matrices

(
1 0 ∗ ∗
0 1 ∗ ∗

)
q4

(
1 ∗ 0 ∗
0 0 1 ∗

)
q3

(
1 ∗ ∗ 0
0 0 0 1

)
q2

(
0 1 0 ∗
0 0 1 ∗

)
q2

(
0 1 ∗ 0
0 0 0 1

)
q

(
0 0 1 0
0 0 0 1

)
1

So, [
4

2

]
q

= q4 + q3 + 2q2 + q + 1.

Mystery # 1: Why is this always a polynomial?
Mystery # 2: Why is the coefficient sequence always unimodal?

Remark: The first mystery is easy to show, the second mystery is complicated.
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Theorem 9.2.3:

[
n+ 1

k

]
q

= qk
[
n

k

]
q

+

[
n

k − 1

]
q

Proof: The term on the left-hand side counts the k× (n+ 1) matrices over GF(q) in reduced echelon
form. The first term on the right-hand side counts the k × n matrices in reduced echelon form. The
second term on the right-hand size counts the (k − 1)× n matrices in reduced echelon form. We take
k × n matrix in reduced echelon form and add a column (which can have qk different values), or we
take a (k−1)×n matrix, add a row of all zeros, and then a column of all zeros with a 1 at the bottom.
There is only one way to do this. Each way yields a k× (n+ 1) matrix in reduced echelon form. This
is our bijection. �

Proposition 9.2.4:

[
n

k

]
q

=

[
n

n− k

]
q

Proof: Map each subspace V to its orthogonal subspace V ⊥. This is a bijection. Of course
V = {v | v ∈ V } and V ⊥ = {w | w · v = 0 ∀v ∈ V }. Recall dim(V ) + dim(V ⊥) = n. �

Corollary:

[
n+ 1

k

]
q

=

[
n

k

]
q

+ qn+1−k
[

n

k − 1

]
q

Proof: [
n+ 1

k

]
q

=

[
n+ 1

n+ 1− k

]
q

= qn+1−k
[

n

n− k + 1

]
q

+

[
n

n− k

]
q

= qn+1−k
[

n

k − 1

]
q

+

[
n

k

]
q

.

Lemma:

[
n

k

]
q

=
[n]q
[k]q

[
n− 1

k − 1

]
q

q-Binomial Theorem:

(1 + x)(1 + qx)(1 + q2x) · · · (1 + qn−1x) =
n∑
k=0

q(
k
2)
[
n

k

]
q

xk.

Note: If you take the limit at q → 1, the original Binomial Theorem is recovered.

Proof: Proceed by induction on n. If n = 1, the right-hand side is

q(
0
2)
[
1

0

]
q

x0 + q(
1
2)
[
1

1

]
q

x1 = 1 + x

which equals the left-hand side.

Now suppose the statement is true for n. So, we have that

n−1∏
i=0

(1 + qix) =

n∑
k=0

q(
k
2)
[
n

k

]
q

xk.

Multiply both sides by 1 + qnx to get

n∏
i=0

(1 + qix) =

(
n∑
k=0

q(
k
2)
[
n

k

]
q

xk

)
(1 + qnx).
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Consider the coefficient of xk on the right-hand side of the above equation. It is:

q(
k
2)
[
n

k

]
q

+ qnq(
k−1
2 )
[

n

k − 1

]
q

.

Well, (
k

2

)
=

(
k − 1

1

)
+

(
k − 1

2

)
and so

qnq(
k−1
2 ) = qn+1−kq(

k
2).

Hence this coefficient is

q(
k
2)
[
n

k

]
q

+ q(
k
2)qn+1−k

[
n

k − 1

]
q

= q(
k
2)
[
n+ 1

k

]
q

.

This completes the inductive step. So, the theorem is proved. �

1.7.3 Projective Geometry

Definition: Let F be a field. Then, the projective geometry of dimension n over F , denoted PG(n, F ) is
defined as the n-dimensional projective space of F defined in terms of V := V (n+ 1, F ), which is the vector
space of dimension n + 1 over F . The points of PG(n, F ) are the 1-dimensional subspaces of V , and the
lines of PG(n, F ) are the 2-dimensional subspaces, etc. The textbook uses the notation that a “k-flat” is
(k + 1)-dimensional subspace, i.e. a 0-flat is a line, a 1-flat is a plane, etc.

Properties of Projective Geometries:

(a) Any two distinct points lie on a unique line.

Proof: Let P1 and P2 be two points. These are 1-dimensional subspaces of V . If P1 6= P2, then
dim(spanV (P1, P2)) = 2. �

(b) Any two distinct intersecting lines lie on a unique plane (for n ≥ 3).

Proof: Let L1 and L2 be two distinct intersecting lines. Then, dim(L1 ∩ L2) = 1 and so
dim(L1 ∪ L2) = dim(L1) + dim(L2)− dim(L1 ∩ L2) = 2 + 2− 1 = 3. �

(c) Any two coplanar lines intersect.

Proof: Use the formula from part (b). Since they’re coplanar, dim(L1 ∪ L2) = 3. This forces
dim(L1 ∩ L2) = 1, i.e., the lines intersect. �

(d) Let F = GF(q) for a prime power q. Define PG(n, q) := PG(n,GF(q)). The number of points in
PG(n, q) is [

n+ 1

1

]
q

=
qn+1 − 1

q − 1
= 1 + q + q2 + · · ·+ qn.

The number of lines is [
n+ 1

2

]
q

.

The number of k-flats is [
n+ 1

k

]
q

.
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Remark: (de Bruijn-Erdős) The third option from the de Bruijn-Erdös theorem (which we did not know
the existence of) is PG(2, q) which as claimed has 1 + q + q2 points.

Proposition 9.5.1: In PG(2, q) (also called the projective plane of order q), the following hold:

(1) Every point lies on q + 1 lines.

(2) Two lines meet in a unique point.

(3) There are q2 + q + 1 lines.

Proof: Take a point P . There are q2 + q = q(q + 1) other points. Every line through P contains q
other points, with no overlaps. So, the number of lines through P is q(q + 1)/q = q + 1.

Let L1 and L2 be lines, where P ∈ L1. Then |L2| = q + 1, and each point of L2 lies on a unique line
with p. So, L1 and L2 intersect in a unique point.

Count (p, L) with p ∈ L. Then,

(# of lines) (q + 1) =
(
q2 + q + 1

)
(q + 1)

and so the number of lines is q2 + q + 1 =

[
3

2

]
q

. �

So, for a projective plane (X,L ), where X is the set of points and L is the set of lines, we can send it to its
dual by interchanging points and lines, i.e. the map (X,L )→ (X∗,L ∗) is defined by X∗ := L and

L ∗ := {Bx | x ∈ X}

where

Bx := {L ∈ L | x ∈ L}.

Veblen-Young Theorem: Let L be a family of subsets of X. Suppose:

(1) Every line has ≥ 3 points.

(2) Every pair of points lies on a unique line.

(3) There are at least two disjoint lines.

(4) If a line meets two sides of a triangle not at their intersection, then it meets the third side.

(Note that condition (4) is not true in R2! However, it is true in projective spaces.) Then, L can be identified
with a projective space PG(n, q) for n ≥ 3 and q a prime power.

Bruck-Ryser Theorem: If a projective plane of order n ≡ 1 or 2 (mod 4) exists, then n is the sum of
squares. This shows us that there are no projective planes of order 6, for example.

Remark: Next, we’d like to recognize the families of sets that correspond to PG(2, q) for some q.
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Desargue’s Theorem: Let a1b1c1 and a2b2c2 be two triangles in the projective plane Π. Suppose that the
lines a1a2, b1b2, and c1c2 are concurrent (i.e., all three intersect at a common point).

a2b2

c2

a1b1

c1

Then, if p := b1c1 ∩ b2c2 and q := c1a1 ∩ c2a2 and r = a1b1 ∩ a2b2, we have that p, q, r are collinear.

Pappus’ Theorem: Let a, b, c, d, e, f be points of a projective plane Π. Suppose a, c, e are collinear and
that b, d, f are collinear. Let p := ab ∩ de, q := bc ∩ ef , r := cd ∩ fa. Then, p, q, r are collinear.

a

e

c

d

b

f

p q r

Definition: Define the affine plane AP(2, q) such that

• there are q2 points,

• every two points are on a unique line.

Example: STS(9) = AP(2, 3). We call this the affine plane of order 3.

Remark: Two lines have at most 1 point in common, by the second property above.

Definition: Two lines are said to be parallel if the are either equal or disjoint.

Proposition 9.5.6: In AP(2, q),

(1) Each point lies in q + 1 lines.

(2) There are q(q + 1) lines.

(3) Euclid’s parallel postulate holds: Given a point P and a line L there is a unique L′ with P ∈ L′ and
L′ ‖ L.

(4) Parallelism is an equivalence relation.

