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Chapter 1

Course Notes

1.1 The Real and Complex Number Systems

1.1.1 Introduction

Author’s Note:

The first chapter of Rudin was not covered in this class, as the material is likely familiar from previous
courses. The information in this chapter is required for future material. The notes here have mostly
been compiled by myself from Rudin, and were not presented during class. For proofs of the stated
theorems, the reader should refer to Rudin.

Terminology:

- Let A and B be sets. Consider the function f : A→ B. This implies Dom(f) = A and Rng(f) ⊂ B.

- We define f(E) := {f(a) | a ∈ E}. In this notation, Rng(f) = f(A).

- We use E ⊂ A to mean “E is any subset of A, not necessarily proper”, which is sometimes denoted E ⊆ A.

- We use E $ A to mean “E is a proper subset of A”

Definition:

- If f : A→ B and f(A) = B, then we say that f is “onto” or “surjective”.

- If f : A→ B and [f(x) = f(y)⇒ x = y], then we say f is “one-to-one” or “injective”.

Theorem:

(a) If f : A→ B and g : B → C are injective, then (g ◦ f) : A→ C is injective.

(b) If f : A→ B and g : B → C are surjective, then (g ◦ f) : A→ C is surjective.

Definition: A function that is both injective and surjective is called a bijection.

Definition: Let f : A→ B. For all F ⊂ B, we define f−1(F ) := {a ∈ A | f(a) ∈ F}.

1



2 CHAPTER 1. COURSE NOTES

Definition: Let f : A → B be a bijection of sets. Then, we say that A and B are equivalent, are in one-
to-one correspondence, have the same cardinality, are equipollent, are isomorphic in the category of {sets,
functions}. For this relationship, Rudin uses the notation A ∼ B.

Theorem: The relation “∼” has the following properties:

(a) (Reflexive) For all sets A, we have A ∼ A.

(b) (Symmetric) For all sets A and B, we have [A ∼ B ⇐⇒ B ∼ A].

(c) (Transitive) For all sets A, B, and C, we have [[A ∼ B and B ∼ C] ⇐⇒ [A ∼ C]].

Definition: Let S be any set. A relation ∼ on S which satisfies:

(a) (Reflexive) For all a ∈ S, we have a ∼ a,

(b) (Symmetric) For all a and b, we have [a ∼ b⇐⇒ b ∼ a],

(c) (Transitive) For all a, b, and c, we have [[a ∼ b and b ∼ c] ⇐⇒ [a ∼ c]],

is an equivalence relation.

Definition: Let ∼ be an equivalence relation on a set S. Then, for all x ∈ S, the equivalence class of x in
S with respect to ∼ is:

[x] := {a ∈ S | a ∼ x}.

1.1.2 Ordered Sets

Definition: Let S be a set. An order on S is a relation, denoted by <, with the following two properties:

(i) If x ∈ S and y ∈ S, then one and only one of the statements

x < y, x = y, y < x

is true.

(ii) If x, y, z ∈ S and if x < y and y < z, then y < z.

If x < y or x = y, we use the notation x ≤ y. Note that x ≤ y is the negation of x > y.

Definition: An ordered set is a set S in which an order is defined.

Definition: Let S be an ordered set and let E ⊂ S. If there exists a β ∈ S such that x ≤ β for all x ∈ E,
then we say that E is bounded above and that β is an upper bound of E. Lower bounds are defined the
same way.

Definition: Let S be an ordered set and let E ⊂ S. Let E be bounded above. Suppose there exists α ∈ S
with the following properties:

(i) α is an upper bound of E.

(ii) If γ < α then γ is not an upper bound of E.

Then, we say that α is the least upper bound, or the supremum, of E, and we write

α = sup(E).
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We similarly define the greatest lower bound, or the infimum, of E.

Definition: An ordered set S in which every nonempty bounded above subset has a supremum is said to
have the least upper bound property. We similarly define the greatest lower bound property.

Theorem: A set has the least upper bound property if and only if it has the greatest lower bound property.

1.1.3 Fields

Definition: A field is a set F with two operations, called addition and multiplication, which satisfy the
following axioms:

(A) Axioms for Addition

(A1) If x ∈ F and y ∈ F , then their sum x+ y is in F .

(A2) Addition is commutative: x+ y = y + x for all x, y ∈ F .

(A3) Addition is associative: (x+ y) + z = x+ (y + z) for all x, y, z ∈ F .

(A4) F contains an element 0 such that 0 + x = x for every x ∈ F .

(A5) To every x ∈ F corresponds an element −x ∈ F such that x+ (−x) = 0.

(M) Axioms for Multiplication

(M1) If x ∈ F and y ∈ F , then their product xy is in F .

(M2) Multiplication is commutative: xy = yx for all x, y ∈ F .

(M3) Multiplication is associative: (xy)z = x(yz) for all x, y, z ∈ F .

(M4) F contains an element 1 6= 0 such that 1x = x for every x ∈ F .

(M5) If x ∈ F and x 6= 0 then there exists an element 1/x ∈ F such that x · (1/x) = 1.

(D) The Distributive Law

(D1) For all x, y, z ∈ F , x(y + z) = xy + xz.

Example: The set of rational numbers Q is a field when addition and multiplication are defined as normal.
The normal axioms of Q hold: additive cancellation, multiplicative cancellation, etc. The set of integers Z is
not a field, as (M5) fail

Definition: An ordered field is a field F which is also an ordered set, such that

(i) x+ y < x+ z if x, y, z ∈ F and y < z,

(ii) xy > 0 if x, y ∈ F and x, y > 0.

If x > 0, we call x positive. If x < 0, we call x negative.

1.1.4 The Real Field

Theorem 1.19: There exists an ordered field R which has the least upper bound property. Moreover, R
contains Q as a subfield, i.e., Q ⊂ R and the operations of R when restricted to Q make Q into a field.

Proof: The proof of this theorem is the contraction of the real numbers. One such construction is
via Dedekind Cuts, and can be found in the Appendix to Chapter 1 in Rudin and is not repeated
here. For other contractions, visit the Construction of the Real Numbers page on Wikipedia here:
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http://en.wikipedia.org/wiki/Construction_of_the_real_numbers.

Theorem 1.20:

(a) (Archimedean Property) If x, y ∈ R and x > 0, then there exists a positive integer n such that nx > y.

(b) (Density) If x, y ∈ R and x < y, then there exists p ∈ Q such that x < p < q.

Theorem 1.21: For every real x > 0 and integer n > 0, there exists a unique y ∈ R such that yn = x.

1.1.5 The Extended Real Number System

Definition: We define the extended reals by adding to the field R two symbols +∞ and −∞ with the
proper that −∞ < x <∞ for all x ∈ R. It is clear that +∞ is an upper bound of every subset, and so every
nonempty subset (even unbounded subsets) has an upper bound. The same remarks apply to −∞ as a lower
bound.

Remark: The extended reals do not form a field. However, we make the following conventions:

(i) x+ (+∞) = x− (−∞) = +∞.

(ii) x− (+∞) = x+ (−∞) = −∞.

(iii)
x

+∞
=

x

−∞
= 0.

(iv) If x > 0 then x · (+∞) = +∞ and x · (−∞) = −∞.

(v) If x < 0 then x · (+∞) = −∞ and x · (−∞) = +∞.

Some quantities, such as 0 · (±∞) are not defined.

Definition: When working with quantities in the extended reals, if x 6= ±∞, we say that x is finite.

1.1.6 The Complex Field

Definition: A complex number is an ordered pair (a, b) of real numbers. Here, “ordered pair” means that if
a 6= b then (a, b) 6= (b, a). Let x = (a, b) and let y = (c, d). We say that x = y if and only if a = c and b = d.
We define x+ y := (a+ c, b+ d) and xy := (ac− bd, ad+ bc). We denote the set of all complex numbers by
the symbol C.

Theorem 1.25: With addition and multiplication defined as above, C is a field. The additive identity is
(0, 0) and the multiplicative identity is (1, 0).

Definition: We define the element i ∈ C by i := (0, 1). It is clear that i2 = −1.

Remark: Identifying R as a subset of C, we can denote (a, b) by a+ bi.

Definition: Let a, b ∈ R. We define the conjugate of z := a+ bi to be z := a− bi.

Definition: Let a, b ∈ R and let z := a+ bi. We define Re(z) := a and Im(z) = b.

http://en.wikipedia.org/wiki/Construction_of_the_real_numbers
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Theorem 1.31: The following identities hold for z, w ∈ C:

(a) z + w = z + w.

(b) zw = z · w.

(c) z + z = 2 · Re(z). z − z = 2i Im(z).

(d) zz is real and positive (except when z = 0).

Definition: Let z ∈ C. We define the absolute value of z, denoted |z|, to be the nonnegative square root of

zz, i.e., |z| = (zz)
1/2

.

Theorem 1.33: The following identities hold for z, w ∈ C:

(a) |z| > 0 unless z = 0. Additionally, |0| = 0.

(b) |z| = |z|.

(c) |zw| = |z| · |w|.

(d) |Re(z)| ≤ |z|.

(e) |z + w| ≤ |z|+ |w|.

1.1.7 Euclidean Spaces

[No notes for this section.]
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1.2 Basic Topology

1.2.1 Finite, Countable, and Uncountable Sets

Definition: Let n ∈ N, and let Jn := {1, . . . , n}. Let A be a set. Then,

(a) A is finite if and only if there exists n ∈ N such that A ∼ Jn.

(b) A is infinite if and only if A is not finite.

(c) A is countable if and only if A ∼ N.

(d) A is uncountable if and only if A is infinite and not countable.

(e) A is at most countable if and only if A is finite or countable.

Example: Z is countable. Consider the function f : N→ Z such that

f(n) =


n

2
, if n is even

−n− 1

2
, if n is odd

.

This is a bijection between N and Z, and thus N ∼ Z and so Z is countable.

Definition: Let S be any set. Let {an}n∈N ⊂ S. This is a sequence. We can look at a sequence as a function
f : N→ S defined by f(n) = an.

Note: Any countable set can be represented as a sequence. If S is countable there is a bijection f : N→ S.

Theorem: S is infinite if and only if there exists a set A $ S such that A ∼ S.

Proof:

(⇐=), by contrapositive. Let S be finite. It follows trivially by definition that A is not bijective
with any proper subset.

(=⇒). Let S be infinite. Define a (countable) sequence T := {s1, s2, . . .} of distinct elements of
S. Let Y := S r T . Let A := S r {s1}.

Define f : S → A by

f(s) =

{
sn+1, if s = sn for some n ∈ N
s, otherwise

.

Clearly, Rng(f) = f(S) = A, so f is surjective.

Now we show that f is injective. Let s 6= s̃. We want to show that f(s) 6= f(s̃).

Case 1: (s, s̃ ∈ T ) Let s = si and s̃ = sj . Since the elements of T are distinct, si 6= sj implies
i 6= j. Thus i+ 1 6= j + 1 and so si+1 6= sj+1. Therefore, f(s) 6= f(s̃).

Case 2: (s, s̃ 6∈ T ) Since s 6= s̃, we have that f(s) = s 6= s̃ = f(s̃).

Case 3: (s ∈ T , s̃ 6∈ T ) Now, f(s) ∈ T , and f(s̃) 6∈ T . Thus, f(s) 6= f(s̃).

Therefore f is injective, and so bijective. Thus, A ∼ S. �
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Theorem 2.8: Every infinite subset of a countable set is countable.

Proof: Let A be countable and E ⊂ A be infinite. Let A = {an}n∈N and E = {ain}n∈N, where
{in}n∈N ⊂ N.

Let f : N → E be defined by f(n) = ain . This function is injective since if m 6= n then aim 6= ain .
This function is surjective since aik ←− [ k. So, f is a bijection and thus countable. �

Definition: Let A,Ω be sets. Let Eα ⊂ Ω, for all α ∈ A. We say that A is the index set for the family of
subsets of Ω. We write {Eα}α∈A since A could be finite, countable, or uncountable.

(a)
⋃
α∈A

Eα := {x ∈ Ω | ∃α ∈ A such that x ∈ Eα}.

(b)
⋂
α∈A

Eα := {x ∈ Ω | ∀α ∈ A, necessarily x ∈ Eα}.

Definition: Let Ω be a set and let S ⊂ Ω. We write Ω r S or SC to denote

Ω r S = SC := {ω ∈ Ω | ω 6∈ S}.

Theorem 2.22:(DeMorgan’s Law) Let {Eα}α∈A be an arbitrary collection of subsets of the set X. Then,

(1) X r

( ⋃
α∈A

Eα

)
=
⋂
α∈A

(X r Eα)

(2) X r

( ⋂
α∈A

Eα

)
=
⋃
α∈A

(X r Eα)

Theorem 2.12: Let {En}n∈N be a sequence of countable sets. Let S :=
⋃
n∈N

En. Then, S is countable.

Proof: Let n ∈ N. Since En is countable, we can enumerate it as En = {xnk
}k∈N. Then make an

array

x11 x12 x13 · · ·
x21 x22 x23 · · ·
x31 x32 x33 · · ·

...
...

...
. . .

and enumerate all elements above by starting in the top left and zig-zagging through the list:

x11, x12, x21, x31, x22, x13, . . . .

Thus we have enumerated S. �

Corollary: If A is at most countable and Bα is at most countable ∀α ∈ A, then
⋃
α∈A

Bα is at most countable.

Theorem 2.13: Let A be a countable set and for n ∈ N let

Bn := {(a1, . . . , an) | ai ∈ A, for all i ∈ [1 .. n]} = A×A× · · · ×A︸ ︷︷ ︸
n times

.

Then, Bn is countable.
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Theorem 2.13: Let A be a countable set and for n ∈ N let

Bn := {(a1, . . . , an) | ai ∈ A, for all i ∈ [1 .. n]} = A×A× · · · ×A︸ ︷︷ ︸
n times

.

Then, Bn is countable.

Proof: (by induction) Let n = 1. Then B1 = A and hence B1 is countable.

Assume Bn−1 is countable. We will show that then Bn is countable. Observe that the elements of Bn
can be thought of as

(p, a), p ∈ Bn−1, a ∈ A.

That means that we can think of Bn as

Bn =
⋃

p∈Bn−1

[{(p, a) | a ∈ A}] .

Each term in the union is certainly countable, so Bn is a countable union of countable sets. By a
previous theorem, we have that this implies that Bn is countable. �

Corollary: Q is countable.

Proof: Think of Q as embedded in the set S := {(a, b) | a, b ∈ Z} by m
n 7→ (m,n). The codomain S

is countable by Theorem 2.13, and the map is injective. Thus Q ⊂ S and so Q is countable. �

Theorem 2.14: Let A = {{an}n∈N | an ∈ {0, 1}}. Then, A is uncountable.

Proof: Let E ⊂ A be countable. So, E = {Sn}n∈N, where Sn = {anm
}m∈N. Define t ∈ A by

t = {tn}n∈N where tn ∈ {0, 1}r {anm}. (i.e., tn = 1− ann)

Now, by construction, t 6= Sn, for all n ∈ N. So, t ∈ Ar E. So A is uncountable. �

1.2.2 Metric Spaces

Definition: A metric space (X, d) consists of a set X and a function d : X ×X → R such that

(a) (Positive Definiteness) If p 6= q, then d(p, q) > 0, and d(p, p) = 0.

(b) (Symmetric) For all p, q ∈ X, d(p, q) = d(q, p).

(c) (Triangle Inequality) For all p, q, r ∈ X, d(p, q) ≤ d(p, r) + d(r, q).

Examples:

(1) Let X = Rn. For all −→x ,−→y ∈ R, define

d(−→x ,−→y ) :=

√√√√ n∑
n=1

(xi − yi)2.