Proof of (1):
q2 − 1 other points

q − 1 other points per line, without overlap
= q + 1 lines. �
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Proof of (2): We double-count (p, L) with p ∈ L:

q2(q + 1) = |{Lines}|q

and so |{Lines}| = q(q + 1). �

Proof of (3): Take a point P and a line L. If P ∈ L, we’re done. If P 6∈ L, then of the q + 1 lines
containing P , one of them must be disjoint from L. Set this line to be L′. �

Proof of (4): The reflexive and symmetric properties are obvious. Let L ‖ J and J ‖ K. We want
to show L ‖ K. This is trivially true if any two of L, J,K are equal. So assume now that no two are
equal. Suppose toward a contradiction that P ∈ L ∩K. By the parallel postulate, there is a unique
line through P which is parallel to J . Since both L and K have this property, we must have L = K,
a contradiction. �

Remark: Each parallel class contains q lines: By Euclid’s parallel postulate, each parallel class covers the
point set. No two lines in a parallel class intersect, and they all have q points. So, the size of the parallel

class is
q2

q
= q.

Remark: There are q+ 1 parallel classes. There is one class for every line through some point P . Any point
P lies on q + 1 lines.

Theorem 9.5.7: PG(2, q) exists if and only if AP(2, q) exists.

Proof: Suppose (X,B) is a PG(2, q). Fix L ∈ B. Remove it and its points. Define

X ′ := X r L

and
B′ := {L′ r L | L′ ∈ B, L′ 6= L}.

Each of these new lines has q points. So,

|X ′| = (q2 + q + 1)− (q + 1) = q2

and
|B′| = (q2 + q + 1)− 1 = q(q + 1).

Additionally, we need that two points lie on a unique line. Since we started with a projective plane
any two points do lie on a unique line (any points that lie on the line we removed were also removed).
So, (X ′,B′) is an AP(2, q).

Conversely, suppose (X,B) is an AP(2, q). We need to add in q + 1 elements and 1 line. Let P be the
set of parallel classes. Define

X∗ := X ∪ P

(for now, we are thinking of each parallel class as simply an object). For L ∈ B, define L∗ := L ∪ {C}
where L ∈ C ∈ P. Define

B∗ := {L∗ | L ∈ B} ∪ {P}.

Are two points in a unique line? We handle three cases:

(1) If x, y ∈ X, then they were on a unique line L and so now they’re on a unique line L∗.

(2) If x ∈ X and C ∈ P, then by Euclid’s parallel postulate, there is a unique line through x parallel
to the lines of C, say L. Then, L∗ ⊇ x,C.
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(3) If C1, C2 ∈ P, then they can only be in the line P since the other new lines contain only one
parallel class each.

(This operation is known as “adding a line at infinity”.) So, (X∗,B∗) is a PG(2, q). �

Definition: A set of Latin squares is mutually orthogonal if each pair is orthogonal. We call this a set of
MOLS.

Question: How many n× n MOLS can we have?

Theorem 9.5.8: There exist n− 1 MOLS of order n if and only if AP(2, n) exists.

Proof: Let {A1, . . . , Ar} be a set of MOLS of order n. Build a geometry (X,B) where

X := {(i, j) | i, j ∈ [n]}.

The set B of lines consists of:

(1) Horizontal Lines: {(i, x) | x ∈ [n]}, where i is fixed.

(2) Vertical Lines: {(x, j) | x ∈ [n]}, where j is fixed.

(3) Other nr lines: for each Am and fixed k, Lm,k := {(i, j) | (Am)i,j}.

Now, the number of points is n2. The number of lines is n(r + 2) which is n(n+ 1) if r = n− 1. Is it
true that two points are on at most one line. Take two points (i, j) and (i′, j′).

(1) If i = i′ then these points lie on a vertical line together, but they don’t lie on another line
because they’re not together on a horizontal line (or they’d be the same point) and because
(Am)i,j 6= (Am)i,j′ , otherwise Am would not be a Latin square.

(2) If j = j′ then these points lie on a horizontal line together, but they don’t lie on another
line because they’re not together on a vertical line (or they’d be the same point) and because
(Am)i,j 6= (Am)i′,j , otherwise Am would not be a Latin square.

(3) If i 6= i′ and j 6= j′, then the two points are not together on any vertical or horizontal lines.
Suppose these points were in two lines of type 3, say Lm,k and Lm′,k′ . Then,

(Am)i,j = (Am)i′,j′ = k and (Am′)i,j = (Am′)i′,j′ = k′.

This breaks the orthogonality condition. So, this is impossible.

This shows one direction of the proof, because if r = n− 1, then by a simple counting argument, every
two points would be on exactly one line.

Conversely, suppose AP(2, n) exists. Take two parallel classes:

H = {H1, . . . ,Hn}, and V = {V1, . . . , Vn}.

Label the point set so that
Hi ∩ Vj = {(i, j)}.

There are n− 1 other parallel classes. Take one:

L = {L1, . . . , Ln}.

Make AL by:
(AL)i,j = k if (i, j) ∈ Lk.

Are these Latin squares? If (AL)i,h = (AL)i,j′ , then (i, j), (i, j′) ∈ Lk. But, we know (i, j), (i, j′) ∈ Hi,
so Hi = Lk, which is a contradiction. So, no value appears twice in a row. Similarly, no value appears
twice in a column. Thus, each AL is in fact a Latin square. It remains to check mutual orthogonality.
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Suppose that we have two ordered pairs

((AL)i,j , (A
J )i,j), ((AL)i′,j′ , (A

J )i′,j′)

which are equal. Then,
(i, j), (i′, j′) ∈ La

and
(i, j), (i′, j′) ∈ Jb

which is a contradiction because La and Jb were in two different parallel classes. So, mutual
orthogonality holds. �
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1.8 Chapter 10 - Ramsey Theory

1.8.1 The Pigeonhole Principle

Historical Note: In 1834, Dirichlet used a theorem which came to be called “Dirichletscher Schubfach-
prinzip”. Thankfully, in 1956, Erdős and Rado renamed it the “pigeonhole principle”. He used it to prove
the following theorem.

Proposition 10.1.2: (Dirichlet, 1834) Let α be irrational. There are infinitely many rationals
p

q
such that

∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

Proof: Define {x} to be the fractional part of x. We claim that for every n ∈ N, there is a rational
p

q
such that q ≤ n and

∣∣∣∣α− p

q

∣∣∣∣ < 1

qn
.

This claim proves the proposition because:

(1) If
p

q
satisfies the claim, then

1

qn
≤ 1

q2
, so,

p

q
satisfies the proposition.

(2) There are infinitely many such
p

q
because if we start with n1 :=

p1
q1

, then we can take n2 so that∣∣∣∣α− p1
q1

∣∣∣∣ > 1

n2
and take

p2
q2

so that

∣∣∣∣α− p2
q2

∣∣∣∣ < 1

q2
, then take n3 so that

∣∣∣∣α− p3
q3

∣∣∣∣ < 1

n3
, etc. This

would prove the theorem.

Now we prove the claim. Consider the n + 1 numbers {iα} for i ∈ [n + 1]. Put these {iα} into n

intervals

(
j

n
,
j + 1

n

)
for j = 0, 1, . . . , n − 1. By the pigeonhole principle, there is some interval with

two, say {i1α} and {i2α}. Set q = |i1 − i2|. We want a p such that |qα− p| < 1

n
. This exists because

{i1α− i2α} <
1

n
, so we pick p to be the nearest integer.

Therefore,

∣∣∣∣α− p

q

∣∣∣∣ < 1

nq
and so the claim is proved. �

Example: There is a number of the form 77 · · · 7︸ ︷︷ ︸
n≥1 digits

which is divisible by 2003.

Proof: Take the first 2004 of these. Divide them into groups based on their remainders modulo 2003.
Two have the same remainder, say:

77 · · · 7︸ ︷︷ ︸
i

≡ 77 · · · 7︸ ︷︷ ︸
j

(mod 2003).

Suppose j > i. Then, subtracting them, we get

2003
∣∣ 77 · · · 7︸ ︷︷ ︸

j−i

00 · · · 0︸ ︷︷ ︸
i

.

Dividing this number by 10i, we still get a number divisible by 2003 because 2003 and 10 have no
common factors. �
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1.8.2 Ramsey’s Theorem

Remark: Ramsey Theory is often associated with the quote “complete disorder is impossible”. The idea is
encapsulated in the statement as “Among any 6 people, you can find 3 who either know each other or 3 who
don’t know each other.

Ramsey’s Theorem: There is a number R(k, `) such that if the edges of KR(k,`) (the “complete graph” of
R(k, `) vertices) are colored red and blue, then there is a red Kk or a blue K`.