First two metric space conditions are obvious, but the triangle inequality is harder to prove.

(2) Consider C([0, 1]) := {f : [0, 1]→ R | f is continuous}. On this set, for f, g ∈ C([0, 1]), define

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)| .
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(3) Let `p(C) :=

{
{zn}n∈N | zn ∈ C,

∞∑
n=1

|zn|p <∞, for all n ∈ N

}
, for p > 1.

Then, for all {zn}n∈N, {wn}n∈N, let d({zn}, {wn}) :=

( ∞∑
n=1

|zn − wn|p
) 1

p

.

(4) Let Lp(R, dx) :=

{
f : R→ C | f is Lebesgue measurable, and

∫ ∞
−∞
|f(x)|pdx <∞

}
Define d(f, g) :=

(∫
|f(x)− g(x)|pdx

) 1
p

. (Using the Lebesgue integral.)

Remark: Given any set, we can define on it many different metrics.

Example: Let (X, d) be any metric space and let c > 0. Then, dc : X × X → R defined by
dc(x, y) = cd(x, y) is a valid metric on X.

Example: Let (X, d) be any metric space. Define d′ : X ×X → R by d′(x, y) :=
d(x, y)

1 + d(x, y)
.

Example: Consider the metric Rn. Let d((x1, . . . , xn), (y1, . . . , yn)) := max
i∈{1,...,n}

|xi − yi|. This is a

metric, though it’s quite different from the cartesian metric.

Example: Consider the metric Rn. Let d((x1, . . . , xn), (y1, . . . , yn)) :=

n∑
i=1

|xi − yi|. This is a metric,

though it’s quite different from the cartesian metric.

Example: Discrete metric on any set X:

d(x, y) :=

{
0, if x = y
1, if x 6= y

.

Definition: Let (X, d) be any metric space. Let x ∈ X and let r > 0. Then we define:

Br(x) = {y ∈ X | d(x, y) < r} ,

and we call this set the (open) ball of radius r centered at x. Rudin sometimes uses the misleading term
“neighborhood” and symbol “Nr(x)”.

Note: Let (X, d) be a metric space with the discrete topology. Let x ∈ X. Consider Br(x) for 0 < r ≤ 1.
Clearly, Br(x) = {x}. Consider Br(x) for r > 1. Clearly, Br(x) = X.

Definition: Let (X, d) be any metric space. Let p ∈ U ⊂ X. We say that p is an interior point of U if there
exists r > 0 such that Br(p) ⊂ U . We say that U ⊂ X is open if every element of U is an interior point of U
(i.e., for all x ∈ U , there exists r > 0 such that Br(x) ⊂ U).

Example: Consider (R, dE), where dE is the normal Euclidean metric. Consider the set [0, 1) ⊂ R. Now,
the interior points are everything except 0.

Definition: Let (X, d) be metric spaces. Let U ⊂ X. The interior of U is U◦ := {x ∈ U |
x is an interior point of U}.
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Example: Let (X, d) be any metric space with the discrete metric. Let U ⊂ X. Then, U◦ = U . (i.e, every
set is open in a discrete metric space.)

Definition: Let (X, d) be any metric space and let E ⊂ X. We say that a point p ∈ X is a limit point of E
if for all r > 0, we have that Br(p) ∩ (E r {p}) 6= ∅.

Definition: Let (X, d) be a metric space. Let E ⊂ X and p ∈ E. If p is not a limit point of E, it is called
an isolated point of E.

Example: Consider (R, d), and let E = [0, 2) ∪ {3}. The points in [0, 2) are limit points of E. The point 3
is not a limit point and thus is an isolated point of E.

Example: Consider (R, d), with d being the discrete metric, and let E = [0, 2)∪{3}. Now, every point of E is
an isolated point of E. Thus, whether a point is or is not a limit point depends highly on the metric being used.

Definition: Let (X, d) be a metric space and let E ⊂ X. The derived set of E, denoted by E′, is the set of
all limit points of E (in X).

Definition: A subset E ⊂ X is said to be closed if E′ ⊂ E, i.e., E is closed if it contains all of its limit points.

Example: In (R, dE), the set [0, 2) is not closed. Additionally, E′ = [0, 2].

Example: In (R, d), with the discrete metric d, every set is both open and closed.

Definition: If E ⊂ X is both open and closed, then E is said to be clopen. It is possible for a set to be
neither open nor closed.

Definition: A subset E ⊂ X is said to be bounded if there exists x ∈ X and r > 0 such that E ⊂ Br(x).

Example: Let (X, d), with the discrete metric d. Let E ⊂ X. Then, E is bounded.

Definition: Let E ⊂ X. E is said to be dense (in X) if X = E′ ∩ E (i.e., every point in X is either a limit
point of E or in E (or both)).

Definition: Let E ⊂ X. The closure of E (in X) is defined to be the set together with its limit points:

E := E ∪ E′.

Theorem 2.19: Every ball is open.

Proof: Let x ∈ X, and r > 0. Consider Br(x). Let q ∈ Br(x) be arbitrary. By the definition of
Br(x), we have that d(x, q) < r. So, there exists h > 0 such that d(x, q) = r− h. Consider Bh(q). Let
p ∈ Bh(q). Then, d(p, x) ≤ d(p, q) + d(q, x) < h+ (r − h) = r, so p ∈ Br(x).

Since p was arbitrary, Bh(q) ⊂ Br(x) and so q ∈ Br(x)◦. Since q was arbitrary, we have that Br(x) is
open. Since x, r were arbitrary, every ball is open. �
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Theorem 2.20: If p is a limit point of E then every ball with center p owns infinitely many points of E.

Proof: Let p be a limit point of E and let r > 0. Consider Br(p). By definition, there exists
q1 ∈ Br(p) ∩ [E r {p}]. Then, let r1 := d(p, q1).

Now consider Br1(p). Again by definition, there exists q2 ∈ Br1(p) ∩ [E r {p}]. Note that of course
q2 ∈ Br(p) and q2 6= q1.

We can continue this process forever to obtain a subset of distinct points:

{qi}ni=1 ⊂ Br(p) ∩ [E r {p}]. �

Theorem 2.23: Let (X, d) be a metric space and E ⊂ X. Then E is open if and only if EC = X r E is
closed.

Proof:

(⇐=). Let EC be closed. Let x ∈ E. So, x 6∈ EC . Then, x is not a limit point of EC , by
the definition of a closed set. So, there exists some r > 0 such that Br(x) ∩ EC = ∅. Thus,
Br(x) ⊂ E. So, for an arbitrary x ∈ E, we have found an open ball around x completely
contained in E. Thus, every point in E is an interior point in E and so E is open. �

(=⇒). Let E be an open set. Let x be a limit point of EC . We need to show that x ∈ EC .
So, for all r > 0, Br(x) ∩ [EC r x] is nonempty. Since we’re showing x ∈ EC , we can assume
Br(x) ∩ EC is nonempty. Therefore, x 6∈ E◦ = E. Thus x ∈ EC . Since x was arbitrary,
(EC)′ ⊂ EC , and so E is closed. �

Corollary: Since E = (EC)C , we have that E is closed if and only if EC is open.

Theorem 2.24: Let (X, d) be a metric space. Then,

(a) For any collection {Gα}α∈A of open subsets of X, the set
⋃
α∈A

Gα is open.

(b) For any collection {Fα}α∈A of closed subsets of X, the set
⋂
α∈A

Fα is closed.

(c) For all n ∈ N and {Gi}ni=1 a finite collection of open subsets, the set

n⋂
i=1

Gi is open.

(d) For all n ∈ N and {Fi}ni=1 a finite collection of closed subsets, the set

n⋃
i=1

Fi is closed.

Proof of (a): Let G :=
⋃
α∈A

Gα. Let x ∈ G. So, there exists α0 ∈ A such that x ∈ Gα0 . Thus, there

exists r > 0 such that Br(x) ⊂ Gα0
⊂ G. Hence G = G◦. �

Proof of (b): Immediate consequence of part(a), Theorem 2.23, and DeMorgan’s Law. �

Proof of (c): Let H :=

n⋂
i=1

Gi. Let x ∈ A. So, x ∈ Gi, for all i = 1, . . . , n. Thus, there exists ri > 0

such that Bri(x) ⊂ Gi, for all i = 1, . . . , n.

Let r = min{ri | i = 1, . . . , n} > 0. (Non-zero since finite set.) Then, Br(x) ⊂ Bri(x) ⊂ Gi, for all
i = 1, . . . , n. Thus, Br(x) ⊂ H. Since x was arbitrary, H = H◦. �
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Proof of (d): Immediate consequence of part(c), Theorem 2.23, and DeMorgan’s Law. �

Warning example (why finiteness is necessary in part (c) and (d) above):

Let (R, dE), with Gn := (− 1
n ,

1
n ), for n ∈ N. Then,

⋂
n∈N

Gn = {0}, which is not open.

Let (R, dE), with Fn := [0, 1− 1
n ], for n ∈ N. Then,

⋃
n∈N

Fn = [0, 1), which is not closed.

Theorem 2.27: Let (X, d) be a metric space and E ⊂ X.

(a) E is closed.

(b) E = E if and only if E is closed.

(c) E ⊂ F for all closed F such that E ⊂ F ⊂ X.

Proof of (a): Let p ∈ X r E. Since E = E ∪ E′, we have that p 6∈ E. So, there exists r > 0 such
that Br(p) ∩ E = ∅. Note also that Br(p) ∩ E′ = ∅.

If there exists q ∈ Br(p)∩E′, then q ∈ Br(p) ⊂ X rE. There exists r0 > 0 such that Br0(q) ⊂ Br(p).
Hence Br0(q) ∩ E = ∅. This is a contradiction, so such a q does not exist.

Therefore, Br(p) ∩ E = ∅, i.e., Br(p) ⊂ X r E. Hence X r E is open, and thus E is closed. �.

Proof of (b):

(=⇒). Let E = E. By part (a), E is closed. �

(⇐=). Let E be closed. Then, E′ ⊂ E. Hence E = E ∪ E′ ⊂ E ⊂ E. �

Proof of (c): Let F be closed in X, i.e., F = F , such that E ⊂ F . So, F ′ ⊂ F . But E′ ⊂ F ′,
since if p ∈ E′ we must have Br(p) ∩ (E r {p}) 6= ∅, for all r > 0. However, E r {p} ⊂ F r {p}. So,
Br(p) ∩ (F r {p}) 6= ∅, for all r > 0. Hence p ∈ F ′. Therefore E′ ⊂ F . Thus E = E ∪ E′ ⊂ F . �

Theorem: Let E 6= ∅ be a subset of (R,+, ·,≤) that is bounded from above. Then, sup(E) ∈ E, where E
is the closure of E in (R, dE). Note that this statement is not necessarily true for other metrics.

Proof: The proof is in Rudin. The statement of the theorem here is a more precise restatement of
the version in Rudin. �

Definition: Let (X, d) be a metric space, and let Y ⊂ X. Then, (Y, d0) is a metric subspace of (X, d) if and
only if d0 = d

∣∣
Y×Y .

Theorem 2.30: Suppose Y ⊂ X, for a metric space (X, d). Then, E ⊂ Y is Y -open if and only if E = Y ∩G
for some G ⊂ X which is X-open.

Proof:

(=⇒). Let E ⊂ Y be Y -open. If E = ∅, then E isX-open, so setG = ∅, then E = Y ∩∅ = ∅. Now
let E 6= ∅. Then, let p ∈ E be arbitrary. So, there exists rp > 0 such that BYrp(p) ⊂ E ⊂ Y ⊂ X.

Consider BXrp(p). Clearly, this ball is X-open. Now G :=
⋃
p∈E

BXrp(p) is also open. Note

that G ∩ Y =

⋃
p∈E

BXrp(p)

 ∩ Y =
⋃
p∈E

(
BXrp(p) ∩ Y

)
=
⋃
BYrp(p). Each BYrp(p) ⊂ E, so
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⋃
p∈E

BYrp(p) ⊂ E. However, for all q ∈ E, we have that q ∈ BYrp(p), so q ∈
⋃
p∈E

BYrp(p).

Thus, E ⊂
⋃
p∈E

BYrp(p). So E =
⋃
p∈E

BYrp(p). Hence Y ∩G = E. �

(⇐=). If G is open in X and E = G ∩ Y , then every p ∈ E has an open ball Br(p) ⊂ G such
that Br(p) ∩ Y ⊂ E, and thus E is Y -open. �

1.2.3 Compact Sets

Definition: Let (X, d) be a metric space and let E ⊂ X. An open cover of E is a collection {Gα}α∈A of

open subsets of X satisfying E ⊂
⋃
α∈A

Gα.

Definition: Let (X, d) be a metric space and let E ⊂ X. Then, E is compact with respect to X if every
open cover of E admits a finite subcover.

Theorem 2.33: Let (Y, d0) be a subspace of the metric space (X, d), and let K ⊂ Y . Then, K is compact
relative to X if and only if K is compact relative to Y .

Proof:

(=⇒). Let K ⊂ Y be compact relative to X. Let {Vα}α∈A be an open cover of K relative to
Y . By Theorem 2.30, for all α ∈ A, there exists some Gα ⊂ X which is X-open such that
Vα = Y ∩Gα. But,

K ⊂
⋃
α∈A

Vα ⊂
⋃
α∈A

Gα,

so {Gα}α∈A is an open cover of K relative to X.

Since K is compact relative to X by assumption, there exists a finite set J ⊂ A such that

K ⊂
⋃
α∈J

Gα. But, K ⊂ Y , so K ⊂
⋃
α∈J

Gα ∩ Y =
⋃
α∈J

(Gα ∩ Y ) =
⋃
α∈J

Vα. Therefore, {Vα}α∈J

is a finite subcover of {Vα}α∈A. Hence K is compact relative to Y . �

(⇐=). Conversely, suppose that K is compact relative to Y . LKet {Gα} be a collection of open
subsets of X which covers K, and set Vα = Y ∩ Gα. Then, for some choice of α1, . . . , αn, we
have that K ⊂ Vα1

∪ · · · ∪ vαn
, and since Vα ⊂ Gα, we have that K ⊂ Gα1

∪ · · · ∪Gαn
. �

Theorem 2.34: Compact subsets of metric spaces are closed.

Proof: Let K be a compact subset of the metric space (X, d). We will show that X rK is open. Let

p ∈ X rK, and for all q ∈ K, define Vq := B 1
2d(p,q)

(p) and Wq := B 1
2d(p,q)

(p). Then, K ⊂
⋃
q∈K

Wq,

so {Wq}q∈K is an open cover of K. By assumption, K is compact, so there exists some n ∈ N and
q1, . . . , qn such that {Wqi}i=ni=1 is a (finite) open cover of K.

Define V :=

n⋂
i=1

Vqi . V is open (finite intersection of open sets). Observe that Vq ∩Wq = ∅, for all q.

Now, V ∩K ⊂ V ∩

(
n⋃
i=1

Wqi

)
=

(
n⋃
i=1

Vqi

)
∩

(
n⋃
i=1

Wqi

)
=

n⋃
i=1

(Vqi ∩Wqi) = ∅.
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So, p ∈ V ⊂ X rK. Since V is an open set, p is an interior point of X rK. Since p was arbitrary,
X rK is open, and hence K is closed. �

Example:

(1) The set [0,∞) is closed in (R, dE), but is not compact. (i.e., converse of Theorem 2.34 is false).

(2) The set (0, 1) is not compact in (R, dE), since (0, 1) is not closed.

Theorem 2.35: Closed subsets of compact sets are compact.