Proof: Pick a vertex x. Each edge from x to another point is either red or blue. Group the other
vertices by the color of the edge that joins them with x. If the blue set has a blue K`−1 or a red Kk,
then we’re done. If the red set has a red Kk−1 or a blue K`, then we’re also done. So, we see that its
possible to have R(k, `) at least as small as:

R(k, `) ≤ 1 +R(k, `− 1) +R(k − 1, `).

In fact, we can remove the 1, as well. So,

R(k, `) ≤ R(k, `− 1) +R(k − 1, `). �

Remark: The above proof was given in the way you would derive it. Now knowing the result, we
prove it in a more straight-forward way.

Proof: (Base case) R(1, `) = R(k, 1) = 1 because any graph has a K1 of any color. Now set
n := R(k, `− 1) +R(k − 1, `). Color the edges of Kn red and blue. Consider a vertex v which has

R(k, `− 1) +R(k − 1, `)− 1

neighbors. If v has R(k − 1, `) red neighbors, we’re done. Otherwise v has R(k, `− 1) blue neighbors,
in which case we’re also done. �

Computations: Note that

R(k, 2) ≤ R(k, 1) +R(k − 1, 2) = 1 +R(k − 1, 2).

Iterating this,
R(k, 2) ≤ k.

Additionally, we can see that R(k, 2) ≥ k since Kk−1 can be two-colored to avoid a red Kk or a blue K2

(make everything red). So we have equality:

R(k, 2) = k.

Additionally,
R(3, 3) ≤ R(3, 2) +R(2, 3) = 6.

Equality can be shown by construction.

Theorem: R(k, `) ≤
(
k + `− 2

k − 1

)
Proof: True for k = 1 or ` = 1. By induction and the previous theorem,

R(k, `) ≤ R(k, `− 1) +R(k − 1, `)

≤
(
k + `− 3

k − 1

)
+

(
k + `− 3

k − 2

)
=

(
k + `− 2

k − 1

)
. �
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Definition: The diagonal Ramsey numbers are the numbers R(k, k).

Remark: Observe that

R(k, k) ≤
(

2k − 2

k − 1

)
=

(2k − 2)(2k − 3) · · · 1
(k − 1) · · · 1 · (k − 1) · · · 1

≈ 22k−2

= 4k−1.

So,

lim
k→∞

k
√
R(k, k) ≤ 4,

if the limit exists. The limit is conjectured to exist, but this is unknown.

Remark: Can we a find a lower bound? To do this, we would just need to be able to color a Kn. No one
has been able to color with n exponential in k without a red or blue Kk.

Theorem: (Erdős) R(k, k) > n−
(
n

k

)
21−(k

2) for all n.

Proof: Take Kn and flip a coin for each edge. How many monochromatic Kk’s do we get? Suppose
R is a k-subset of the vertices. Define

XR :=

{
1, if R is a monochromatic Kk

0, otherwise
.

Well, we see that

P[XR = 1] = 2 ·
(

1

2

)(k
2)

= 21−(k
2).

The expected value E[XR] is just

E[XR] = 21−(k
2)

since it’s a 0-1 random variable and R is fixed. By linearity of expectation

E[# of monochromatic Kk’s] =
∑

k-subsets

E[XR] =

(
n

k

)
21−(k

2).

So, there exists some coloring which has

(
n

k

)
21−(k

2) monochromatic Kk’s or fewer. In fact, there must

be some with fewer because there are some with more (for example, color everything red).

Delete one vertex from each of the monochromatic Kk’s. We will delete at most

(
n

k

)
21−(k

2)−1 vertices

and be left with no monochromatic Kk’s. Hence,

R(k, k) > n−
(
n

k

)
21−(k

2). �

We need to justify the the strict inequality.
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Remark: Set k = 4 in the above theorem. Then,

R(4, 4) > n−
(
n

4

)
2−5 = n− 1

32

(
n

4

)
.

n

lower bound

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7

Hence, R(4, 4) ≥ 6. Note that this is not really a good bound since R(3, 3) = 6 and we’d expect that
R(4, 4) ≥ R(3, 3).

Remark: How can we find the best n? Well, (using the approximation

(
n

k

)
≈
(n
k

)k
),

Bound = n−
(
n

k

)
21−(k

2)

≈ n−
(n
k

)k
21−(k

2)

Taking the derivative with respect to n:

1−
(n
k

)k−1
21−(k

2).

Solving for where the derivative is zero: (n
k

)k−1
21−(k

2) = 1

and so using the guess n ≈ k2k/2, we have

(2k/2)k−121−(k
2) = 2(k

2)21−(k
2) = 2.

and 2 ≈ 1 so our guess for n was alright. Using more rigorous methods, we get

n ∼ k

e
2k/2.

Thus,

R(k, k) is approximately greater than 2k/2 =
√

2
k
.

We see √
2 ≤ lim

k→∞
k
√
R(k, k) ≤ 4.

Remark: By the previous theorem, R(4, 3) ≤ R(4, 2) +R(3, 3) = 10. In fact we will show that R(4, 3) = 9.
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Theorem: R(4, 3) = 9,

First we show that all two-colorings of K9 result in a red K4 or a blue K3. Pick a vertex v of an
arbitrary K9. If v has 6 red neighbors, then we’re done. (This is because R(3, 3) = 6, so these 6 red
neighbors have either a red K3 (which combined with v makes a red K4) or a blue K3.) If v has 4 blue
neighbors, then we’ve got a blue K3 or a red K4. (This is because if there is a blue edge between any
of the 4 neighbors, we have a blue K3. If there is no blue edge between them, the neighbors form a red
K4.) The only case remaining to check is the case where v has 5 red neighbors and 3 blue neighbors.
Since v was arbitrary, in this case we can consider that all vertices simultaneously have 5 red neighbors
and 3 blue neighbors. We claim that this cannot occur. For the sake of contradiction, assume that
our K9 has this property. We will double count (v, e) where v is a vertex of the red edge e. On one
hand, each red edge has two vertices, so this is equal to 2(# of red edges). On the other hand, there
are 9 vertices and each has 5 red edges, so,

2(# of red edges) = 45,

which is a contradiction. Hence, we’ve shown that every K9 has a red K4 or a blue K3, i.e., R(4, 3) ≥ 9.

To show R(4, 3), we will construct a two-coloring of K8 was has no red K4 and no blue K3. The
vertices will be elements of [8]. The edge between i and j (with i < j) is blue if j− i ∈ {1, 4, 7} and red
otherwise. Assume we have a blue K3. Let i be the smallest vertex in the blue K3. The blue neighbors
of i are i+1, i+4, i+7, but the edges between each of these three are red, so this impossible. Assume
we have a red K4. Let i be the smallest vertex in the red K4. The red neighbors of i are i+ 2, i+ 3,
i+ 5, i+ 6. The edges between (i+ 2, i+ 3), (i+ 2, i+ 6), and (i+ 5, i+ 6) are all blue. The rest are
red. By inspection, there can be no red K4.

So, R(4, 3) = 9. �

Theorem: R(4, 4) ≥ 18. (In fact we have equality, though we will only prove the given inequality.)

We start by two-coloring a K17 graph without a monochromatic K4. For i < j, the edge between i
and j (with i < j) is red if

j − i ∈ {1, 2, 4, 8, 9, 13, 15, 16}

and is blue otherwise. Note that the set of red edge numbers is the set of quadratic residues modulo 17.
Suppose toward a contradiction that this K17 has a red K4 with smallest vertex i. The red neighbors
of i are:

i+ 1, i+ 2, i+ 4, i+ 8, i+ 9, i+ 13, i+ 15, i+ 16.

We will draw the red edges between these and show that there is no triangle, hence no red K4.

i+ 1 i+ 2 i+ 4 i+ 8 i+ 9

i+ 13 i+ 15 i+ 16

We see by inspection that there is no triangle. Do the same thing for the blues. �.
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1.8.3 Applications of Ramsey’s Theorem

Theorem: (Erdős-Szekeres) There exists a function f(k, `) such that every permutation of [f(k, `)] contains
an increasing subsequence of length k or a decreasing subsequence of length `.

Historical Note: This fact was used by Erdös and Szekeres in their work on the problem posed in
the introduction to these notes.

Proof: Define n := f(k, `) := R(k, `). Given π ∈ Sn, color K[n] by the rule that if i < j, we color the
edge red if π(i) < π(j) and blue if π(i) > π(j). By Ramsey’s Theorem (which guarantees the existence
of such an R(k, `)) there exists either a red Kk or a blue K`. If we have a red Kk, then there is a
sequence i1 < i2 < · · · < ik such that π(i1) < π(i2) < · · · < π(ik). Similarly, if there is a blue K`, then
there is a sequence j1 < j2 < · · · < j` such that π(j1) > π(j2) > · · · > π(j`). �

Remark: This gives us the inequality

f(k, `) ≤
(
k + `− 2

k − 1

)
using the theorem regarding Ramsey numbers in the previous section.

Theorem: [[ Could be on Quals! ]] f(k, `) = (k − 1)(`− 1) + 1

Proof: First we show that f(k, `) ≥ (k − 1)(` − 1) + 1 by constructing a permutation of length
(k−1)(`−1) that contains neither an increasing subsequence of length k nor a decreasing subsequence
of length `. We arrange the permutation into k−1 blocks, each which has `−1 consecutive decreasing
entries.

It’s clear that this permutation has neither an increasing subsequence of length k nor a decreasing
subsequence of length `.

Now we show the reverse inequality. Set n := (k − 1)(` − 1) + 1. Let π ∈ Sn. Suppose there is no
increasing subsequence of length k. For a ∈ [k − 1], set

Ia := {i | the largest increasing subsequence ending at π(i) has length a}.

By the Pigeonhole Principle, there exists some a such that |Ia| ≥ `. Let Ia contain the sequence of
indices:

Ia ⊇ {i1 < i2 < · · · < i`}.

By construction, we must have that π(i1) > π(i2) > · · · > π(i`), and so we have found a decreasing
subsequence of length `. �
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1.8.4 Infinite Ramsey’s Theorem

Theorem: If we two-color the edges of an infinite complete graph, then we will get a monochromatic infinite
complete graph of some color.

Proof: The idea of the proof is that we start with a vertex v1 and consider the set of its blue neighbors
and the set of its red neighbors. One of these sets must be infinite, so we pick that set, call it X1, and
ignore the other one. Then, we pick v2 in that set, consider its sets of neighbors within X1 and repeat
the process. Consider the picture:

v1

blue

red

v2

blue

red

v3
blue

red

Formally, define X1 to be the set of all vertices and pick v1 ∈ X1. Define c1 to be a color such that
v1 has infinitely many c1-neighbors in X1. Then, define X2 to be the set of c1-neighbors of v1 in
X1, pick v2 ∈ X2, and define c2 to be a color such that v2 has infinitely many c2-neighbors. Observe
that X1 ⊇ X2 ⊇ · · · and that |Xi| = ∞ for all i. Repeat this process, and look at the ci sequence.
Necessarily, there is an infinite constant sequence

ci1 = ci2 = · · · .

Set Y = {vi1 , vi2 , . . .}. We claim that this is the infinite monochromatic complete graph. To see this,
consider the indices ia < ib. Then,

vib ∈ Xib ⊆ Xia+1
= {ci-neighbors of via}. �

Many logicians are working in the field of “Reverse Mathematics”. They try to prove statements like

[Infinite Ramsey Theorem] =⇒ [Finite Ramsey Theorem].

Of course, since both are true, looking at this statement from a basic logic point-of-view, it is a tautology.
However, the real question is whether we can prove one directly from the other. In fact the statement above
is true:

Proof: Suppose that the Finite Ramsey Theorem is false. Then, R(k, `) does not exist for some k, `.
Say that a “good-coloring” is one which has neither a red Kk nor a blue K`. Set Gn to be the set of
good-colorings of Kn. By assumption, |Gn| ≥ 1 for all n.

Define Gjn to be the set of restrictions of good-colorings of [n+ j] to [n]. Observe that

Gn = G0
n ⊇ G1

n ⊇ G2
n ⊇ · · · .
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Therefore
∞⋂
i=0

Gin 6= ∅

because each Gin is finite and nonempty.

Define Hn :=

∞⋂
i=0

Gin. Now take any coloring in Hn. We can extend it to an infinite good-coloring,

which is a contradiction to the Infinite Ramsey Theorem, which proves the contrapositive.

We can also ask if the converse is true. Does the Finite Ramsey Theorem imply the Infinite Ramsey Theorem?
In Peano Arithmetic, the answer is no. The following related theorem has a strange property.

Paris-Harrington Theorem: There exists a function f(k) such that if we two-color the edges of
K[f(x)], then there exists a monochromatic complete graph X such that |X| ≥ k and |X| ≥ min(X).

This theorem is true, but is not provable in Peano Arithmetic.

Proof: Using Peano Arithmetic and the Paris-Harrington Theorem, we can prove the consistency
of Peano Arithmetic. One of Gödel’s Theorems says that no sufficiently rich set of axioms can prove
its own consistency. This shows that the Paris-Harrington Theorem cannot be provable by Peano
Arithmetic.
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1.9 Chapter 12 - Posets, Lattices, Matroids

1.9.1 Posets and Lattices

Definition: A partial order on X is a relation R on X which is:

(1) reflexive ((x, x) ∈ R),

(2) antisymmetric (if (x, y) ∈ R and (y, x) ∈ R, then x = y),

(3) transitive (if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R).

Definition: The pair (X,R) is called a partially ordered set, or a poset.

Definition: A Hasse diagram is a graph where y covers x if y ≥ x and y 6= x and there is no z 6= x, y with
x ≤ z ≤ y. We connect x, y with a line if y covers x.

Definition: A maximal element in (X,≤) is an element x such that

[x ≤ y] =⇒ [y = x].

[Note: this does not imply that x ≥ y for all y ∈ X.]

Proposition: Every finite poset has a maximal element.

Proof: Take x1 ∈ X. If x1 is not minimal, we can find x2 > x1 (i.e., x2 ≥ x1 and x2 6= x1). Continue
this process until we stop at a maximal element. Because X is finite, the only way we wouldn’t stop
is if we have a chain

x1 < x2 < · · · < xj < · · · < xk < xj

for some j < k. But by transitivity, xj < xk < xj , which is a contradiction to antisymmetry. �

1.9.2 Linear Extensions of a Poset

Definition: Given a poset (X,≤), the relation L is a linear extension if it is a total order on X (i.e., xLy
or yLx for all x, y ∈ X) and L is a partial order, and [x ≤ y] =⇒ xLy.

Proposition: Every finite poset has a linear extension.

Proof: We proceed by induction on |X|. We remove a maximal element, use induction, then put the
maximal element back, appropriately redefining L. �

Definition: A chain is a set {x1 < x2 < · · · < xm}. An antichain is a set {x1, x2, · · · , xm} such that xi 6≤ xj
for all i, j ∈ [m].

Example: In (2[n],⊆), the largest chain has length n + 1 (build up from ∅ to 2[n]). The largest antichain
has (

n

bn/2c

)
=

(
n

dn/2e

)
elements (see Sperner’s Theorem).
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Dilworth’s Theorem: (1950) Let (X,≤) be a finite poset. The minimum number, say r, of disjoint chains
which together cover X is equal to the size, say s of the largest antichain.

Proof: Trivially, r ≥ s. We proceed by induction on |X|. The base case is trivial.

Suppose |X| > 1. Let C be a maximal chain in (X,≤) (a chain which has the most possible elements
of X).

If every chain in (X r C,≤) has size at most s− 1, then we’re done by induction.

So, suppose that {a1, . . . , as} is a maximal antichain in (X r C,≤). We make the following clever
definitions:

X+ := {x ∈ X | x ≥ ai for some i},
X− := {x ∈ X | x ≤ ai for some i}.

We claim that
X− ∩X+ = {a1, . . . , as},

because clearly each ai ∈ X− ∩X+, and if x ∈ X− ∩X+, then

[ai ≤ x ≤ aj ] =⇒ [ai ≤ aj ] =⇒ [ai = x = aj ].

Now we claim that |X−| < |X|. This is obvious, because by the definition of C, the maximal element
of C is not in X−, since it’s not an ai and so if it were in X−, we could extend c by some ai. By
symmetry, we also have |X+| < |X|.

By induction, (X−,≤) can be covered by s chains

C−1 , C
−
2 , · · · , C−s

where ai ∈ C−i . Similarly, (X+,≤) can be covered by s chains

C+
1 , C

+
2 , · · · , C+

s

where ai ∈ C+
i .

Then, (X,≤) can be covered by
(C−1 ∪ C

+
1 ), · · · , (C−s ∪ C+

s )

and these are indeed chains. �

Corollary: Dilworth’s Theorem proves Hall’s Marriage Theorem.

Proof: Let X :=
⋃
j∈[n]

Aj = A([n]). The poset elements are the elements of X together with the

elements {A1, · · · , An}. The ordering on this poset is set inclusion. So, we have the antichains

{A1, A2, · · · , An}

and
{the elements of the sets}

and we see that the Hasse diagram has only two layers. X is an antichain, and there can be no bigger
antichain. If there were, say Y , then set

J = {j | Aj ∈ Y }.

Well, A(J) ∩ Y = ∅, and |Y | ≤ |J | + |X| − |A(J)|. By Hall’s Condition, |Y | ≤ |X|, which confirms
that there can be no bigger antichain than X. By Dilworth’s Theorem, we have a chain cover of
size |X|. No two elements of |X| line in the same chain. So, there is chain for every element of X, and
each Ai is in some chain with an element of X, which is its representative. Thus this yields an SDR.
�
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Definition: A lattice is a poset P in which each pair x, y ∈ P has a unique greatest lower bound (glb) and
least upper bound (lub).