Proof: Let (X, d) be a metric space, and let K ⊂ X be compact. Let F ⊂ K be X-closed. Let
V := {Vα} be an open cover of F relative to X. So, C := {Vα}∪{XrF} is an open cover of K relative
to X. Since K is compact, there exists a finite subcover of C that covers K. Whether or not this finite
subcover contains X r F , we still need a finite set J such that C̃ := {Vj} ∪ {X r J} is a finite open

cover of K. Since F ⊂ K, we have that F ⊂ C̃ r {X r F} =: Ṽ, and so Ṽ is a finite subcover of V.
Thus F is compact. �

Corollary: If F is closed and K is compact, then F ∩K is compact.

Theorem 2.36: If {Kα}α∈A is a collection of compact subsets of a metric space (X, d) such that the
intersection of every finite subcollection of {Kα}α∈A is nonempty (i.e. has the Finite Intersection

Property), then
⋂
α∈A

Kα 6= ∅.

Proof: Let Gα = XrKα, for all α ∈ A. Let K1 ∈ {Kα}α∈A. Assume toward a contradiction that no

point of K1 is in all Kα. Then {Gα}α∈A is an open cover of K1, and K1 ⊂
n⋃
i=1

Gαi
=

n⋃
i=1

(X rKαi
).

So,

∅ = K1 ∩

(
X r

n⋃
i=1

(X rKαi
)

)
= K1 ∩

(
n⋂
i=1

Kαi

)
.

Then, {K1} ∪ {Kαi
}i=ni=1 is a finite subcollection of {Kα}α∈A which has an empty intersection. This is

a contradiction. �

Corollary: If {Kn}n∈N is a sequence of non-empty compact sets in some metric space (X, d) such that

Kn+1 ⊂ Kn for all n ∈ N, then

∞⋂
n=1

6= ∅.

Theorem: Let (X, d) be any metric space. Then, X is compact if and only if each family of closed subsets
of X having the Finite Intersection Property has nonempty intersection.

Proof:

(=⇒). Theorem 2.36 and the theorem that says closed subsets of compact sets are compact. �

(⇐=). [Note: The assumption here “each family of closed subsets . . . nonempty intersections”
is the set-theoretic dual of compactness.]

Let each family of closed subsets of X having the Finite Intersection Property have

nonempty intersection. Let {Gα}α∈A be an open cover of X. So, X ⊂
⋃
α∈A

Gα ⊂ X. Thus

X =
⋃
α∈A

Gα. (F)
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Taking complements and using DeMorgan’s Law:

∅ =
⋂
α∈A

(X rGα) .

If in fact there exists a finite J ⊂ A such that X =
⋃
α∈J

Gα, then we’re done. Otherwise, there

is no such finite subcollection, so X 6=
⋃
α∈J

Gα (†) , for every finite J ⊂ A . Well show that

this case leads to a contradiction.

Taking complements of (†) :

∅ 6=
⋃
α∈J

(X rGα) .

So, {X r Gα}α∈A is a collection of closed subsets of X such that all finite subcollections have

nonempty intersection. Taking complements of (F), ∅ =
⋂
α∈A

(X rGα). Contradiction. �

Theorem 2.37: Let (X, d) be a metric space. Let E ⊂ K ⊂ X, with E an infinite set. If K is compact, E
has a limit point, i.e., infinite subsets of compact sets have at least one limit point.

Proof: (by contrapositive). Assume that E has no limit point in K. Then, for all q ∈ K, there exists
rq > 0 such that

BXrq (p) ∩ E =

{
{q}, q ∈ E
∅, q 6∈ E .

Observe that {BXrq (q)}q∈K is a collection of open sets of X such that K ⊂
⋃
q∈K

BXrq (q). But, each

BXrq (q) contains at most one point of E by above. So, there is no finite subcover that covers E, and
hence no finite subcover that covers K. Thus, K is not compact. �

Theorem 2.38: If {In}n∈N is a sequence of closed, bounded intervals in (R, dE) such that In+1 ⊂ In for all
n ∈ N, then ⋂

n∈N
In 6= ∅.

Proof: Let an, bn be such that In = [an, bn]. Let E := {an}n∈N. Then, E 6= ∅ and E is bounded
above by b1. Let x = supE. We now show that x ∈ ∩(In).

For all n,m ∈ N, we have that an ≤ am+n ≤ bm+n ≤ bn. So, am ≤ x ≤ bm. Thus x ∈ [am, bm], for all
m, hence x is in ∩(Im). �

Definition: Consider Rk as a set. A k-cell is a cartesian product

[a1, b1]× [a2, b2]× · · · × [ak, bk] =

n∏
i=1

[ai, bi]

of k closed and bounded subsets.
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Theorem 2.39: Let k ∈ N . If {In}n∈N is a sequence of k-cells with In+1 ⊂ In ∀n ∈ N, then

∞⋂
n=1

In 6= ∅.

Proof: Let In =

k∏
j=1

[an,j , bn,j ]. Let In,j = [an,j , bn,j ]. For every j ∈ {1, . . . , k}, the sequence {In,j}n∈N

is decreasing, and we apply Theorem 2.38. So, there exists x∗j such that an,j ≤ x∗j ≤ bn,j for all
n ∈ N. Let x∗ = (x∗1, x

∗
2, . . . , x

∗
k). Then, x∗ ∈ ∩(In). �

Theorem 2.40: Every k-cell is compact in (Rk, dE).

Proof: Let I be a k-cell, with I =

k∏
j=1

[aj , bj ]. Define

δ :=

 k∑
j=1

(bj − aj)2


1

2
.

Geometrically and by the triangle inequality, δ is the longest distance between two points of I.

Suppose toward a contradiction that I is not compact. Then, there exists an open cover {Gα}α∈A of
I with no finite subcover. Consider cj = (aj + bj)/2 for all j. Then, the intervals [aj , cj ] and [cj , bj ]
for all j split I into 2k k-cells Qi whose union is I.

At least one of these 2k sets must not be able to be covered by a finite subcollection of {Gα}α∈A, call it
I1. Subdivide I1 and iterate the process. Since I is not compact, we get a sequence I ⊃ I1 ⊃ I2 ⊃ · · ·
whose intersection is non-empty by Theorem 2.39. Let x∗ be a point in the intersection ∩(In). Then,
x∗ ∈ Gβ for some β ∈ A. Let n be big enough so that 2−nδ < r, for some r such that Br(x

∗) ⊂ Gβ .
Thus, In ⊂ Gβ and so In is covered by a finite subcover, which is a contradiction. Thus I is compact. �

Theorem 2.41: Let E ⊂ Rk. Then, the following are equivalent:

(1) E is closed and bounded.

(2) E is compact.

(3) Every infinite subset of E has a limit point in E.

Proof:

(1) =⇒ (2): (Heine-Borel Theorem) If (1) holds, then E is a subset of some k-cell, which is
compact by Theorem 2.40. Since E is a closed subset of a compact set, E is compact by
Theorem 2.35. So, (2) holds. �

(2) =⇒ (3): If (2) holds, then (3) is true by Theorem 2.37. �

(3) =⇒ (1): Let (3) be true. If E is not bounded then E contains points {xn} such that
|xn| > n for all n ∈ N. This set {xn} is infinite, but clearly has no limit point in E, which
contradicts (3). So, E is bounded.

If E is not closed, then there is a limit point x0 of E that is not contained in E. Consider a
necessarily infinite set S of points xn where |xn − x0| < 1

n for all n. S has x0 as a limit point,
and has no other limit points. So S has no limit point in E, which is a contradiction. Hence E
is closed. Thus, (1) holds. �
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Corollary: Any bounded infinite subset of (Rk, dE) has a limit point.

Remark: In a general metric space, E is closed and bounded does not imply that E is compact.

Counterexamples:

(1) (Q, dE). Let A := {q ∈ Q | 2 < q2 < 3}. Then, A is closed and bounded but not compact.

(2) (Rk, d), with d the discrete metric. Infinite sets are closed, bounded, but not compact.

(3) (X, d), with d1 : X ×X → R defined by

d1(x, y) =
d(x, y)

1 + d(x, y)
.

In (X, d1), every set is bounded. The two metrics agree on which sets are open, and hence which
sets are compact. Consider the pair (R, dE), (R, d1) and the subset [0,∞). This subset is closed and
bounded in (R, d1). However, if it were compact in (R, d1) then it would be compact in (R, dE), which
is false.

1.2.4 Perfect Sets

Definition: A subset E ⊂ X is said to be perfect is E′ ⊂ E (i.e., E is closed), and if E ⊂ E′ (i.e., every
point in E is a limit point in E). So E is perfect if E = E′.

Theorem 2.43: Let P be a nonempty perfect set in (Rk, dE). Then P is uncountable.

Proof: Since P ′ = P 6= ∅, we have that P is infinite. Assume P = {xn}n∈N for distinct xi, i.e., P is
countable. Let r > 0 and V1 := Br(x1). So, V1 ∩P 6= ∅. Since P = P ′, there exists a ball V2 such that

(1) V2 ⊂ V1,

(2) x1 6∈ V2,

(3) V2 ∩ P 6= ∅.

Just take V2 = B 1
2d(x1,x2)(x2).

Continue this process: We end up with a sequence {Vn}n∈N with the conditions that for all n ∈ N:

(1) Vn+1 ⊂ Vn,

(2) xn 6∈ Vn+1,

(3) Vn+1 ∩ P 6= ∅.

Define Kn = Vn ∩ P . Well, Vn is closed and bounded, and P is closed, so Kn is closed and bounded.
Thus, Kn is compact for all n ∈ N, since we’re working in a Euclidean space. Additionally, these Kn

are nonempty. Hence {Kn} is a family of compact subsets satisfying the condition that Kn+1 ⊂ Kn

for all n ∈ N.

Therefore,
⋂
n∈N

Kn 6= ∅. But, Kn ⊂ P for all n ∈ N. To be in ∩(Kn) you must be in all Vn, so for all

n ∈ N, xn 6∈ Kn. This is a contradiction. Hence P is uncountable. �
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The Cantor Set: Consider the metric space (R, dE).

Let E0 := [0, 1].
Let E1 := [0, 13 ] ∪ [ 23 , 1].
Let E2 := [0, 19 ] ∪ [ 29 ,

1
3 ] ∪ [ 23 ,

7
9 ] ∪ [ 89 , 1].

Repeat this process to infinity. Since finite unions of compact sets are compact (by a homework problem),
each Ei is compact.So, we have a sequence of nested compact sets. Each En is the union of 2n intervals of
length 3−n.

The cantor set is defined as:
C :=

⋃
n∈N

En 6= ∅.

Note that C is closed, nonempty, and contained in [0, 1], hence it’s compact. Additionally, the total length
of En is

(
2
3

)n
, so the length of C is zero. So, C contains no interval. Additionally, it’s perfect, i.e., C = C′,

hence C is uncountable.

1.2.5 Connected Sets

Definition: Let (X, d) be a metric space. Two sets A,B ⊂ X are said to be separated if:

A ∩B = ∅ = A ∩B.

Definition: Let (X, d) be a metric space. A subset E ⊂ X is said to be connected if E is not the union of
two nonempty separated sets, i.e., E is disconnected if there exist nonempty separated A,B ⊂ E such that
E = A ∪B.

Example: Let X := [−1, 0)∪ (0, 1], let d := dE . Let A := [−1, 0) and B := (0, 1]. Then, A = A and B = B.
Also, A∩B = ∅, so A and B are separated. So X is disconnected. Now consider the same X but as a subset
of (R, dE). Let A,B be the same. Now, A = [−1, 0] and B = [0, 1]. It’s still true that A and B are separated
and that X is disconnected.

Theorem: Let (X, d) be a metric space. Then, the following are equivalent:

(1) X is connected.

(2) X is not the union of two nonempty disjoint open sets.

(3) X is not the union of two nonempty disjoint closed sets.

(4) X is not the union of two nonempty disjoint clopen sets.

(5) The only clopen subsets of X are X and ∅.

Proof: First we show that (2)⇐⇒ (3)⇐⇒ (4). Then we show that (4)⇐⇒ (5) and (2) =⇒ (1) and
(1) =⇒ (4).

Let X = A t B. Then, A = A◦ and B = B◦ if and only if A = A and B = B if and only if A and B
are clopen. So, (2)⇐⇒ (3)⇐⇒ (4).

Now we show (2) =⇒ (1), by contrapositive. Assume X is disconnected. Then, there exists non-empty
A,B ⊂ X such that A ∩B = B ∩A = ∅ and X = A tB. But since B ⊂ X, we have that X = A tB,
and hence A = X r B is open. Clearly though, we can write A ⊂ X, and by the same reasoning,
B = X rA is open. This completes this claim.

Now we show (1) =⇒ (4), by contrapositive. Assume there exists nonempty clopen A,B ⊂ X such
that X = A t B. Then, A ∩ B = A ∩ B = ∅, and A ∩ B = A ∩ B = ∅. So, A and B are separated.
Hence X is disconnected. This completes this claim.

Now we show (4) ⇐⇒ (5), by double contrapositive. There exists a nonempty set A $ X, with A
clopen, if and only if X r A $ X is nonempty and clopen. This is true if and only if X = A t B, for
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A,B nonempty, and A,B clopen. So, once you have one non-empty proper clopen subset of X, then
its complement is another one and their union gives you all of X. This completes this claim. �

Example: Consider (Q, dE). In a homework, we considered A := {q ∈ Q | 2 < q2 < 3}, and showed that
∅ = A = A◦ = A. Hence, (Q, dE) is disconnected.

Example: (Topologist’s Sine Curve) Consider the metric space (R2, dE). Let U := A ∪ B, where A =
{(x, sin

(
1
x

)
) | x ∈ (0, 1]} and B = {(0, y) | y ∈ [−1, 1]}. We won’t prove it, but U is connected (but not

path-connected!).
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1.3 Numerical Sequences and Series

1.3.1 Convergent Sequences

Let (X, d) be a metric space. We write a function either as {an}n∈N or f : N→ X, where f(n) := an.

Definition: Let (X, d) be a metric space and let {pn}n∈N ⊂ X be a sequence. We say that {pn}n∈N converges
(in (X, d)), if there exists p ∈ X such that

∀ε > 0,∃N ∈ N such that [n ≥ N ⇒ d(pn, p) < ε].

In this case, we say that p is a limit of {pn}n∈N, and we write lim
n→∞

pn = p.

Theorem: If a sequence in a metric space is convergent, its limit is unique.

Proof: Let (X, d) be a metric space. Let {pn}n∈N ⊂ X be convergent. Thus, there exists p ∈ X such
that ∀ε > 0∃N ∈ N such that if n ≥ N then d(pn, p) < ε.

Assume both x and y are limits of {pn}n∈N. Let ε > 0. Then, there exists N1 ∈ N such that if
n ≥ N1 then d(x, pn) < ε, and there exists N2 ∈ N such that if n ≥ N2, then d(y, pn) < ε. So, if
N := max{N1, N2}, then if n ≥ N , by the triangle inequality,

d(x, y) ≤ d(x, pN ) + d(y, pN ) < 2ε.

Since ε > 0 was arbitrary we have that d(x, y) < δ, for all δ > 0. Hence d(x, y) = 0 and so x = y.
Thus limits are unique. �

Recall: lim
n→∞

pn = p⇐⇒ ∀r > 0,∃N ∈ N such that pn ∈ Br(p), ∀n ≥ N.

Definition: Let (X, d) be a metric space. A sequence {pn}n∈N is trivial if there exists N ∈ N such that
pn = pm for all n,m ≥ N , i.e., if the sequence is eventually constant.

Theorem: In any metric space, all trivial sequences converge.