Example: The poset (2[n],⊆) is a lattice, with glb(A,B) = A ∩B and lub(A,B) = A ∪B.

Notation: This motivates the notation,

glb(A,B) =: A ∧B

and
lub(A,B) =: A ∨B.

(∧ is called the “meet” and ∨ is called the “join”.)

Lemma: Every finite lattice has a unique maximal element and a unique minimal element. The maximal
element is the join of all the elements and the minimal element is the meet of all the elements. We call the
maximal and minimal elements 1 and 0, respectively.

Proposition: (X,∧,∨, 0, 1) is a lattice if and only if it satisfies:

(1) associativity: x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z,

(2) commutativity: x ∧ y = y ∧ x and x ∨ y = y ∨ x,

(3) idempotency: x ∧ x = x ∨ x = x,

(4) x ∧ (x ∨ y) = x = x ∨ (x ∧ y),

(5) x ∧ 0 = 0 and x ∨ 1 = 1.

Proof: It’s clear that a lattice satisfies these axioms. We now show the converse. From the axioms,
we need to construct a partial order. To this end, we define ≤ by:

if x ∧ y = x then we say x ≤ y, or

if x ∨ y = x then we say x ≥ y.

We need to show the following.

(a) The definition is consistent.

(b) The definition induces a partial order.

(c) ∧ and ∨ are the glb and lub.

(d) 1 and 0 are the maximal and minimal elements.

To see (a), observe that

x ∧ y = x ⇐⇒ y ∨ (x ∧ y) = y ⇐⇒ x ∨ y = y.

So, the relation ≤ is well-defined.

To prove (b), we start by showing reflexivity. By idempotency, x∧ x = x∨ x = x, and so x ≤ x. Next
we prove antisymmetry. Suppose x ≤ y and y ≤ x. Then, x = x ∧ y = y ∧ x = y. To see transitivity,
suppose x ≤ y and y ≤ z. Then, x ∧ y = x and y ∧ z = y. So,

x ∧ z = (x ∧ y) ∧ z
= x ∧ (y ∧ z)
= x ∧ y
= x.
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Hence x ≤ z. We have now shown that ≤ is a partial order.

To prove (c), we start by showing that ∧ is the glb, i.e., that x ∧ y ≤ x, y. Well,

x ∧ y = x ∧ (y ∧ y)

= (x ∧ y) ∧ y.

Therefore, x ∧ y ≤ y. Repeat with y ∧ x. This shows that x ∧ y is a lower bound. To see that it’s the
greatest lower bound, suppose z ≤ x, y. Then,

z ∧ (x ∧ y) = (z ∧ x) ∧ y
= z ∧ y
= z.

So, indeed, z ≤ x ∧ y. Repeat for ∨ to show lub.

Lastly, property (d) follows from property (5). �

Definition: Let P = (X,≤) be a poset. The set D ⊆ X is a downset if for all y ∈ D and x ≤ y, we have
x ∈ D. These are sometimes called ideals or order ideals.

Remark: To specify a downset, we usually describe the minimal elements which are not in the downset.
This is sometimes called the basis.

Example: Consider the divisor lattice and the downset D = {n | 5 - n}. There are no maximal elements,
but the minimal element not in it is 5, so we can call this the downset with basis {5}.

Tangent: We can create maximal elements in the divisor lattice by associating natural numbers with vectors
of infinite length by

2a13a25a3 · · · ⇐⇒ (a1, a2, a3, · · · ).

With this notation, we can write

D = {v | v ≤ (∞,∞, 0,∞, · · · )}.

This technique is called Fraisse’s Ages.

1.9.3 Distributive Lattices

Definition: A lattice is distributive if:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

and

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
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Example: An example of a non-distributive lattice is:

Example: (2[n],⊆) is distributive because union and intersection distribute. The divisor lattice is
distributive.

Remark: Any sublattice of a distributive lattice is distributive.

Definition: Let P be a poset (not necessarily finite). Define

L(P ) = ({downsets of P} ,⊆)

to be another poset.

Example: Consider the poset P below.

a

c

b

d

The associated poset L(P ) is

∅

a

ab

b

abd

bd

abc

abcd

The join is union and the meet is intersection. We see that L(P ) is a lattice, and in fact L(P ) is distributive.
The key observation is that the nodes ∅, a, b, bd, and abc are the only nodes which are not the join of any
two nodes. This corresponds to the fact that each of these nodes (other than ∅) introduces a new element.
Additionally the relationships between these nodes (which is in the downset of another) correspond to their
relationship in the original poset.
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Fundamental Theorem of Finite Distributive Lattices: Let L be a finite distributive lattice. There is
a poset P such that L ∼= L(P ).

Proof: We want to “find” P inside of L. Consider the principal downsets

Dy := {x | x ≤ y}.

An element a 6= 0 in L is called join irreducible, or JI, if

[a = b ∨ c] ⇐⇒ [a = b or a = c].

Now observe that the JI elements are the principle downsets in L(P ).

Consider the following construction. Define our poset by

P := ({JI elements of L} , [the order inherited from L]) .

We want to show that L ∼= L(P ). We proceed by the following steps.

(1) Every nonzero element of L is a join of JI elements.

Proof: Proceed by induction. This is true for the JI elements. For other elements, express
them as a = b ∨ c with a 6= b and a 6= c, then use induction.

(2) Every nonzero element of L is the join of all JI elements beneath it (in L).

Proof: Take a ∈ L. Set

J := {JI elements x ∈ L | x ≤ a}.

Observe that ∨
J ≤ a.

On the other hand, a is the join of JI elements, and so we have equality.

(3) Define the map s : L→ {downsets of P} = L(P ) by

s : a 7→ {JI elements x | x ≤ a}.

We claim that s is a bijection.

Proof: First we show s is one-to-one. For every a, we showed that

a =
∨
s(a).

So, if a 6= b, we must have that s(a) 6= s(b).

Next we show that s is onto. Let D be a downset of P . Set a :=
∨
D. Note that if y ∈ D

then, y ≤ a. We want to show that s(a) = D. Clearly, D ⊆ s(a). Suppose toward a
contradiction that x ∈ s(a) rD. Label D = {y1, . . . , ym}. Well, x ≤ a = y1 ∨ · · · ∨ ym and
so

x ∧ (y1 ∨ · · · ∨ ym) = x.

Thus,

x = (x ∧ y1) ∨ (x ∧ y2) ∨ · · · ∨ (x ∧ ym).

x is JI, so for some u, we have x = x ∧ yi. This shows that x ≤ yi, and hence x ∈ D, a
contradiction. Therefore, s(a) rD is empty, i.e., s(a) = D. This shows that s is onto.
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(4) We have now shown that s is a bijection. It remains to show that it is an isomorphism.

Proof: We need to show that meet and join are respected under s, i.e., that

s(a ∧ b) = s(a) ∩ s(b),

s(a ∨ b) = s(a) ∪ s(b).

To see the first equality, take x ∈ P with x ≤ a∧ b. Then, x ≤ a, b, and so x ∈ s(a)∩ s(b).
Conversely, suppose x ∈ s(a) ∩ s(b). Then, x ≤ a, b and so x ≤ a ∧ b. So, x ∈ s(a ∧ b).
Hence we have shown the first equality. The second equality follows similarly.

This completes the theorem. �

1.9.4 Dimension Posets

Consider the following posets, which we say are of dimension 1 and dimension 2.

Dimension 1, or (N,≤) Dimension 2, or (N2,≤) or (N,≤)× (N,≤)

Consider the product P ×Q of such posets. P ×Q contains elements of the form (x, y) such that x ∈ P and
y ∈ Q. We say that (x1, y1) ≤ (x2, y2) if x1 ≤P x2 and y1 ≤Q y2.

Definition: Define dim(P ) to be the minimum of all d such that P can be embedded into a product of d
chains. Without loss of generality, we say that P is embedded into Nd.

Question: The question we’d like to ask now is: Does every finite poset have a finite dimension?

Theorem: Every finite P has finite dimension.

Proof: A linear extension ≤L is a total order on P such that if x ≤P y then x ≤L y. Let R1, . . . , R`
be all of the linear extensions of P = (X,≤) (note that there are necessarily only finitely many linear
extensions). We claim that P embeds into

(X,R1)× · · · × (X,R`)

under the map
x 7→ (x, x, · · · , x).
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Well, if x ≤P y, then xRi y for all y, and so

(x, x, . . . , x) ≤ (y, y, . . . , y)

in the product. If x 6≤P y, then is x��Ri y for some i?

If x ‖ y (meaning x 6≤ y and y 6≤ x), then we want

(x, x, . . . , x) ‖ (y, y, . . . , y).

Consider the following theorem.

Theorem 12.2.1: Let P = (X,≤) be a poset with a ‖ b. There is a partial order R extending ≤ (so
as sets of ordered pairs, R ⊇≤) in which aR b. (Note that this proves the theorem.)

Proof: Think of relations as sets of ordered pairs:

[↓ a] := {x | x ≤ a},

[↑ b] := {x | x ≥ b}.

Note that

[↓ a] ∩ [↑ b] = ∅

because if not there would be an x with x ≤ a and x ≥ b which would imply

b ≤ x ≤ a.

Set R =≤ ∪([↓ a]× [↑ b]). We claim that (X,R) is a poset.

Is it reflexive? Well, x ≤ x, so xRx. X

Is it antisymmetric? Suppose xR y and y Rx. If x ≤ y and y ≤ x, then we’re done. If
(x, y), (y, x) ∈ ([↓ a]× [↑ b]), then this contradicts the fact that [↓ a]∩ [↑ b] = ∅. Lastly, suppose
x ≤ y and (y, x) ∈ [↓ a] × [↑ b]. Then, y ≤ a and x ≥ b, and so b ≤ x ≤ y ≤ a, which is a
contradiction. X

Is it transitive? If x ≤ y and y ≤ z, we’re done. If (x, y), (y, z) ∈ [↓ a]×[↑ b], then y ∈ [↓ a]∩[↑ b],
a contradiction. If x ≤ y and (y, z) ∈ [↓ a] × [↑ b], then y ≤ a and so x ≤ y ≤ a and
(x, z) ∈ [↓ a]× [↑ b], hence xR z. Lastly, if (x, y) ∈ [↓ a] ∩ [↑ b] and Y ≤ z, then z ≥ y ≥ b and
so (x, z) ∈ [↓ a]× [↑ b]. �

The above theorem completes this theorem. �

Example: Consider the “standard poset” Sn:

b1 b2 b3

a1 a2 a3

In this poset, ai < bj for all i 6= j.
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Proposition: dim(Sn) = n.

Proof: First we show dim(Sn) ≤ n. Consider the embedding

Sn ⊆ ({0, 1},≤)n

by the map
ai 7→ (0, · · · , 0, 1, 0, · · · , 0)

following
bi 7→ (1, · · · , 1, 0, 1, · · · , 1)

where the ith coordinate is different from the rest.

Now we show dim(Sn) ≥ n. Suppose Sn ⊆ (N,≤)m for m < n. We claim that for each i, there exists
a j such that the jth coordinate of bi is smaller than the jth coordinate of any other bk. To see this,
note that ai lies below all bk for k 6= i. So, if there were no such j, then all coordinated of ai would
lie under the corresponding coordinate of bi, which is a contradiction. So, this requires n coordinates. �

Example: Note that (2[n],≤) ∼= ({0, 1},≤)n and so (2[n],≤) ⊇ Sn. So, dim((2[n],≤)) = n.

Example: Consider the poset of divisors of n = pa11 · · · p
ad
d . The pi’s are distinct and ai ≥ 1 for all i. Then,

(divisors of n, |) ∼=
d∏
i=1

({0, 1, · · · , ai} ≤).

This tells us that the dimension is as most d. But each poset in the product has 0 and 1 so it contains a copy
of Sd. Hence,

dim(divisors of n) = d.

1.9.5 The Möbius Function of a Poset

Recall the Principle of Inclusion-Exclusion. Say that we have 45 students: 14 play (S)occer, 17 play
(B)asketball, 18 play (H)ockey, 4 play S&B, 3 play S&H, 5 play B&H, 1 plays S&B&H. From this, we
can construct the Venn Diagram to see how many students play no sports or we can use the PIE formula.

Define g : 2{S,B,H} → N so that g(X) is defined to be the number of students who play all sports in X (and
maybe more). Define f(X) to be the number of students who play precisely the sports in X. We see that

g(X) =
∑
Y⊇X

f(Y ).

By PIE,

f(∅) =
∑
Y⊇∅

(−1)|Y |g(Y ).

Our goal is to take the given function g and “invert” it. In general, we have f and g defined from a poset to
a ring and the relationship

g(X) =
∑
Y⊇X

f(Y )

and we want to find a formula for f .

Consider the above example again. We will choose a linear extension of 2{S,B,H}:

{∅, S,B,H, SB, SH,BH,SBH}.
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Using linear algebra, we create

45
14
17
18
4
3
5
1


︸ ︷︷ ︸
−→g

=

∅
S
B
H
SB
SH
BH

SBH



1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


︸ ︷︷ ︸

ζ

·



7
8
9
11
3
2
4
1


︸ ︷︷ ︸
−→
f

.

So, we have −→g = ζ
−→
f and we want to solve for

−→
f .

Definition: For any poset P , the incidence algebra of P , denoted I(P ), is the set of matrices M indexed by
elements of P such that

M(x, y) = 0 if and only if x 6≤ y

(Per convention, we use function notation M(x, y).)

We want µζ = Id, and µ will be our Möbius function. To find µ, look at the (x, y) entry of µζ, this equals

∑
z∈P

µ(x, z)ζ(z, y) =
∑
z≤y

µ(x, z) =
∑

x≤z≤y

µ(x, z) =

{
1, x = y
0, otherwise

.

We can compute µ inductively with µ(x, x) = 1 and µ(x, y) = 0 if x 6=≤ y. Otherwise, x < y, and

0 <
∑

x≤z≤y

µ(x, z)

=

 ∑
x≤z<y

µ(x, z)

+ µ(x, y)

So,

µ(x, y) = −
∑

x≤z<y

µ(x, z).

The Principle of Möbius Inversion: Suppose f and g are functions from a poset to a ring, which satisfy

g(X) =
∑
Y⊇X

f(Y )

for all X ∈ P . Then,

f(X) =
∑
Y⊇X

µ(X,Y )g(Y ).

Proof: −→g = ζ
−→
f , and so

−→
f = µ−→g . �
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Example: Compute µ for the poset

First we pick a linear extension:

a

c

b

d

e

So, we construct
a
b
c
d
e


1 0 −1 0 0
0 1 −1 −1 1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1


We used the facts that

µ(a, c) = −
∑
a≤z<c

µ(a, z) = −µ(a, a),

µ(a, e) = − [µ(a, a) + µ(a, c)] = −[1− 1] = 0,

µ(b, e) = − [µ(b, b) + µ(b, c) + µ(b, d)] = −[1− 1− 1] = 1.

Example: Consider the poset of compositions

P∗ := {w1 . . . wm | wi ∈ P}

where
u1 · · ·uj ≤ w1 · · ·wm

if there is some sequence
1 ≤ i1 < i2 < · · · < ij ≤ m

such that
uk ≤ wik

for all k. For example
3 2 ≤ 1 5 1 1 1 1 3 1 1 1.

Remark: Möbius Inversion works in the other direction as well. If

g(x) =
∑
y≤x

f(y)

then
f(x) =

∑
y≤x

µ(x, y)g(y).

Example: Let P = (N,≤), then we can see easily that

µ(x, y) =

 1, y = x
−1, y = x+ 1
0, otherwise



66 CHAPTER 1. COURSE NOTES

For this example, we have that if

g(n) =
∑
i≤n

f(i),

then
f(n) =

∑
i≤n

µ(i, n)g(i)

and so applying the above findings
f(n) = g(n)− g(n− 1).

Example: Let P = (2[n],⊆). Then,

µ(S, T ) =

{
(−1)|TrS|, S ⊆ T

0, otherwise

Proof: It suffices to show the following.

(1) µ(S, S) = 1. This is clear by definition.

(2) µ(S, T ) = 0 if S 6⊆ T . This is clear by definition.

(3)
∑

S⊆Z⊆T

µ(S,Z) = 0 if S $ T .

We now prove (3). Note that

∑
S⊆Z⊆T

µ(S,Z) =

|TrS|∑
i=0

(−1)i
(
|T r S|

i

)
= (1− 1)|TrS| (Binomial Theorem)

= 0.

Example: Let P = (N, |) be the divisor lattice. Then,

µ(x, y) =

{
(−1)t, if y/x is the product of t distinct primes

0, otherwise

Proof: It suffices to show the following.

(1) µ(x, x) = 1. This is clear by definition.

(2) µ(x, y) = 0 if x - y. This is clear by definition.

(3)
∑

x≤z≤y

µ(x, z) = 0 if x | y and x 6= y.

We now prove (3). Note that “≤” is the poset inequality, so what we need to show is:∑
z:x|z|y

µ(x, z) =
∑
z:x|z|y

z
x is squarefree

µ(x, z).