Proof: Let (X, d) be a metric space, and {pn}n∈N ⊂ X be a trivial sequence. So, there exists N ∈ N
such that pn = pm for all m,n ≥ N . Let r > 0. Then for all n ≥ N , we have that

d(pn, pN ) = d(pN , pN ) = 0 < r.

So, pn ∈ Br(pN ) for all n ≥ N . �

Remark: Let (X, d) be a discrete metric. Then, for 0 < r < 1, we have that Br(p) = {p}. So, in a discrete
metric, only trivial sequences converge.

Example: Consider the metric space (R2, d), where

d((x, y), (x′, y′)) =

{
|y|+ |y′|+ |x− x′|, if x 6= x′

|y − y′|, if x = x′
.

Let (x0, y0) ∈ R2, with y0 6= 0. For all sufficiently small r > 0, the ball Br((x0, y0)) is an open interval
{(x0, y) | |y − y0| < r}. In order for a sequence to converge to (x0, y0), the sequence {(xn, yn)}n∈N must
eventually have xn = x0, and {yn} → y0 in the one-dimensional Euclidean space. However, for points
(x0, 0) ∈ R2, convergence is equivalent to the Euclidean case.
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Theorem 3.2: Let {pn}n∈N be a sequence in a metric space (X, d). Then,

(a) {pn}n∈N converges to a point p ∈ X if and only if for all r > 0, the ball Br(p) contains all but finitely
many entries in the sequence.

(b) If p, p′ ∈ X and if p and p′ are limits of {pn}n∈N, then p = p′.

(c) If {pn}n∈N converges, then {pn}n∈N is bounded.

(d) If E ⊂ X and p ∈ E′, then there exists a sequence {pn}n∈N ⊂ E such that lim
n→∞

pn = p.

Proof of (c): Let lim
n→∞

pn = p. Given any ε > 0, we have that there exists N ∈ N such that

d(pn, p) < ε, for all n ≥ N . Consider r := max {ε, d(p, p1), d(p, p2), . . . , d(p, pN−1)}. Since the set is
finite, and each term is strictly positive, r exists and r > 0. Then, note that pn ∈ Br(p), for all n ∈ N. �

Proof of (d): Let E ⊂ X, and let p ∈ E′. Let n ∈ N. Then, there exists pn ∈ (E r {p}) ∩B 1
n

(p).

So, pick ε > 0. Then, there exists N ∈ N such that 0 < 1
n < ε, for all n ≥ N . Hence, for all n ≥ N , we

have that pn ∈ Bε(p) (since d(p, pn) < 1
n < 1

N < ε). This makes a sequence that converges to p and
lies in E. �

Note that the converse is false, since the trivial sequence of an isolated point of E is not a limit point.

Theorem 3.3: Consider the metric space (C, d), with d(z1, z2) = |z1 − z2|. Let {sn}n∈N and {tn}n∈N be

sequences in C, such that {sn}n∈N
n→∞−−−−→ s and {tn}n∈N

n→∞−−−−→ t, then:

(a) {sn + tn}n∈N
n→∞−−−−→ s+ t.

(b) For all c ∈ C, {csn}n∈N
n→∞−−−−→ cs.

(c) {sntn}n∈N
n→∞−−−−→ st

(d) {1/sn}n∈N
n→∞−−−−→ 1/s, as long as sn 6= 0 and s 6= 0.

Proof of (c): Let {sn}n∈N
n→∞−−−−→ s and {tn}n∈N

n→∞−−−−→ t. By picking N such that |sn − s| <
√
ε and

|tn − t| <
√
ε, for all n ≥ N , then since

|sntn − st| = |(sn − s)(tn − t) + s(tn − t) + t(sn − s)| ≤ |sn − s||tn − t|+ |s||tn − t|+ |t||sn − s|,

we have that

|sntn − st| ≤
√
ε
√
ε+ s

√
ε+ t
√
ε = ε+

√
ε(s+ t). �

Alternate Proof of (c): Note that

|sntn − st| = |sntn − snt+ snt− st| = |sn(tn − t) + t(sn − s)| ≤ |sn||tn − t|+ |t||sn − s|.

The term |t||sn − s| can easily be controlled, since |t| is fixed and we can make |sn − s| arbitrarily
small. The term |sn||tn − t| is a little more tricky, but since sn is bounded, so is |sn|.

Let ε > 0. Since {sn}n∈N is convergent, there exists M ∈ R such that |sn| ≤ M for all n ∈ N. By
hypothesis, there exists N1 ∈ N such that |sn − s| < ε, for all n ≥ N1. By hypothesis, there exists
N2 ∈ N such that |tn − t| < ε, for all n ≥ N2. Let N := max{N1, N2}.

Then, for all n ≥ N , we have that:

|sntn − st| ≤ |sn||tn − t|+ |t||sn − s| ≤M |tn − t|+ |t||sn − s| < (M + |t|)ε. �
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Proof of (d): Note that ∣∣∣∣ tnsn − t

s

∣∣∣∣ =

∣∣∣∣stn − sntsns

∣∣∣∣ =
|stn − snt|
|sns|

.

So, we find a suitable upper bound M on the numerator and a suitable lower bound N (better than 0)
on the denominator. Then, our quotient is bounded by M

N . Then, we want that M
N can be arbitrarily

close to zero.

To find an upper bound of |stn − snt|, note that

|stn − snt| = |stn − st+ st− snt| ≤ |s||tn − t|+ |t||s− sn|,

which we can make small by the same argument as above.

To find a lower bound of |sns|, note that |s| is fixed, and |sn| 6= 0, so there exists K such that for all
n, we have 0 < K ≤ |sns|. So, the denominator can be fixed away from zero by some constant N .

Now, pick ε > 0. Let n be large enough such that the numerator is smaller than Nε. Then, the fraction
is smaller than Nε

N = ε, and so

{tn/sn}n∈N
n→∞−−−−→ t/s. �

Theorem 3.4:

(a) Let −→xn = (α1,n, . . . , αk,n) ∈ Rk. Then, lim
n→∞

−→xn = −→x = (α1, . . . , αk) in (Rk, dE) if and only if lim
n→∞

αi,n =

αi in (R, dE), for all i = 1, 2, . . . , k.

(b) Let {−→xn}n∈N, {−→yn}n∈N ⊂ Rk, and {βn}n∈N ⊂ R and let lim
n→∞

−→xn = −→x and lim
n→∞

−→yn = −→y (in (Rk, dE))

and lim
n→∞

βn = β in (R, dE). Then,

lim
n→∞

(−→xn +−→yn) = −→x +−→y ,
lim
n→∞

(βn
−→xn) = β−→x ,

lim
n→∞

(−→xn · −→yn) = −→x · −→y , (dot product)

lim
n→∞

(−→xn ×−→yn) = −→x ×−→y . (cross product)

1.3.2 Subsequences

Definition: Let (X, d) be a metric space, and let {pn}n∈N ⊂ X be an arbitrary sequence. If {nk}k∈N ⊂ N
such that ni < ni+1 for all i ∈ N, then

{pnk
}k∈N is a subsequence of {pn}n∈N.

Equivalently, if we think of {pn}n∈N as a function f : N → X, then we can consider another function
f1 : N → N, which is strictly increasing. Now, the composition f ◦ f1 : N → X represents the same
subsequence described above, with nk = f1(k) and so pnk

= (f ◦ f1)(k).

Theorem: Let (X, d) be a metric space, and let {pn}n∈N ⊂ X be a sequence. Then, {pn}n∈N is convergent
(to p ∈ X) if and only if every subsequence {pnk

}k∈N of {pn}n∈N is convergent (to p ∈ X).

Proof:

(⇐=). {pn}n∈N is a subsequence of itself. �

(=⇒). Let lim
n→∞

pn = p. Let {pnk
}k∈N be a subsequence of {pn}n∈N. Let ε > 0. By hypothesis,

there exists N ∈ N such that d(pn, p) < ε, for all n ≥ N . So, for all k ≥ N , we have that
nk ≥ k ≥ N , so d(pnk

, p) < ε, for all k ≥ N . �
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Example: Consider the metric space (R, dE). Then, Q = {qn}n∈N = R. Additionally, Q ⊂ Q′ = R.

Theorem 3.6:

(a) Let (X, d) be a compact metric space, and let {pn}n∈N ⊂ X be any sequence. Then, there exists a
convergent subsequence of {pn}n∈N.

(b) Every bounded sequence in a Euclidean space contains a convergent subsequence.

Proof of (a): If the set {pn}n∈N is finite there is a p = pi that is repeated infinitely many times.
Taking only these repeats, this is a constant and hence convergent subsequence. Now let the set
{pn}n∈N be infinite. By Theorem 2.37, an infinite set in a compact space has a limit point. Let p
be a limit point of the set {pn}n∈N. Now, for each i, we can pick a point pni such that d(p, pni) < 1/i.
Hence the subsequence {pni}i∈N converges to p. �

Proof of (b): Follows from the compactness of closures of bounded subsets of Euclidean space. �

Definition: Let (X, d) be a metric space and let {pn}n∈N ⊂ X be a sequence. Define

L := {p ∈ X | ∃{pnk
}k∈N such that lim

k→∞
pnk

= p}.

Examples: in (R, dE)

- If {pn}n∈N = {0, 1, 0, 1, 0, 1, . . .}, then L = {0, 1}.

- If {pn}n∈N = Q as sets, then L = R.

- If {pn}n∈N = {1/n}n∈N, then L = {0}.

Theorem 3.7: Let (X, d) be a metric space and {pn} be a sequence. Let L be defined as above. Then
L = L.

Proof: (See alternate version in Rudin.) Let {pn}n∈N ⊂ X be a sequence. If L = ∅, then clearly
L = L. On the other hand, if L′ = ∅, we are also done.

Let L′ 6= ∅, and so let p ∈ L′. By Theorem 3.2(d), there exists {`n}n∈N ⊂ L such that lim
n→∞

`n = p.

Also, for all m ∈ N and `m ∈ L, there exists a subsequence {pn(k,m)
}, such that lim

k→∞
pn(k,m)

= `m.

In the case m = 1, we have a sequence {pn(1,1)
, pn(2,1)

, . . . , pn(k,1)
, . . . , `1}.

In the case m = 2, we have a sequence {pn(1,2)
, pn(2,2)

, . . . , pn(k,2)
, . . . , `2}.

In the general case, we have a sequence {pn(1,m)
, pn(2,m)

, . . . , pn(k,m)
, . . . , `m}.

Additionally, we have the sequence on the right {`1, `2, . . . , `m, . . . , p}.

Loosely, we want to move diagonally down and to the right in some sequence that is a subsequence of
the original sequence. Let n1 := n(1,1). Now, there is some k such that n(k,2) > n1 and d(`2, pn(k,2)

) <
1/2, and we set n2 := n(k,2). Iterate this process to get a sequence {ni}i∈N having the property

n1 < n2 < · · · , and so observe that {pni
}i∈N → p. So, p ∈ L, and thus L′ ⊂ L and hence L = L. �

1.3.3 Cauchy Sequences

Definition: A sequence {pn}n∈N in a metric space (X, d) is said to be Cauchy if for all ε > 0, there exists
N ∈ N such that if m,n ≥ N , then d(pn, pm) < ε.

Example: Consider the metric space (Q, dE). We know there exists a sequence of rationals {qn}n∈N such that

{qn}n∈N
n→∞−−−−→

√
2 in (R, dE). So, for all ε > 0, there exists N ∈ N such that if n ≥ N , then dE(qn,

√
2) < ε.

So, if {qn}n∈N converges to anything in Q, in converges to
√

2 (if it converged to something else, it would



24 CHAPTER 1. COURSE NOTES

have to converge to something else in R which contradicts the uniqueness of limits), but since
√

2 6∈ Q, it
does not converge in Q. It is however Cauchy in Q.

Definition: Let (X, d) be a metric space and let E ⊂ X. Consider S := {d(p, q) | p, q ∈ E} ⊂ [0,∞). We
define the diameter of E to be supS. It is sometimes denoted diam(E) := supS. We denote diam(E) :=∞
in the case where supS does not exists (i.e., E is not bounded).

Lemma: With {pn}n∈N a sequence in the metric space (X, d), and we consider En := {pN+n}n∈N, for all
N ∈ N, then the sequence {pn}n∈N is Cauchy if and only if lim

N→∞
diam(EN ) = 0.

Theorem 3.10:

(a) If (X, d) is a metric space and E ⊂ X, then diam(E) = diam(E).

(b) If {Kn}n∈N is a sequence of compact subsets of X, with the nesting property that Kn ⊃ Kn+1 for all n,
and if lim

n→∞
diam(Kn) = 0, then ⋂

n∈N
Kn = {p},

for some p ∈ X, i.e., that intersection is a singleton set.

Proof of (a): Since E ⊂ E, we have that diam(E) ≤ diam(E). For the other direction, pick ε > 0
and choose p, q ∈ E. Whether p, q ∈ E or p, q ∈ E′ or otherwise, we have that there exist p′, q′ ∈ E
such that d(p, p′) < ε and d(q, q′) < ε. (Note you may pick p′ := p and q′ := q.) By the triangle
inequality, we have that d(p, q) ≤ d(p, p′) + d(p′, q′) + d(q′, q), and of course d(p′, q′) ≤ diam(E),
hence d(p, q) ≤ 2ε + diam(E) for all p, q ∈ E, and so diam(E) ≤ 2ε + diam(E), for all ε > 0. Hence
diam(E) ≤ diam(E). �

Proof of (b): Let K := ∩(Kn). By Theorem 2.36, K 6= ∅. If K contains more than one point,
say p, q ∈ K with p 6= q, then diam(K) ≥ d(p, q) > 0. But of course K ⊂ Kn for all n, and so
diam(K) ≤ diam(Kn) for all n. Since diam(Kn) → 0, this is a contradiction. Thus K must contain
exactly one point. �

Theorem 3.11:

(a) In any metric space, all convergent sequences are Cauchy.

(b) If (X, d) is compact and {pn}n∈N ⊂ X is Cauchy, then {pn}n∈N is convergent.

(c) In (R, dE), Cauchy sequences are convergent.

Proof of (a): Let (X, d) be a metric space and {pn}n∈N ⊂ X be convergent (to p ∈ X). Let ε > 0.
By hypothesis, there exists N ∈ N such that for all n ≥ N , we have d(p, pn) < ε. So, for all n,m ≥ N ,
we have that d(pm, pn) ≤ d(pm, p) + d(p, pn) < 2ε. Thus, we can control the distance between pm and
pn, and so the sequence {pn}n∈N is Cauchy. �

Proof of (b): Let (X, d) be compact and {pn}n∈N ⊂ X be Cauchy. Let EN := {pN+j | j = 0, 1, 2, . . .}
(as a set), for allN ∈ N, i.e. EN is the tail of the sequence {pn}n∈N starting at pN , viewed as a set. Now,

by hypothesis, diam(EN )
N→∞−−−−→ 0. By Theorem 3.10(a), we have that diam(EN )

N→∞−−−−→ 0. We
know that EN is a closed subset of X, which is compact, and hence EN is compact by Theorem 2.35.
By definition of EN it’s clear that EN ⊃ EN+1 for all N ∈ N. By a homework problem, EN ⊃ EN+1.
Now, we can apply Theorem 3.10(b) to conclude that there exists a unique point p ∈ ∩(EN ). To

show that {pn}n∈N
n→∞−−−−→ p, first pick ε > 0. Pick N0 ∈ N such that 0 ≤ diam(EN ) < ε, for all

N ≥ N0. Hence, for all N ≥ N0 and for all q ∈ EN ⊃ EN , since p ∈ EN , we have that d(p, q) < ε.
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Since this is true for all q ∈ EN , it must be true for pn for all n ≥ N0. So, {pn}n∈N
n→∞−−−−→ p. �

Proof of (c): Let {pn}n∈N be a Cauchy sequence in (R, dE). Define EN as above. From above, we

know that diam(EN )
N→∞−−−−→ 0. So, there exists N0 ∈ N such that diam(EN0

) = diam(EN0
) < 1. Now,

as sets, {pn}n∈N = EN0
∪ {p1, . . . , pN0−1}. Since each set of the union on the right is bounded, the

sequence {pn}n∈N is bounded, when thought of as a set. Since it’s bounded, we can embed it into
some k-cell K, which we know to be compact. Now, we can apply part(b) with our space X defined
to be the k-cell K, and the metric d := dE , and we get that {pn}n∈N converges in (K, dE), and so of
course {pn}n∈N converges in (R, dE). �

Definition: A metric space (X, d) is said to be complete if every Cauchy sequence in (X, d) is convergent.

Corollary: Every compact metric space is complete. Every Euclidean metric space is complete.

Remark: The following examples show that not every metric space is complete:

(i) The metric space (Q, dE) is not complete, as discussed previously. There are rational sequences that
converge to irrational numbers, and thus do not converge in (Q, dE), even though they are Cauchy
(because they converge in (R, dE), and hence are Cauchy in (R, dE), and thus are Cauchy in (Q, dE)).

(ii) The metric space ((0, 1), dE) is not complete, since there are sequences converging to 0, but 0 6∈ (0, 1).

Definition: In (R, dE), a sequence {sn}n∈N ⊂ R is said to be monotonically increasing if

sn ≤ sn+1,∀n ∈ N.

It is similarly said to be monotonically decreasing if

sn ≥ sn+1,∀n ∈ N.

Finally, we say that sn is monotonic if it is either monotonically increasing or monotonically decreasing.

Theorem 3.14: Suppose {sn}n∈N is monotonic (so, by our definition, the sequence is of real numbers).
Then, {sn}n∈N converges if and only if {sn}n∈N is bounded.

Proof:

(=⇒). Already done - Theorem 3.2(c). �

(⇐=). Let {sn}n∈N be a bounded monotonically increasing sequence. By the Least Upper
Bound Property, s := sup({sn}n∈N) ∈ R exists. Now, sn ≤ s, for all n ∈ N. Hence, for all
ε > 0, there exists N ∈ N such that s − ε ≤ sn ≤ s, for all n ≥ N . Hence {sn}n∈N is Cauchy,
and therefore {sn}n∈N is convergent. �

1.3.4 Upper and Lower Limits

Definition: For convenience, we define R∗ := R ∪ {−∞,+∞} to be the extended reals.

Definition: Let {sn}n∈N ⊂ R. If for all M ∈ R, there exists N ∈ N such that sn ≥ M for all n ≥ N , we

write {sn}
n→∞−−−−→ +∞. On the other hand if for all M ∈ R there exists N ∈ N such that sn ≤ M for all

n ≥ N , we write {sn}
n→∞−−−−→ −∞.
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Remark: We can extend the order < from R to R∗ by −∞ < r <∞ for all r ∈ R.

Definition: Let {sn}n∈N ⊂ R and E = {x ∈ R∗ | ∃ a subsequence {snk
}k∈N ⊂ {sn}n∈N with lim

k→∞
snk

= x}.
So, with L defined previously as the set of subsequential limits, E = L ∪ U , where U ⊂ {−∞,∞}.

Definition:

s∗ := sup(E) (in (R∗, <))

s∗ := inf(E) (in (R∗, <))

Definition: The lim sup of {sn}n∈N is lim sup sn = lim
n→∞

sn = s∗.

The lim inf of {sn}n∈N is lim inf sn = lim
n→∞

sn = s∗.

Examples: {sn}n∈N = {0, 1, 0, 1, . . .}. Then, L = {0, 1} = E, and lim sup sn = 1 and lim inf sn = 0.
{sn}n∈N = Q. Then L = R, E = R∗, and lim sup sn = +∞ and lim inf sn = −∞.

Theorem 3.17: Let {sn}n∈N ⊂ R. Define E,L, s∗, s∗ as above. Then,

(a) s∗ ∈ E.

(b) If x > s∗, then there exists N ∈ N such that for all n ≥ N , sn < x.

Moreover, s∗ is the only element of R∗ which satisfies (a) and (b). Similarly for s∗.

Proof of (a): If s∗ = +∞, then E is not bounded from above, and hence {sn}n∈N is not bounded
from above, and there exists a subsequence {snk

}k∈N 3 lim
k→∞

snk
= ∞. So, s∗ = ∞ ∈ E. If s∗ ∈ R,

then E is bounded from above (so that E ⊂ L ∪ {−∞}). In this case, there exists at least one
convergent subsequence {snk

}k∈N. So s∗ ∈ L. We have shown that L = L (Theorem 3.7), and
s∗ = supL = supL. So, s∗ ∈ L ⊂ E (Theorem 2.28). Now, if s∗ = −∞, then E = {−∞} and all
subsequences diverge to −∞. Hence, for all M ∈ R, sn > M for at most finitely many values of n. So,
lim
n→∞

sn =∞. Therefore, s∗ = −∞ ∈ E. �

Proof of (b): Assume that there exists x > s∗ such that sn ≥ x for infinitely many values of n. Then,
there exists y ∈ E such that y ≥ x > s∗ = supE. This is a contradiction. �

Moreover: Let p, q be two such elements of R∗ that satisfy (a) and (b). Assuming that p 6= q, we
can assume without loss of generality (by trichotomy) that p < q. Pick x such that p < x < q. Since
p satisfies (b), we have that there exists N ∈ N such that sn < x for all n ≥ N. But p < x < q, and so
q cannot satisfy condition (b). �

Theorem: Let {sn}n∈N ⊂ R. The sequence {sn}n∈N converges in (R, dE) to p if and only if

lim sup sn = lim inf sn = p.

Squeeze Theorem: Let {`n}n∈N, {pn}n∈N, {un}n∈N ⊂ R be sequences such that there exists N ∈ N such
that `n < pn < un for all n ≥ N . Then, if lim

n→∞
`n = lim

n→∞
un =: p, then lim

n→∞
pn = p.

Proof: Let ε > 0. By hypothesis, there exists N ∈ N such that |`n − p| < ε and |un − p| < ε for all
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n ≥ N . So, for all n ≥ N , we have that

|sn − p| ≤ |sn − `n|+ |`n − p|
≤ |un − `n|+ |`n − p|
≤ |un − p|+ |p− `n|+ |`n − p|
< 3ε. �

1.3.5 Some Special Sequences

Theorem 3.20:

(a) If p > 0, then lim
n→∞

n−p = 0.

(b) If p > 0, then lim
n→∞

n
√
p = 0.

(c) lim
n→∞

n
√
n = 0.

(d) If p > 0, α ∈ R, then lim
n→∞

nα

(1 + p)n
= 0.

(e) If |x| < 1, then lim
n→∞

|x|n = 0.

Proof of (d): Let k ∈ N such that k > α. For n > 2k we have that

(1 + p)n =

m∑
i=0

(
n

i

)
pi >

(
n

k

)
pk =

n(n− 1) · · · (n− k + 1)

k!
pk.

Each term in the product in the numerator is greater than n/2 and hence that product is greater than
(n/2)k. So,

n(n− 1) · · · (n− k + 1)

k!
pk ≥ nkpk

2kk!
.

So,

0 ≤ nα

(1 + p)n
<
nα−kpk

2kk!
.

Since k > α, nα−k < 1, and so this goes to zero, and is multiplied by the constant pk/(2kk!), so the
limit goes to zero and we we apply the Squeeze Theorem. �

1.3.6 Series

Definition: Given a sequence {an}n∈N ⊂ C, associated to this sequence is another sequence: define the N th

partial sum as

sN :=

N∑
i=1

ai.

This gives us a new sequence {SN}N∈N ⊂ C. This series, commonly denoted
∑
an, is convergent if the

sequence {sn}n∈N is convergent. Otherwise, it’s said to be divergent.

Moreover, if it is convergent (i.e., lim
N→∞

N∑
n=1

Sn = p ∈ C exists), we write

∞∑
n=1

an = p.
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Theorem 3.22:
∑
an converges if and only if for all ε > 0, we can find some N ∈ N such that for all

m ≥ n ≥ N ,

0 ≤ |sn − sm| =

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ < ε.

Theorem 3.23: If
∑
an converges, then lim

n→∞
an = 0.

Proof: Set m = n+ 1 in the previous proof. �

Warning: The converse to Theorem 3.23 is false. Consider the series
∑

1
n , which diverges.

Theorem 3.24: Let {an}n∈N ⊂ [0,∞) be a sequence. Then,
∑
an converges if and only if {SN}N→∞ is

bounded.

Proof:

(=⇒). If
∑
an converges, then {SN}N∈N converges. But, every convergent sequence is bounded.

(⇐=). For all N ∈ N, SN+1 − SN = aN ≥ 0. So, {SN}N∈N is monotonic. So, {SN}N∈N is
bounded, and thus it converges. �

Theorem 3.25: (Comparison Test)

(a) If {an}n∈N ⊂ C and {cn}n∈N ⊂ R are sequences such that |an| ≤ cn for all n sufficiently large, and if∑
cn converges, then

∑
an converges.

(b) If an ≥ dn ≥ 0 for all sufficiently large n, then if
∑
dn diverges, we must have that

∑
an diverges.

Proof of (a): Let ε > 0. Since
∑
cn converges, there exists N1 ∈ N such that m ≥ n ≥ N1 implies

that
∑m
k=n < ε, by the Cauchy Criterion (Theorem 3.22). If m ≥ n ≥ maxN0, N1, then∣∣∣∣∣

m∑
k=n

ak

∣∣∣∣∣ ≤
n∑

k=m

|ak| ≤
n∑

k=m

ck < ε.

Hence,
∑
an converges. �

Proof of (b): Suppose toward a contradiction that
∑
an converges. Then, part (a) implies that∑

dn converges, which is a contradiction. So,
∑
an must diverge. �

1.3.7 Series of Nonnegative Terms

Theorem 3.26: If 0 ≤ x < 1, then
∞∑
n=0

xn =
1

1− x
.

If x ≥= 1, the series diverges.

Proof: Consider the partial sums sn := 1 + x+ · · ·+ xn, and observe that

xsn = x+ x2 + · · ·+ xn+1,

and by subtracting,

sn(1− x) = 1− xn+1,
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and so if x 6= 1,

sn =
1− xn+1

1− x
.

If 0 ≤ x < 1, then lim
n→∞

=
1

1− x
. If x > 1, then sn clearly diverges (because it is unbounded, so apply

Theorem 3.24).

In the x = 1 case, we observe that sn = n + 1, and hence in this case sn diverges (because it is
unbounded, so apply Theorem 3.24). �

Theorem 3.27: (Cauchy) Suppose a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0. Then, the series
∑
an converges if and only if

the series
∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · ·

converges.

Proof: Consider the sequences {sn} and {tk} of partial sums:

sn = a1 + a2 + · · ·+ an,

tk = a1 + 2a2 + 4a4 + · · ·+ 2ka2k .

If n < 2k, then

sn ≤ a1 + (a2 + a3) + · · ·+ (a2k + · · ·+ a2k+1−1)

≤ a1 + 2a2 + · · ·+ 2ka2k

= tk.

If n > 2k, then

sn ≥ a1 + a2 + (a3 + a4) + · · ·+ (a2k−1+1 + · · ·+ a2k)

≥ 1

2
a2 + a2 + 2a4 + · · ·+ 2k−1a2k

=
1

2
tk.

2sn ≥ tk.

Hence, the boundedness of {sn} and {tn} depend on each other, and so they are bounded or unbounded
at the same time. Thus, their convergence or divergence is simultaneous, by Theorem 3.24. �

Theorem 3.28: The series
∞∑
n=1

1

np

converges if p > 1 and diverges if p ≤ 1.

Proof: (We assume p is rational, and the theorem then follows for p real.)

If p ≤ 0, then n−p is positive, and {1/np} is unbounded, hence the series is divergent.
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If p > 0, then {1/np} is decreasing, and we can use Theorem 3.27, with

∞∑
k=0

2k · 1

2kp
=

∞∑
k=0

2(1−p)k.

Since 21−p < 1 if and only if 1−p < 0 if and only if p > 1, we have that the result follows by comparison
with the geometric series in Theorem 3.26, letting x := 21−p. �

Theorem 3.29: If p > 1, then
∑ 1

n(log n)p
converges. If p ≥ 1, then the series diverges.

Proof: The log function is monotonically increasing. This fact is not proved here, but it used from a
later chapter in the book. Hence:

{log n}n∈N is increasing, =⇒
{n log n}n∈N is increasing, =⇒{

1

n log n

}
n∈N

is decreasing.

By Theorem 2.37, the existence of the sum
∑

1
n(logn)p corresponds exactly with the existence of the

sum:
∞∑
k=1

2k · 1

2k(log 2k)p
=

∞∑
k=1

1

(k log 2)p
=

1

(log 2)p

∞∑
k=1

1

kp
.

The last sum converges exactly when p > 1, by Theorem 3.28. �

Remark: The following sums all diverge:

6
∑ 1

n(log n)

6
∑ 1

n(log n)(log log n)

6
∑ 1

n(log n)(log log n)(log log log n)

6
∑ 1

n(log n)(log log n)(log log log n) · · · (log log · · · log n)

However, the sum ∑ 1

n(log n)(log log n) · · · (log log · · · log n)p

converges for any p > 1. This is perhaps a bit surprising.

1.3.8 The Number e

Definition:

e :=

∞∑
n=0

1

n!
,

where n! := 1 · 2 · 3 · · · · · n, if n ≥ 1 and 0! = 1.

Note that it is necessary to prove that this sum exists (i.e., converges), and this is done by comparing it to
a sequence of negative powers of two, and squeezing the sum between 1 and 3. This proof can be found in
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Rudin, at the top of page 64.

Theorem 3.31:

lim
n→∞

(
1 +

1

n

)n
= e.

Proof: Rudin, pgs. 64 - 65.

1.3.9 The Root and Ratio Tests

Theorem 3.33: (Root Test) Given {an}n∈N, set α := lim sup
n→∞

n
√
|an|. Then,

(a) If α < 1, then
∑
an converges.

(b) If α > 1, then
∑
an diverges.

(c) If α = 1, then the test gives no information.

Proof of (a): Assume that α < 1. Then, we can pick β such that α < β < 1. By Theorem 3.17,
there exists N ∈ N such that n

√
|an| < β, for all n ≥ N . This implies that |an| < βn for all n ≥ N .

(Note that this is not an algebraic conclusion, it’s a result of the properties of ordered fields.) Since
0 < β < 1, we have that 0 < βn < 1, and so

∑
βn converges. Hence by the Comparison Test,

∑
an

converges. �

Proof of (b): Assume that α > 1. By Theorem 3.17, there exists some subsequence { nk
√
|ank
|}k∈N

such that lim sup
k→∞

nk
√
|ank
| = α. So, there exists K ∈ N such that

nk
√
|ank
| > 1 for all k ≥ K. So,

n
√
|an| > 1 for infinitely many n ∈ N. Since we now have that lim

n→∞
6= 0, we have that

∑
an diverges. �

Theorem 3.34: (Ratio Test) The series
∑
an:

(a) converges if lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1.

(b) diverges if there exists N ∈ N such that

∣∣∣∣an+1

an

∣∣∣∣ ≥ 1 for all n ≥ N .