Suppose
y

x
= pa11 p

a2
2 · · · p

at
t

for distinct primes p1, . . . , pt and nonzero a1, . . . , at. So,

∑
z:x|z|y

z
x is squarefree

µ(x, z) =

t∑
i=0

(−1)i
(
t

i

)
= 0.
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Extra Credit Homework Problem: (aka, unsolved problem) Define

M(n) =
∑

1≤i≤n

µ(1, i).

Prove that for every ε > 0, there exists c such that

M(n) < cn1/2+ε.

This is equivalent to the Riemann Hypothesis. The function M(n) is called Merten’s function.

Recall: Let P1 and P2 be posets. Then, P1 × P2 is defined on the elements (x, y) where x ∈ P1 and y ∈ P2.
We say (x1, y1) ≤ (x2, y2) if x1 ≤ x2 in P1 and y1 ≤ y2 in P2.

Definition: We say that the posets P1 and P2 are isomorphic if there exists a bijection φ : P1 → P2 such
that x ≤ y in P1 if and only if φ(x) ≤ φ(y) in P2.

Example: Consider the divisors of 72:

2332

2232
�

2331

-

2132
�

2231
�

-

23

-

32
�

2131
�

-

21
�

-

31
�

-

21
�

-

1
�

-

This is isomorphic to
({0, 1, 2, 3},≤)× ({0, 1, 2},≤),

(each of the first is a top-right to bottom-left chain, and there are three of them).

Example: Consider the boolean lattice on 3 elements and note that it is isomorphic to ({0, 1},≤)3.

Remark: These examples lead us to believe the following theorem.

Theorem: µP1×P2
((x1, x2), (y1, y2)) = µP1

(x1, y1) · µP2
(x2, y2).

Proof: Check the three conditions as we did before. The first two are trivial. �
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1.10 Chapter 13 - More on Partitions and Permutations

1.10.1 Partitions, Diagrams, and Conjugacy Classes

Definition: A partition of n is a list of numbers (called parts) that sum to n. Order does not matter. By
convention, we list the parts in decreasing order.

Notation: For the partition 3 + 2 + 1 + 1 = 7, we write 7 = 312112.

Notation: p(n) denotes the number of partitions of n. The notation λ ` n means λ is a partition of n.

Definition: The Ferrers diagram D(λ) is drawn as an arrangement of boxes where, if λ = n1 + · · ·+ nk (in

decreasing order), then the ith row of D(λ) contains ni cells.

Example: Consider the partition 4 + 2 + 1 + 1 + 1. This has the Ferrers diagram:

We find the conjugate partition (4 + 2 + 1 + 1 + 1)∗ = 5 + 2 + 1 + 1 by flipping the Ferrers diagram:

Theorem:
∑
n≥0

p(n)xn =
∏
i≥1

1

1− xi
.

Proof: Look at the coefficient of xn on the right-hand side.

∏
i≥1

1

1− xi
=

∞∏
i=1

(1 + xi + x2i + · · · ).

A term corresponding to xn on the right-hand side comes from

xa1x2a2x3a3 · · · = xn.

So,
a1 + 2a2 + 3a3 + · · · = n.

Therefore, this term came from
1a12a23a3 · · · ` n. �

Theorem: Let d(n) be the number of partitions of n into distinct parts and let o(n) be the number of
partitions of n into odd parts. Then, d(n) = o(n) for all n.

Proof: The generating function for the number of partitions into distinct parts is

∞∑
n=0

d(n)xn =

∞∏
i=1

(1 + xi)
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and the generating function fo the number of partitions into odd parts is

∞∑
n=0

o(n)xn =

∞∏
i=1

1

1− x2i−1
.

Observe that

∞∑
n=0

o(n)xn =
1

(1− x)(1− x3)(1− x5) · · ·

=
(1− x2)(1− x4) · · ·

(1− x)(1− x2)(1− x3)(1− x4) · · ·

=
(1 + x)(1− x)(1 + x2)(1− x2) · · ·
(1− x)(1− x2)(1− x3)(1− x4) · · ·

= (1 + x)(1 + x2)(1 + x3) · · ·

=

∞∑
n=0

d(n)xn. �

Orders on Partitions:

(1) Containment of Ferrers diagrams. The poset lattice derived from this order is Young’s Lattice.

(2) (lex) Compare two partitions of the same number. For example,

5 + 1 + 1 comes after 3 + 2 + 2

and
4 comes after 2 + 1 + 1.

This is a total order (on each n; we only talk about one n at a time).

Formally, if

λ = n1 + · · · ` n, and

µ = m1 + · · · ` n,

then we say that λ comes after µ if there is some j such that ni = mi for i < j and nj > mj . (Normally,
we don’t use any symbol for this relationship. We just say “λ comes after µ”.)

(3) (natural partial order / Dominance order) Suppose

λ = n1 + · · · ` n, and

µ = m1 + · · · ` n.

We say λ� µ if
n1 + · · ·+ ni ≤ m1 + · · ·+mi

for all i. As in (2), we only consider partitions of fixed n.

Proposition: If λ�µ, then λ precedes µ in lex order. (In other words, lex is a linear extension of dominance.)

Proof: Consider

λ = n1 + · · · ` n, and

µ = m1 + · · · ` n,

such that λ� µ. Choose j to be minimal such that nj 6= mj . Since n1 + · · ·+ nj < m1 + · · ·+mj , we
have nj < mj . �
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1.10.2 Tableaux

Take λ ` n. Draw its Ferrers diagram, and then fill the cells with the numbers in [n] so that

(1) the rows increase left to right,

(2) the columns increase top to bottom.

Example: n = 3. There are three partitions of 3: 3, 2 + 1, 1 + 1 + 1. The tableaux are

1 2 3 , 1 2
3

, 1 3
2

,
1
2
3

.

Example: n = 4. There are five partitions of 4: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. The tableaux are

1 2 3 4 , 1 3 4
2

, 1 2 4
3

, 1 2 3
4

, 1 2
3 4

, 1 3
2 4

,
1 2
3
4

,
1 3
2
4

,
1 4
2
3

,

1
2
3
4

.

Definition: Define fλ to be the number of tableaux of shape λ.

Definition: For a cell c in a tableaux, define the hook of c to be the number of cells to the right of c (in the
same row) and below c (in the same column), including c itself.

Theorem: fλ =
n!∏
c

hc
.

Theorem:
∑
λ`n

(fλ)
2

= n!.

Remark: We could prove this with a bijection from the permutations of n to the pairs (P,Q) of
tableaux of the same shape. This was found by Robinson-Schensted-Knuth, and is called the RSK
Correspondence.

We demonstrate the bijection π ↔ (P,Q).

Algorithm: Subroutine INSERT(entry a, row j):

(-) If a is greater than every entry in row j, append a to the end of the row

(-) Otherwise, choose the smallest b > a in this row, replace b by a, and run INSERT(b, j + 1).

Run RSK:

(-) Start with P,Q empty.

(-) For i from 1 to n do:

(-) Call INSERT(π(i), 1)

(-) This causes a cascade of bumps, eventually creating a new cell in P

(-) Create a new cell in Q in this position and write i in it

Example: If π = 123456 then we end up with

P = 1 2 3 4 5 6 and Q = 1 2 3 4 5 6 .
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Example: If π = 654321 then we end up with

P =

1
2
3
4
5
6

and Q =

1
2
3
4
5
6

.

Example: If π = 4725136 then we end up with

P =
1 3 6
2 5
4 7

and Q =
1 2 7
3 4
5 6

.

Proof:

(1) P and Q are tableaux.

- Q is clearly a tableau because we’re always inserting a new maximum.

- The rows of P increase because that’s how INSERT works.

- The columns of P increase because otherwise we would have y
x

with y > x. Consider the first

time this happens in the evolution of P and Q. Which one was bumped here last? Neither
is possible.

(2) Inverse Map. This is messy, check Bona’s book.

�

Example: Consider

π =

(
1 2 3 4 5 6 7
4 7 2 5 1 3 6

)
= 4725136.

Then,

π−1 =

(
1 2 3 4 5 6 7
5 3 6 1 4 7 2

)
= 5361472.

Applying RSK, we get

P =
1 2 7
3 4
5 6

and Q =
1 3 6
2 5
4 7

.

So, we have the nice property that if π ↔ (P,Q) then π−1 ↔ (Q,P ).
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1.11 Chapter 15 - Enumeration Under Group Action

1.11.1 Definition of a Group

Definition: Originally, groups were defined as “all symmetries of an object”, where an object was a pair
(X,S) where X is a set (called the ground set) and S is a “structure” defined on X. S, for example, could
be a graph on X or a (set) partition of X or a permutation of X, etc.

Given any permutation of X, there is a natural way to apply this permutation to an object.

The permutation π of X is an automorphism of (X,S) if π(S) = S. So,

Aut(X,S) = {π | π(S) = S}.

Historically, this is how groups were defined.