Proof of (a): Following the proof of Theorem 3.33(a), there exists β < 1 and N ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ < β for all n ≥ N . Therefore |an+1| < β|an| for all n ≥ N . So, |aN+1| < β|aN |, and hence

|aN+2| < β|aN+1| < β2|aN |. Iterating, |aN+p| < βp|aN | for all p ∈ N. So, for all n ≥ N , we have that

|an| ≤ |aN |βn−N = |aN |β−Nβn.

But
∑
βn converges, and since |aN |β−N is a constant, we have that

∑
|aN |β−Nβn converges. By the

Comparison Theorem,
∑
an converges. �

Proof of (b): If

∣∣∣∣an+1

an

∣∣∣∣ ≥ 1 for a particular n, then |an+1| ≥ |an|. So, for all n ≥ N , we have that

|an+1| ≥ |an|. Thus lim
n→∞

an 6= 0, and so
∑
an diverges. �

Example: Consider the series ∑ 1

1 + lnn
.
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Using the ratio test: ∣∣∣∣an+1

an

∣∣∣∣ =
1 + lnn

1 + ln(n+ 1)

n→∞−−−−→ 1,

so the ratio test gives us no information.

Using the Cauchy Comparison, ∑ 2k

1 + ln(2k)
=
∑ 2k

1 + k ln 2
,

so the series diverges.

Example: Consider the series ∑ n

3n2 − 4
.

By comparison, 3n2 − 4 < 3n2, and so 1
3n2−4 >

1
3n2 . Since n

3n2 = 1
3n , which diverges, so the initial series

diverges.

Example: Consider the series ∑ nn

n!
.

Now, ∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)n+1

(n+ 1)!
· n!

nn
=

(n+ 1)n

nn
=

(
n+ 1

n

)n
> 1.

Hence by the ratio test, the series diverges.

Theorem 3.37: For any sequence {cn}n∈N ⊂ [0,∞),

lim inf
n→∞

cn+1

cn
≤ lim inf

n→∞
n
√
cn,

lim sup
n→∞

n
√
cn ≤ lim sup

n→∞

cn+1

cn
.

By the Ratio Test, for all a ∈ R:
∞∑
n=0

an

n!

converges. So, we can define a new function

f(x) :=

∞∑
n=0

xn

n!
.

1.3.10 Power Series

For fixed constants {cn}n∈N, we can pose the question: When does

∞∑
n=0

cnz
n converge, for some z ∈ C?

Definition: A (complex) power series is a series of the form
∑

cnz
n with fixed cn ∈ C, for all n ∈ N.
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Theorem 3.39: Let
∑
cnz

n be a complex power series, with α := lim sup |cn|1/n and R := 1/α. Then,∑
cnz

n converges for all complex z with |z| < R and diverges for all complex z with |z| > R. We have no
information in the case |z| = R.

Proof: See Rudin, pg. 69. Apply the root test.

1.3.11 Summation by Parts

Theorem 3.41: (Partial Summation Formula) Given two complex sequences {an}n∈N and {bn}n∈N, put

An :=

n∑
k=0

ak

if n ≥ 0. Define A−1 = 0. Then, if 0 ≤ p ≤ q, we have

q∑
n=p

anbn =

q∑
n=p

An(bn − bn+1) +Aqbq −Ap−1bp.

Proof: See Rudin, pg. 70.

Theorem 3.42: (Application of Theorem 3.41) Suppose

(a) the partial sums An of
∑
an form a bounded sequence,

(b) b0 ≥ b1 ≥ b2 ≥ · · · , and

(c) lim
n→∞

bn = 0.

Then,
∑
anbn converges.

Proof: See Rudin, pg. 71. Follows from Partial Summation Formula and the Cauchy Criterion.

Theorem 3.43: Let {cn}n∈N ⊂ R. Suppose

(a) |c1| ≥ |c2| ≥ |c3| ≥ · · · ,

(b) c2m−1 ≥ 0, cm ≤ 0for all m ∈ N, and

(c) lim
n→∞

cn = 0.

Then,
∑
cn converges.

Proof: See Rudin, pg. 71. Follows from Theorem 3.42, with an := (−1)n+1 and bn := |cn|.

Theorem 3.44: Suppose the radius of convergence of
∑
cnz

n is 1. (Note that if
∑
cnz

n has non-zero radius
of convergence R then we can consider the series 1

R

∑
cnz

n, which has radius of convergence 1.) Suppose

also that c0 ≥ c1 ≥ c2 ≥ · · · , such that cn
n→∞−−−−→ 0. Then, the series converges at every z ∈ C with |z| = 1,

except possibly at z = 1.

Proof: See Rudin, pg. 71. Follows from Theorem 3.42, letting an := zn and bn := cn.

1.3.12 Absolute Convergence

Example: Consider
∑ (−1)n

n
. Choosing an := (−1)n and bn :=

1

n
, then |Ak| = |

∑n
k=0 ak| ≤ 1, and so by

Theorem 3.42, this series converges. It is conditionally convergent - see definition below.
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Definition: Let {cn}n∈N ⊂ C. Then,
∑
cn is absolutely convergent is

∑
|cn| is convergent. We say that∑

cn is conditionally convergent if
∑
cn converges and

∑
|cn| diverges.
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1.3.13 Addition and Multiplication of Series

Theorem 3.47: Let
∑
an and

∑
bn be convergent, such that

∑
an = A and

∑
bn = B. Then,

∑
(an+bn) =

A+B, and
∑
can = cA for any fixed c.

Proof: To say that A :=

∞∑
n=0

exists is equivalent to saying that lim
N→∞

(
N∑
n=0

an

)
exists. It’s clear that

N∑
n=0

(an + bn) =

N∑
n=0

an +

N∑
n=0

bn,

for all N ∈ N. By the algebra of limits, we have the result. Similarly for the second part. See Rudin,
p. 72, for details. �

Definition: Let {an}n∈N, {bn}n∈N ⊂ C. Define the Cauchy Product as:

cn :=
n∑
k=0

akbn−k.

Considering our partial sums
N∑
n=0

an = a0 + a1 + · · ·+ aN ,

N∑
n=0

bn = b0 + b1 + · · ·+ bN .

Thinking in terms of power series:

N∑
n=0

anz
n = a0 + a1z + · · ·+ aNz

N ,

N∑
n=0

bnz
n = b0 + b1z + · · ·+ bNz

N .

Hence: (
N∑
n=0

anz
n

)(
N∑
n=0

bnz
n

)
= a0b0 + (a1b0 + a0b1)z + (a2b0 + a1b1 + a0b2)z2 + · · ·+ (anbn)z2n.

This is the motivation of our definition of cn above.

Remark: If
∑
an and

∑
bn are convergent, then is

∑
cn := (

∑
an)(

∑
bn) also convergent. If it is, do we

actually have that
∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
?

The answer is: not in general.

Example: ∑ (−1)n√
n+ 1

.
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This converges by Theorem 3.43, but it converges conditionally.

The product of this series with itself:∑
cn = 1−

(
1√
2

+
1√
2

)
+

(
1√
3

+
1√
2
√

2
+

1√
3

)
−
(

1√
4

+
1√
3
√

2
+

1√
2
√

3
+

1√
4

)
− · · ·

Thus,

cn = (−1)n
n∑
k=0

1√
(n− k − 1)(k + 1)

.

Observe

(n− k − 1)(k + 1) =
(n

2
+ 1
)2
−
(n

2
− k
)2
≤
(n

2
+ 1
)2
.

So,

|cn| ≥
n∑
k=0

2

n+ 2
=

2(n+ 1)

n+ 2

n→∞−−−−→ 2.

So, the terms in the sum do not go to zero, and so
∑
cn does not converge.

Theorem 3.50: Suppose

(a)
∑

an converges absolutely.

(b)

∞∑
n=0

an = A.

(c)

∞∑
n=0

bn = B.

(d) cn =

n∑
k=0

akbn−k.

Then,

∞∑
n=0

cn = AB.

Proof: Let n ∈ N, and An :=

n∑
k=0

ak, Bn :=

n∑
k=0

bk, Cn :=

n∑
k=0

ck, and βn := Bn −B.

Then,

Cn = a0b0 + (a0b1 + a1b0) + · · ·+ (a0bn + a1bn−1 + · · ·+ an−1b1 + anb0)

= a0Bn + a1Bn−1 + · · ·+ anB0

= a0(βn +B) + a1(βn−1 +B) + · · ·+ an(β0 +B)

= AnB + a0βn + a1βn−1 + · · ·+ anβ0︸ ︷︷ ︸
:=γn

.

So, cn = AnB+γn. Note that lim
n→∞

AnB = AB. So, it suffices to show that γn
n→∞−−−−→ 0. By hypothesis,

α :=

∞∑
n=0

|an| exists. Let ε > 0. By (c) and the algebra of limits, we have that lim
n→0

βn = 0. So, there

exists N ∈ N such that |βn| < ε for all n ≥ N . Therefore,

|γn| ≤ |β0an + · · ·+ βNan−N |+ |βN+1an−N−1 + · · ·+ βna0|
≤ |β0an + · · ·+ βnan−N |+ εα.
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Since lim
n→∞

|an| = 0, we have that

0 ≤ lim sup
n→∞

|γn| ≤ εα

for all ε > 0. So, lim
n→∞

|γn| = 0, and thus lim
n→∞

γn = 0. Therefore, lim
n→∞

Cn = AB. �

1.3.14 Rearrangements

Definition: Let A be a set. Then, any bijection σ : A→ A is called a permutation of A.

Definition: Let σ : N→ N be a permutation on N. Let
∑
an be any numerical series. Then

∑
{aσ(n)}n∈N := aσ(0) + aσ(1) + aσ(2) + · · ·+ aσ(N) + · · · .

Unless σ happens to be the identity, neither sequence is a subsequence of the other. But, we call
∑
{aσ(n)}n∈N

a rearrangement (or a resummation) of
∑
an.

Example:

∑
(−1)n = 1− 1 + 1− 1 + 1− 1 + · · · .

To see if this sum converges using definitions, we look at the series of partial sums

Sn =

n∑
k=0

(−1)k =

{
1, n even
0, n odd

So lim sup
N→∞

SN = 1 and lim sup
N→∞

Sn = 0. Since 0 6= 1, the series of partial sums does not converge and thus the

sum does not converge.

Considering a rearrangement, we can move as many +1 or −1 to the front to start with a certain integer and
use +(1− 1) to cancel out the rest. So, we can make the rearrangement converge to any integer. Similarly,
we can make the rearrangement diverge to +∞ or −∞.

Example: The series

∞∑
n=1

(−1)n

n
is conditionally convergent. The sum of n even in that series is

∑ 1

2n
,

which diverges. The sum over the odd n is
∑
− 1

2n+ 1
, which diverges. In this series, the terms go to zero.
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Theorem 3.54: Let {an}n∈N ⊂ R and let
∑
an be conditionally convergent. Let −∞ ≤ α ≤ β ≤ ∞. Then,

there exists a rearrangement
∑
a′n with partial sums {S′n}n∈N such that

lim sup
n→∞

S′n = β and lim inf
n→∞

S′n = α.

Proof: Let pn :=
|an|+ an

2
. Let qn :=

|an| − an
2

. Note that an = pn − qn, |an| = pn + qn, and

pn, qn ≥ 0, for all n ∈ N.

Observe that
∑
pn and −

∑
qn diverge because

∑
|an + qn| =

∑
|an|, which diverges (otherwise

the sequence would be absolutely convergent, rather than conditionally convergent. Additionally,∑
an =

∑
(pn − qn) converges (by assumption). If one of

∑
pn and

∑
qn converged (WLOG if

∑
pn

converges), then we could write
∑

(pn−qn) =
∑
pn−

∑
qn, and so

∑
qn =

∑
pn−

∑
an, so that both∑

pn and
∑
qn converge. But then we can write

∑
pn +

∑
qn =

∑
(pn + qn) =

∑
|pn + qn| =

∑
|an|,

which is a contradiction since the right-most term diverges and the left-most term converges. So, both∑
pn and

∑
qn diverge.

Now, let P1, P2, P3, . . . denote the nonnegative terms of
∑
an in the order in which they appear, and

let Q1, Q2, Q3, . . . denote the absolute value of the negative terms of
∑
an also in the original order

that they appear.

Now note that
∑
Pn =

∑
pn and

∑
Qn =

∑
qn (term-by-term they are different, the pn and qn have

zeros in between for each missing term, but the sum of terms is the same), and so both
∑
Pn and∑

Qn diverge.

Let −∞ ≤ α ≤ β ≤ ∞. Let {αn}n∈N, {βn}n∈N ⊂ R such that αn → α and βn → β for αn < βn, for
all n ∈ N with β1 > 0.

Let m1, k1, be the smallest natural numbers such that

P1 + · · ·+ Pm1
> β1

P1 + · · ·+ Pm1
−Q1 − · · · −Qk1 < α1.

This can be done since
∑
Pn and

∑
Qn diverge to +∞, so there are always “enough terms big enough

to get far enough away”.

Repeating this process, there exist m2, k2 that are the smallest natural numbers such that:

P1 + · · ·+ Pm1
−Q1 − · · · −Qk1 + Pm1+1 + · · ·+ Pm2

> α2.

P1 + · · ·+ Pm1
−Q1 − · · · −Qk1 + Pm1+1 + · · ·+ Pm2

−Qm1+1 − · · · −Qm2
< β2.

We can continue this process for all αi, βi as i→∞.

Let xn denote the partial sum of this rearrangement whose last term is Pmn
. Let yn denote the partial

sum of this rearrangement whose last term is Qkn . Then, we claim that |xn − βn| ≤ Pmn
. This

is true by the construction: we assumed mn is the smallest such integer. Similarly, we have that
|yn − αn| ≤ Qkn .

Since lim
n→∞

Pn = 0 and lim
n→∞

Qn = 0, we have that

lim
n→∞

xn = β and lim
n→∞

yn = α.

Claim: no number larger than β or less than α can be a subsequential limit of the sequence of partial
sums of this rearrangement. This is true because after an xn or yn, the sequence goes back in the
other direction. Hence, these α and β are the lim inf and the lim sup of the series. �
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Theorem 3.55: (Restated in a different way.) Let {an}n∈N ⊂ C be a sequence, σ : N → N be a bijection,∑
an be absolutely convergent, {Sn}n∈N be a sequence of partial sums of

∑
an and {S′n}n∈N be the sequence

of partial sums of
∑
aσ(n). Then,

∑
aσ(n) converges and

∞∑
n=1

an =

∞∑
n=1

aσ(n).

Proof: Let ε > 0. By hypothesis, there exists N1 ∈ N such that for all m ≥ n ≥ N1:

∣∣∣∣∣
m∑
k=n

|ak|

∣∣∣∣∣ < ε,

by Theorem 3.22.

Choose p ∈ N such that 1, 2, . . . , N1 ∈ {σ(1), σ(2), . . . , σ(p)}. Then, n > p, and |Sn − S′n| < ε.

So, if

∞∑
n=1

= L, then there exists N2 ∈ N such that |Sn − L| < ε for all n ≥ N2. Hence, for all

N ≥ max{N1, N2, p}, we have that

|S′n − L| ≤ |S′n − Sn|+ |Sn − L| < 2ε. �
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1.4 Continuity

1.4.1 Limits of Functions

Definition: Let (X, dX) and (Y, dY ) be metric spaces, let E ⊂ X with f : E → Y and p ∈ E′. We say that
f converges to q as x approaches p, i.e. lim

x→p
f(x) = q, if there exists q ∈ Y such that for all ε > 0 there exists

δ > 0 such that if 0 < dEX(x, p) < δ, then dY (f(x), q) < ε. [In terms of balls: for all ε > 0, there exists δ > 0
such that f

(
BEδ (p) r {p}

)
⊂ BYε (q)].

Theorem 4.2: Let (X, dX), (Y, dY ), E, f , p be as above. Then, lim
x→p

f(x) = q if and only if lim
n→∞

f(pn) = q

for every {pn}n∈N ⊂ E with pn
n→∞−−−−→ p.

Proof:

(=⇒). Let lim
x→p

f(x) = q. Let {pn}n∈N be an arbitrary sequence such that pn
n→∞−−−−→ p. Let

ε > 0. By hypothesis, there exists δ > 0 such that if 0 < dEX(x, p) < δ, then dY (f(x), q) < ε.
Also by hypothesis, there exists N ∈ N such that for all n ≥ N , we have that dEX(pn, p) < δ.
Now, for all n ≥ N , we have that dY (f(pn), q) < ε. �

(⇐=). Let lim
n→∞

f(pn) = q. Assume toward a contradiction that limx→p f(x) 6= q. So, there

exists ε > 0 such that for all δ > 0, we have that there exists xδ ∈ E such that dY (f(xδ), q) ≥ ε,
even though dEX(xδ, p) < δ. Taking δ := 1

n , for each n ∈ N we can an xn ∈ E such that
dY (f(xn), q) ≥ ε, even though dEX(xn, p) <

1
n . So, lim

n→∞
xn = p, but the sequence f(xn) 6→ q,

which is a contradiction. �

Definition: Let (X, d) be a metric space and (C, dE) be a metric space, and f, g : X → C. Then define:

(1) f ± g : x 7→ f(x)± g(x),

(2) fg : x 7→ f(x)g(x),

(3) f/g : x 7→ f(x)/g(x) provided g(x) 6= 0.

If
−→
f ,−→g : X → Rk (with dE on Rk), then we can define

(1)
−→
f ±−→g : x 7→

−→
f (x)±−→g (x),

(2)
−→
f · −→g : x 7→

−→
f (x) · −→g (x),

(3) for all λ ∈ R: λ
−→
f : x 7→ λ

−→
f (x).

1.4.2 Continuous Functions

Definition: Let (X, dX) and (Y, dY ) be metric spaces, let E ⊂ X with p ∈ E, and let f : E → Y . In this
setting, we say f is continuous at p if:

lim
x→p

f(x) = f(p).

[In terms of balls, ∀ε > 0,∃δ > 0 : f(BEδ (p)) ⊂ BYε (f(p))]

If f is continuous at every point p ∈ E, then we say that f is continuous.

Recall: If p is an isolated point of E, then there exists r > 0 such that BXr (p) ∩ E = {p}. So if p is an
isolated point of E, we add to the definition of “f is continuous at p” that f is automatically continuous at
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p.

Theorem 4.7: Suppose (X, dX), (Y, dY ), (Z, dZ) are metric spaces. Let E ⊂ X, f : E → Y , g : f(E)→ Z,
and h := g ◦ f : E → Z. If f is continuous at p and g is continuous at f(p), then h is continuous at p. In
particular, if f and g are continuous, then h is continuous.

Proof: Let ε > 0.

By the continuity of g at f(p), there exists δ1 > 0 such that

g
(
B
f(E)
δ1

(f(p))
)
⊂ BZε (g(f(p)).

By the continuity of f at p, there exists δ > 0 such that

f
(
BEδ (p)

)
⊂ BYδ1(f(p)) ∩ f(E).

Hence, for this δ:
h
(
BEδ (p)

)
⊂ BZε h(p).

Therefore, h is continuous at p. �

Theorem 4.8: Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y . Then, f is continuous if and only
if f−1(V ) is open in (X, dX) for all open sets V in (Y, dY ). Note that this is the definition of continuous for
a general topological space. We are showing that these definitions coincide in the case of metric spaces.

Proof:

(=⇒). Let f be continuous and let V = V ◦ ⊂ Y . Let p ∈ f−1(V ). Then, f(p) ∈ V , and so
there exists ε1 > 0 such that BYε1(f(p)) ⊂ V . Since f is continuous at p, there exists ε > 0 such
that

f
(
BXε (p)

)
⊂ BYε1(f(p)) ⊂ V.

So, BXε (p) ⊂ f−1(V ). Hence p is an interior point of f−1(V ). Since p ∈ f−1(V ) was arbitrary,
we have that f−1(V ) is open in X. �

(⇐=). Assume f−1(V ) = f−1(V )◦, for all V = V ◦ ⊂ Y .

Pick p ∈ X and ε > 0. Since BYε (f(p)) is open in Y (since it’s a ball), we know that
f−1

(
BYε (f(p))

)
is open in X. Since p ∈ f−1

(
BYε (f(p))

)
, it’s an interior point, and so there

exists δ > 0 such that
BXδ (p) ⊂ f−1

(
BYε (f(p))

)
.

Hence
f
(
BXδ (p)

)
⊂ f

(
f−1

(
BYε (f(p))

))
= BYε (f(p)).

Since p was arbitrary, f is continuous everywhere. �

1.4.3 Continuity and Compactness

Theorem 4.14: Suppose f : X → Y is continuous, where (X, dX) is a compact metric space and (Y, dY ) is
a metric space. Then, f(X) is compact.

Proof: Let {Vα}α∈A be an open cover of f(X). By Theorem 4.8, f−1(Vα) is open for all α ∈ A.
Since f(X) ⊂

⋃
α∈A Vα, we have that X ⊂

⋃
α∈A f

−1(Vα). So, we may appeal to the compactness of
X to get a finite set J ⊂ A such that {f−1(Vα)}α∈J covers X. Hence {Vα}α∈J covers f(X) and so
f(X) is compact. �
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Definition: Let f : X → Rk, from (X, dX) to (Rk, dE). We say that f is bounded if there exists M ∈ R
such that

dE(f(x),
−→
0 ) = ‖f(x)‖ ≤M, ∀x ∈ X.

Theorem 4.15: Let f : X → Rk as above. If f is continuous and if (X, dX) is compact, then f is bounded.

Definition: Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y . We say that f is bounded if f(X) is
bounded.

Theorem: Let f : X → Y . If (X, dX) is compact and f is continuous, then f is bounded.

Proof: Consider {B1(y)}y∈f(X). Since f(X) is compact, there exists n ∈ N and y1, . . . , yn ∈ f(x) such
that {B1(yi)}i=ni=1 is an open cover of f(X). Let R := max

1≤i≤n
{dY (y1, yi)}+ 1. Then, f(X) ⊂ BR(y1). �

Application: Let (X, dX) be a compact metric space and let x0 ∈ X. Define f : X → R by f(x) = d(x, x0),
for all x ∈ X. This function f is continuous, and so X is bounded.

Theorem 4.16: If (X, d) is a compact metric space and f : x→ R is continuous, then there exists p, q ∈ X
such that f(p) = sup{f(x) | x ∈ X} and f(q) = inf{f(x) | x ∈ X}, and the corresponding max and min
exist.

Proof: Since f(X) ⊂ R is compact, we know that it is closed, i.e., f(X) = f(X). �

Example: Let f : (0, 1)→ R be given by f(x) = 1/x. There is no max or min.

Theorem 4.17: Suppose (X, dX) and (Y, dY ) are metric spaces, and f : X → Y is continuous and bijective
(has an inverse), and let X be compact. Then, the inverse function f−1 : Y → X is continuous.

Proof: Recall that f : X → Y is continuous if and only if f−1(C) is closed for all closed C ⊂ Y .
Therefore, f−1 : Y → X is continuous if and only if f(C) is closed for all closed C ⊂ X. Let C be
closed in X. So, C is compact and f(C) is compact, so f(C) is closed. �

Example: Let X := [0, 2π), let f(t) = (cos t, sin t), with f : X → S1. But f−1 is not continuous at (1, 0).

Example: Let X := [0, 1] with the discrete metric. Let Y := [0, 1] with the Euclidean metric. Let f : X → Y
be the identity map. Since every function is continuous at every isolated point by definition, f is continuous
on X. The inverse function exists (just the identity), but it’s not continuous, since a tiny change of input
from Y gives a large change of output in X.

Definition: Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y . We say that f is uniformly continuous
if for all ε > 0, there exists δ > 0 such that dY (f(p), f(q)) < ε whenever dX(p, q) < δ. Written another way:

∀ε > 0,∃δ > 0, such that f
(
BXδ (p)

)
⊂ BYε (f(p)) , ∀p ∈ X.

Example: Let f : X → Y and c ∈ Y . Define f(x) := c for all x ∈ X. Let ε > 0. Let δ > 0 be anything.
Then, for all x, y ∈ X with dX(p, q) < δ, then dY (f(x), f(y)) = dY (c, c) = 0 < δ. So, you can pick any δ > 0.

Example: Consider f : X → X defined to be the identity map. Let ε > 0. It suffices to pick δ = ε.



1.4. CONTINUITY 43

Example: Consider f : (0, 1)→ (0,∞) with the Euclidean metric. Define f(x) = 1/x. This f is continuous,
but not uniformly continuous.

Example: Consider f : R→ R defined by f(x) = x2. This f is continuous, but not uniformly continuous.

Theorem 4.19: Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y be continuous. If X is compact,
then f is uniformly continuous.

Proof: Let ε > 0. By hypothesis, for all p ∈ X, there exists rp > 0 such that

f
(
BXrp(p)

)
⊂ BYε/2(f(p)).

But, the collection of balls {BX(1/2)rp(p)}p∈X is an open cover of X. So, again by hypothesis, there

exists n ∈ N and p1, . . . , pn ∈ X such that

{
BX(1/2)rpi

(pi)
}n
i=1

is an open cover of X.

Now, let δ := (1/2) min{rpi | i ∈ {1, . . . , n}} > 0. Let p, q ∈ X such that dX(p, q) < δ. We

need to show that dY (f(p), f(q)) < ε. Since X ⊂ ∪
(
BX(1/2)rpi

(pi)
)

, there exists i0 ∈ {1, . . . , n}
such that p ∈ BX(1/2)rpi0

(pi0). Then, dX(q, pi0) ≤ dX(q, p) + dX(p, pi0) < δ + (1/2)rpi0 ≤ rpi0 . So,

p, q ∈ BX(1/2)rpi0
(pi0). By continuity, f(p), f(q) ∈ BYε/2(f(pi0)). �

Example: If X ⊂ (R, dE) is bounded, but not compact, then X 6= X, so there exists x0 ∈ X ′rX. Consider
the function

f(x) :=
1

x− x0
.

This f is continuous, but not uniformly continuous.

Example: If X ⊂ (R, dE) is unbounded, then consider f(x) = x2. This f is continuous, but not uniformly
continuous.
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1.4.4 Continuity and Connectedness

Theorem 4.22: Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y be continuous. If E ⊂ X is
connected, then f(E) ⊂ Y is connected.

Proof: Assume that f(E) is disconnected. In other words, f(E) = A tB, where A ∩B = A ∩B = ∅
and A,B nonempty. We will prove the contrapositive by showing that E is disconnected. Let
G := E ∩ f−1(A) and H := E ∩ f−1(B). Since A,B nonempty, we have that G,H nonempty.
Note that E = G ∪ H. Since A ⊂ A, we have G ⊂ f−1(A) = f−1(A). So, G ⊂ f−1(A). Therefore,
G ∩H ⊂ f−1(A) ∩ f−1(B) = ∅. Similarly, G ∩H = ∅. Hence, G ∩H = ∅. So, G,H is a separation of
E and hence E is disconnected. �

Theorem 4.23: (Intermediate Value Theorem) Let f : [a, b] → R be continuous. If f(a) < f(b) and
c ∈ (f(a), f(b)), then there exists x ∈ (a, b) such that f(x) = c.

Corollary: Let f : [−1, 1]→ [−1, 1] be continuous. Then, there exists x0 ∈ [−1, 1] such that f(x0) = x0.

Proof: Let F (x) := f(x)− x. Since f is continuous, so is F . Note that F (−1) = f(−1) + 1 ≥ 0 and
F (1) = f(1)− 1 ≤ 0. If either equals zero, we’re done. If not, we can use the IVT. Either way, we find
x0 ∈ [−1, 1] such that F (x0) = 0 and thus f(x0) = x0. �

1.4.5 Discontinuities

Let f : (a, b)→ R.

Definition: f(x+) = q if and only if lim
t→x+

t = q, i.e. for all ε > 0, there exists δ > 0 such that for all

t ∈ (x, x,+δ), |f(t)− q| < ε. A analogous definition follows for lim
t→x−

t = q.

Note: Let f : (a, b)→ R and x0 ∈ (a, b). Then, lim
x→x0

f(x) = L if and only if f(x+) = f(x−) = L.

Definition: Let f : (a, b)→ R. If f is discontinuous at x and both f(x+) and f(x−) exist, then x is called
a discontinuity of the first kind. Any other kind of discontinuity is called a discontinuity of the second kind.

Note: If x is a discontinuity of the first kind for f , then either:

(1) f(x+) 6= f(x−), or

(2) f(x+) = f(x−) 6= f(x)

1.4.6 Monotonic Functions

Theorem 4.29: Let F be monotonically increasing on (a, b). Then, f(x+) and f(x−) exist for all x ∈ (a, b).
In fact

sup{f(t) | t ∈ (a, x)} = f(x−) ≤ f(x) ≤ f(x+) = inf{f(t) | t ∈ (x, b)}.

Moreover, for all x, y ∈ (a, b) with x < y, we have that f(x+) ≤ f(y−). Analogous statements hold for
monotonically decreasing functions.

Proof: By hypothesis, f(t) ≤ f(x) for all t ∈ (a, x). So, A := sup{f(t) | t ∈ (a, x)} exists. Of course,
A ≤ f(x). Let ε > 0. Then, there exists δ > 0 such that a < x−δ < x and A−ε < f(x−δ) ≤ A. Since
f is monotonically increasing, we have that f(x− δ) ≤ f(t) ≤ A for all t ∈ (x− δ, x). So, |f(t)−A| < ε
for all t ∈ (x− δ, x). Hence, A = lim

t→x−
f(t) = f(x−). The proof for f(x+) = inf{· · · } is similar.
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Now let x, y ∈ (a, b) with x < y. So, we now have that (since f is monotonically increasing):

f(x+) = inf{f(t) | t ∈ (x, b)} = inf{f(t) | t ∈ (x, y)}

and
f(y−) = sup{f(t) | t ∈ (a, y)} = sup{f(t) | t ∈ (x, y)}.

Hence f(x+) ≤ f(y−). �

Corollary: Monotonic functions have no discontinuities of the second kind.

Theorem 4.30: Let f : (a, b)→ R be monotonic. Then, the set of points of (a, b) at which f is discontinuous
is at most countable.

Proof: Let f be monotonically increasing. Let E be the set of points of (a, b) at which f is
discontinuous. Let x ∈ E. By the previous theorem f(x−) < f(x+). So, there exists r(x) ∈
(f(x−), f(x+)) ∩Q.

If x1, x2 ∈ E and x1 6= x2, then r(x1) 6= r(x2). So, r is a map from E to Q which is injective. Hence
|E| ≤ |Q|, and so E is at most countable. �

Note: Let E ⊂ (a, b) be countable. So, E = {xn}n∈N. Let {cn}n∈N ⊂ (0,∞) such that
∑
cn converges.

Define f : (a, b)→ R by

f(x) :=


∑

{n|xn<x}

cn, ∀x ∈ (a, b)

0, if {n | xn < x} = ∅
,

which is well-defined at every point x ∈ (a, b). Then,

(1) f is monotonically increasing.