Remark: Every automorphism group satisfies:

(1) contains the identity,

(2) if π(S) = S then S = π−1(S), i.e. it contains inverses,

(3) if π(S) = S and σ(S) = S then π(σ(S)) = S, i.e., it contains compositions.

Definition: A permutation group is a set of permutations satisfying the above conditions.

Question: Is this definition more general? Or are all permutation groups automorphism groups?

Proposition: Every finite permutation group is an automorphism group.

Proof: Let G be a permutation group on the set X := {x1, . . . , xn}. Define

S = {(π(x1), . . . , π(xn)) | π ∈ G}.

So, S is a bunch of n-tuples. We claim that G = Aut(X,S).

Let π ∈ G. Then,

π(S) = {(π(σ(x1)), . . . , π(σ(xn)) | σ ∈ G}
= {(τ(x1), . . . , τ(xn)) | τ ∈ G} (by (2) and (3))

= S.

So, π ∈ Aut(X,S).

Now let π ∈ Aut(X,S). By (1), G contains the identity. So, S contains (x1, . . . , xn). Hence, if
π(S) = S, then

S 3 π((x1, . . . , xn)) = (π(x1), . . . , π(xn)).

Therefore, π ∈ G.

Hence, G = Aut(X,S). �



1.11. CHAPTER 15 - ENUMERATION UNDER GROUP ACTION 73

Definition: In the late 1800s, Dyck defined an abstract group as a set G with a binary operation · which
satisfies:

(a) associativity (g · (h · k) = (g · h) · k),

(b) identity (∃e ∈ G ∀g ∈ G : e · g = g · e = g),

(c) inverses (∀g ∈ G ∃h ∈ G : g · h = h · g = e).

Historical Note: Many people hated this definition. Klein said: “The disadvantage of the abstract method
is that it fails to encourage thought.”

Question: Are abstract groups any more general? No.

Theorem: (Cayley) Every abstract group is a permutation group.

Theorem: (Frucht) Every abstract group is the automorphism group of a graph.

Historical Note: From 1861-1873, Mathieu found the sporadic simple groups M11, M12, M22, M23, M24.
No other sporadic simple groups were found for 90 years. In 1967, we found the Higman-Sims group (HS) of
order 44,352,000. Existence was shown as the automorphism group of a graph with 100 vertices, 1100 edges,
which is 22-regular (every vertex has degree 22).

1.11.2 Pòlya Counting

Example: Consider a coin with two sides, each is painted red or blue. How many coins are there? 3: RB,
BB, RR. We think about Z2 acting on the coin to see that RB and BR are identified as the same coin.

Example: Suppose we color the corners of a square with red and blue and we allow the square to be moved
around. How many different squares are there? The group acting on these is D4, generated by a flip along
the diagonal τ and a 90 degree rotation ρ. If we have the square

12

3 4

then we can consider, for example

ρ ·
12

3 4
=

41

2 3
=

(
1 2 3 4
2 3 4 1

)

and

τ ·
12

3 4
=

14

3 2
=

(
1 2 3 4
1 4 3 2

)
Formally, let X be the set of all colorings of the square. For all x ∈ X and all g ∈ D4, we say that x is
equivalent to gx. We want to count inequivalent elements, i.e., the number of equivalence classes. We want
to count the orbits, where

orb(x) = {gx | g ∈ G}.
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Orbit-Counting Lemma / Burnside’s Lemma: Suppose the group G acts on the set X. Then,

# of orbits = the average number of fixed points =
1

|G|
∑
g∈G
|fix(g)|

where

fix(g) = {x | gx = x}.

Example: Consider the square problem.

g ∈ G = D4 g ·
12

3 4
|fix(g)|

e
12

3 4
16

ρ
41

2 3
2

ρ2
34

1 2
4

ρ3
23

4 1
2

τ
14

3 2
8

τρ
43

2 1
4

τρ2
32

1 4
8

τρ3
21

4 3
4

Summing these, we get 48, which divided by |G| = 8 is 6. So there are six different squares.

Definition: Suppose G acts on the set X. Then, the stabilizer of x is

stab(x) = {g ∈ G | gx = x}.

Orbit-Stabilizer Theorem: The map g stab(x) 7→ gx is a bijection between G/ stab(x) = orb(x). In
particularly,

|G| = | stab(x)|| orb(x)|.

Proof: Is the map well-defined? Suppose that g stab(x) = h stab(x). Then, g = hs for some
s ∈ stab(x). Then,

gx = hsx = hx.

Is the map surjective? Take y ∈ orb(x). Then, y = gx for some g ∈ G. So, y is the image of g stab(x).

Is the map injective? Suppose gx = hx. So, g−1hx = x and thus g−1h ∈ stab(x). Therefore,
g stab(x) = h stab(x). �
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Proof of Orbit-Counting Lemma:

Observe that ∑
g∈G
|fix(g)| = |{(g, x) | gx = x}|

=
∑
x∈X
| stab(x)|.

By the Orbit-Stabilizer Theorem,
|G|

| orb(x)|
= | stab(x)|.

Hence, ∑
g∈G
|fix(g)| = |G|

∑
x∈X

1

| orb(x)|
.

For any orbit, the right-hand sum gets counted once for each element in the orbit, i.e.∑
x∈X

1

| orb(x)|
= # of orbits.

This proves the theorem. �

Definition: The cycle index monomial of a permutation π is

cim(π) = xc11 x
c2
2 · · ·x

ck
k

where ci is the number of cycles of π which have length i.

Definition: The cycle index of a group G is

ci(G) =
1

|G|
∑
g∈G

cim(g).

Remark: The number of equivalence classes of 2-colored squares is

ci(D4)
∣∣
x1=x2=x3=x4=2

.

Example: (Graphs on 4 vertices) Our group is G = S4. If x and y are graphs, then gx = y when they have
the same edges. A slight complication is that the group acts on vertices, but what we really care about is
the action of the edges.

π ∈ S4 # of them action on edges cim

id 1 id x61
2-cycle 6 (2,2)-cycle x21x

2
2

(2,2)-cycle 3 (2,2)-cycle x21x
2
2

3-cycle 8 (3,3)-cycle x23
4-cycle 6 (2,4)-cycle x12x

1
4

Hence

ci(S4) =
1

24

(
x61 + 9x21x

2
2 + 8x23 + 6x2x4

)
.

Substituting xi = 2 for all i, we find that there are 11 equivalence classes of squares.
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Example: We will now count necklaces which are colored red/blue on 6 vertices. How many inequivalent
necklaces are there? Equivalent necklaces are found via rotation only, not flipping. The group acting on
necklaces is Z/6Z (over addition).

group element g · 1

23

4

5 6

action cycle index

0 1

23

4

5 6

1 x61

1 6

12

3

4 5

(1 2 3 4 5 6) x16

2 5

61

2

3 4

(1 3 5)(2 4 6) x23

3 4

56

1

2 3

(1 4)(2 5)(3 6) x32

4 3

45

6

1 2

(1 5 3)(2 6 4) x23

5 2

34

5

6 1

(1 6 5 4 3 2) x16

So,

ci(Z/6Z) =
1

6

(
x61 + 2x16 + 2x23 + x32

)
.

Setting xi = 2, we get 14.

Example: (The action of Z/nZ on necklaces of n beads.) Take m ∈ Z/nZ. Its order is the least x such that
xm = yn, which equals 0 in Z/nZ, for some y. Divide both sides by gcd(m,n) to get

x
m

gcd(m,n)
= y

n

gcd(m,n)
.

We get the solution that the order of m in Z/nZ is
n

gcd(m,n)
.

Take any d | n. How many m satisfy

d =
n

gcd(n,m)
= order(m)?

For each such m,
m = gcd(m,n)y

with
gcd(y, d) = 1.
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The number of elements of order d | n is the number of elements which are coprime to d. Recall Euler’s
totient function

φ(d) = |{y ∈ Z/dZ | gcd(y, d) = 1}| .

Each element of order d consists of n/d cycles of length D. So,

ci(Z/nZ) =
1

n

∑
d|n

φ(d)x
n/d
d .

Example: If we allow flipping, then our group is Dn. Well,

ci(Dn) =
1

2
(ci(Z/nZ) +Rn)

where Rn is the set of reflections (not a group on its own).

If n is odd, then each reflection is a (2, 2, . . . , 2, 1)–cycle. If n is even, then each reflection is either a
(2, 2, . . . , 2, 1, 1)–cycle or a (2, 2, . . . , 2)–cycle. So, if n is odd, then

Rn =
1

n
(nx1x

(n−1)/2
2 ),

and if n is even, then

Rn =
1

n

(n
2
x
n/2
2 +

n

2
x21x

(n/2)−1
2

)
.

Example: Returning to n = 6, now allowing flipping:

ci(D6) =
1

12

(
x61 + x32 + 2x23 + 2x16 + 3x21x

2
2 + 3x32

)
.

Plugging in xi = 2,
ci(D6) = 13.
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