(2) If xn ∈ E, then f(x−n ) ≤ f(x+n ). But, observe that f(x+n )− f(x−n ) = cn > 0.

(3) If x ∈ (a, b) r E, then f(x−) = f(x+).
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1.5 Differentiation

1.5.1 The Derivative of a Real Function

Let f : R→ R.

Definition: Let f : (a, b)→ R and x0 ∈ (a, b). f is differentiable at x0 if:

f ′(x0) := lim
x→x0

f(x)− f(x0)

x− x0
exists.

Let f : [a, b]→ R. We say that f is differentiable at a if

lim
x↘a

f(x)− f(a)

x− a
exists.

Similarly for b.

If f : I → R, where I is an interval and f is differentiable at x0 for all x0 ∈ I, then we simply say that f is
differentiable.

Theorem 5.2: If f is differentiable at x0, then f is continuous at x0. The converse is false: consider
f(x) = |x|.

Theorem 5.3: (Sum / Product / Quotient Rule) Let f, g : I → R be differentiable at x0 ∈ I. Then,

(a) f + g is differentiable at x0 and (f + g)′(x0) = f ′(x0) + g′(x0).

(b) f · g is differentiabe at x0 and (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0).

(c) f/g is differentiable at x0 and (f/g)′(x0) =
f ′(x0)g(x0)− f(x0)g′(x0)

g(x0)2
, for g(x0) 6= 0.

Example: f(x) := |x| is not differentiable at 0. g(x) := x|x| is differentiable at 0. The product rule cannot
be applied in this case to g′(0), because the individual terms are not differentiable.

Example: Let c ∈ R and f(x) := c for all x ∈ R. Then, f ′(x) = 0 for all x ∈ R: Let x0 ∈ R. Then,

lim
x→x0

f(x)− f(x0)

x− x0
= lim
x→x0

c− c
x− x0

= lim
x→x0

0

x− x0
= lim
x→x0

0

= 0.

Let g(x) = x for all x ∈ R. Let x0 ∈ R, then

lim
x→x0

g(x)− g(x0)

x− x0
= lim
x→x0

x− x0
x− x0

= lim
x→x0

1

= 1.
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Now, let h(x) := x2. Then, h(x) = (g · g)(x). So, h′(x) = g′(x)g(x) + g(x)g′(x) = x+ x = 2x.

By building up differentiable functions using Theorem 5.3, we have that all powers of x are differentiable,
so all polynomials are differentiable, so all rational functions are differentiable.

Theorem 5.5: (Chain Rule) Let f : [a, b] → R be continuous and f is differentiable at x0 ∈ [a, b]. Let
g : I → R with f([a, b]) ⊂ I. If g is differentiable at f(x0), then g ◦ f is differentiable at x0, and

(g ◦ f)′(x0) = g′(f(x0))f ′(x0).

Proof: For any y0 ∈ I such that g′(y0) exists, define

Ay0(y) :=


g(y)− g(y0)

y − y0
, if y 6= y0

g′(y0), if y = y0

Then, for all y ∈ I:

g(y)− g(y0) = Ay0(y)(y − y0).

Also

lim
y→y0

Ay0(y) = g′(y0) = Ay0(y0).

Hence, Ay0 is continuous at y0.

By hypothesis we may take y0 = f(x0). Let y = f(x). Then,

lim
x→x0

Ay0(f(x)) = Ay0(f(x0)) = g′(y0) = g′(f(x0)).

Hence,

(g ◦ f)′(x) = lim
x→x0

g(f(x))− g(f(x0))

x− x0

= lim
x→x0

Af(x0)(f(x))(y − y0)

x− x0

= lim
x→x0

[
Af(x0)(f(x)) · f(x)− f(x0)

x− x0

]
= g′(f(x0)) · f ′(x0). �
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1.5.2 Mean Value Theorems

Definition: Let (X, d) be a metric space and let f : X → R. f has a local maximum at x0 if there exists
r > 0 such that f(x) ≤ f(x0) for all x ∈ Br(x0). f has a local minimum at x0 if there exists r > 0 such that
f(x) ≥ f(x0) for all x ∈ Br(x0).

Theorem 5.8: Let f : [a, b]→ R. If f has a local maximum or a local minimum at x0 and f is differentiable
at x0, then f ′(x0) = 0.

Proof: Let f have a local maximum at x0. So, there exists r > 0 such that f(x) ≤ f(x0) for all
x ∈ Br(x0) = (x0 − r, x0 + r). If x ∈ (x0 − r, x0), then

f(x)− f(x0)

x− x0
≥ 0.

So,

0 ≤ lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0).

If x ∈ (x0, x0 + r), then,
f(x)− f(x0)

x− x0
≤ 0,

and

f ′(x0) = lim
x↘x0

f(x)− f(x0)

x− x0
≤ 0.

So, f ′(x0) = 0.

Theorem 5.9: (Generalized Mean Value Theorem) If f, g : [a, b]→ R are continuous and are differentiable
on (a, b). Then, in this setting, there exists x ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(x)

g′(x)
.

Proof: Let h(t) := (f(b)−f(a))g(t)−(g(b)−g(a))f(t). By the algebra of continuity and the hypothesis,
we have that h is continuous on [a, b] and differentiable on (a, b). Note that

h(a) = (f(b)− f(a))g(a)− (g(b)− g(a))f(a) = (f(b)− f(a))g(b)− (g(b)− g(a))f(b) = h(b).

Claim: (Rolle’s Theorem) Under these hypothesis (a function h continuous on [a, b], differen-
tiable on (a, b) and h(a) = h(b)), we have that there exists x ∈ (a, b) such that h′(x) = 0.

Proof of Claim: If h is constant, then h′ = 0, and we’re done. So, assume that h is not
constant. Then, there exists a point t ∈ (a, b) with h(t) 6= h(a) = h(b). Assume without
loss of generality that h(t) > h(a) = h(b). Hence, there exists a point x ∈ (a, b) such
that h(x) ≥ h(s) for all s ∈ [a, b], i.e., x is a maximum of the function h on [a, b]. By
Theorem 5.8, we have that h′(x) = 0. �

So, there exists a point x ∈ (a, b) such that 0 = h′(x) = (f(b)− f(a))g′(x)− (g(b)− g(a))f ′(x). Hence

f ′(x)

g′(x)
=
f(b)− f(a)

g(b)− g(a)
. �

Mean Value Theorem: (Consequence of the above theorem.) Let f : [a, b] → R be continuous and
differentiable on (a, b). Then, there exists x ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(x).
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Proof: Set g(x) := x and apply Theorem 5.9. �

Theorem 5.11: Let f : (a, b)→ R be differentiable.

(a) If f ′(x) ≥ 0 for all x ∈ (a, b), then f is monotone increasing.

(b) If f ′(x) = 0 for all x ∈ (a, b), then f is constant.

(c) If f ′(x) ≤ 0 for all x ∈ (a, b), then f is monotone decreasing.

Proof: Let x, y ∈ (a, b). Such that x < y. Apply the Mean Value Theorem to f on [x, y] to
yield f(y) − f(x) = f ′(c)(y − x) for some x ∈ (x, y). In the case (a), we have that f ′(x) ≥ 0. Since
y − x ≥ 0, we have that f(y)− f(x) ≥ 0. Since x and y were arbitrary with x > y, we have that f is
monotone increasing. In the case (b), we have that f ′(x) = 0, and conclude that f(y) = f(x) for all
x, y ∈ (a, b), making f constant. Lastly, in the case (c), we have that f ′(x) ≤ 0, and so f(y) ≤ f(x),
for all x, y ∈ (a, b), making f monotone decreasing. �

1.5.3 The Continuity of Derivatives

Now we ask the question: “What kind of discontinuities can derivatives have?” Rather surprisingly, we will
find that derivatives can have only finite jump discontinuities. (Rudin calls these “discontinuities of the first
kind”.)

Theorem 5.12: Let f : [a, b] → R which is differentiable on [a, b]. Consider λ ∈ (f ′(a), f ′(b)). Then, there
exists x ∈ (a, b) such that f ′(x) = λ.

Proof: Let λ ∈ (f ′(a), f ′(b)) and define g(t) := f(t)−λt, for all t ∈ [a, b]. Note that g′(t) = f ′(t)−λ,
and so g′(a) = f ′(a) − λ < 0. Therefore, there exists t1 ∈ (a, b) such that g(t1) < g(a). Also,
g′(b) = f ′(b)− λ > 0, and so there exists t2 ∈ (a, b) such that g(t2) < g(b).

Hence, g attains its minimum in the interval (a, b). Applying Theorem 5.8, there exists x ∈ (a, b) for
which f ′(x)− λ = g′(x) = 0. Hence at x, we have that f ′(x) = λ. �

Corollary: If f : [a, b]→ R is differentiable, then f ′ has no discontinuities of the first kind.

Corollary: If f is a derivative (has no discontinuities of the first kind) and f is monotone (can only have
discontinuities of the first kind), then f is continuous (has no discontinuities).

Example: Let

f(x) :=

{
x2 sin

1

x
, x 6= 0

0, x = 0

Now

f ′(0) = lim
x→0

f(x)− f(0)

x− 0

= lim
x→0

x2 sin
1

x
− 0

x− 0

= lim
x→0

x sin
1

x

= 0.
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We get the last equality since −|x| ≤ x sin
1

x
= |x| for all x, and so a result analogous to the squeeze theorem

gives us the equality. Assuming the differentiability of sin(x), we have that the function f(x) is differentiable
everywhere: for x 6= 0, we have that

f ′(x) = 2x sin
1

x
− x2

x2
cos

1

x
= 2x sin

1

x
− cos

1

x
.

Is the derivative continuous at x = 0?

lim
x↘0

f ′(x) = lim
x↘0

(
2x sin

1

x
− cos 1x

)
This limit does not exist because the function in the limit on the right oscillates infinitely fast close to x = 0.

Hence, f ′(x) has a discontinuity at x = 0, and by the above Theorem, this discontinuity must be of the
second kind.

1.5.4 L’Hospital’s Rule

Theorem 5.13: (L’Hôpital’s Rule) Suppose that f, g : (a, b) → R are differentiable and g′(x) 6= 0 for all
x ∈ (a, b), where −∞ ≤ a ≤ b ≤ +∞. Suppose,

lim
x%a

f ′(x)

g′(x)
=: A.

If lim
x%a

f(x) = 0 = lim
x%a

g(x), or if lim
x%a

g(x) = ±∞, then

lim
x%a

f(x)

g(x)
= A.

Similarly, the statement holds for limits taken over x 1 b.

Proof: Consider the case −∞ ≤ A < ∞. Choose q ∈ R such that A < q. Choose r ∈ (A, q). By
hypothesis, there exists c ∈ (a, b) such that

f ′(x)

g′(x)
< r, for all x ∈ (a, c).

If a < x < y < c, then by Theorem 5.9 (GMVT), we have that there exists t ∈ (x, y) such that

f(x)− f(y)

g(x)− g(y)
=
f ′(t)

g′(t)
< r. (F)

We now split into two cases:

Case 1:

If

lim
x%a

f(x) = 0 = lim
x%a

g(x),

then
f(y)

g(y)
≤ r < q, for all y ∈ (a, c).

Case 2:



1.5. DIFFERENTIATION 51

If lim
x%a

g(x) = +∞, then fix y and choose c1 ∈ (a, y) such that g(x) > g(y) and g(x) > 0 for all

x ∈ (a, c1). Multiplying (F) by
g(x)− g(y)

g(x)
, we have that

f(x)

g(x)
< r − r g(y)

g(x)
+
f(y)

g(x)
, for all x ∈ (a, c1).

Taking the limit as x % a, we find that

∃c2 ∈ (a, c1) such that
f(x)

g(x)
< q, for all x ∈ (a, c2).

So, in both cases, we have that there exists d > a such that

f(x)

g(x)
< q, for all x ∈ (a, d).

Since q > A was arbitrary, we have that

lim
x%a

f(x)

g(x)
≤ A.

Now consider −∞ < A ≤ +∞. Choose p < A. We can similarly find c3 such that

p <
f(x)

g(x)
, for all x ∈ (a, c3).

Therefore,

lim
x%a

f(x)

g(x)
≥ A.

Putting these two together, the theorem follows: If A is finite, both cases work together, and if
A = ±∞, only one case does the work. �

Definition: If I ⊂ R is an interval and f : I → R is differentiable, then f ′ : I → R is a new function with
the same domain, which we call the derivative. We can ask if this new function is also differentiable. If it is
differentiable at some x0 ∈ I, then we say that

f ′′(x0) := (f ′)′(x0)

and we call this the second derivative of f at x0. We use the notation f (n) to denote the nth derivative of f .

Definition: Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y . We say that f is Lipschitz continuous
if there exists a constant K ∈ R such that ∀x, y ∈ X : dY (f(x), f(y)) ≤ K · dX(x, y). Observe that if f is
Lipschitz continuous, then f is uniformly continuous.

Definition: With similar setup, we say that f is Hölder continuous (with exponent α) if there exists a
constant K ∈ R such that ∀x, y ∈ X : dY (f(x), f(y)) ≤ K · (dX(x, y))

α
.

Example: Consider f(x) :=
√
x on [0, 2]. This f is uniformly continuous. However, it is not Lipschitz

continuous. (To see this, consider what happens at x = 0.) This f is also Hölder continuous, for all
0 ≤ α ≤ 1/2.
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Question:

Is f(x) :=
√
x uniformly continuous on [0,∞)? Yes.

Claim: f is uniformly continuous on [0, 2]. This claim is easy, since we’re on a compact interval.

Claim: f is uniformly continuous on [1,∞). This is also easy, since if d(x, y) = δ, we have that
d(
√
x,
√
y) < δ.

Theorem: If f : (a, b)→ R is differentiable and f ′ is bounded in (a, b), then f is Lipschitz continuous.

Proof: Let x, y ∈ (a, b) with x 6= y. Applying the Mean Value Theorem to f on [x, y], then we
have the following:

|f(x)− f(y)| = |f ′(c)||x− y|, for some c ∈ (x, y).

Since f ′ is bounded in (a, b), we have that |f ′(c)| ≤M , and hence |f(x)−f(y)| ≤M |x−y|. Therefore,
f is Lipschitz continuous. �

1.5.5 Taylor’s Theorem

Theorem 5.15: (Taylor’s Theorem) Let f : [a, b] → R. Let n ∈ N, and let f (n−1) be continuous on [a, b].
Let f (n)(x) exist on (a, b). For all α, β ∈ [a, b], with α 6= β, we can define

Pn−1(t) =

n−1∑
k=0

f (k)(α)

k!
(t− α)k.

Then, there exists x with α < x < β such that

f(β) = Pn−1(β) +
f (n)(x)

n!
(β − α)n.

The right-most term can be thought of as an “error term”.

Proof: Let M ∈ R be defined by

f(β) = Pn−1(β) +M(β − α)n

and set

g(t) = f(t)− Pn−1(t)−M(t− α)n, for all t ∈ [a, b].

We need to show that n!M = f (n)(x) for some x between α and β. Note that

g(n)(t) = f (n)(t)− n!M.

So, we need to show that g(n)(x) = 0 for some x between α and β.

Since P
(k)
n−1(α) = f (k)(α) for all k ∈ {0, 1, . . . , n− 1}, it must be true that

g(α) = g′(α) = g′′(α) = · = g(n−1)(α) = 0.

By the choice of M , necessarily g(β) = 0. By Rolle’s Theorem, there exists x1 between α and β at
which g′(x1) = 0. By Rolle’s Theorem again, there exists a point x2 between α and x1 at which
g′′(x2) = 0. Iterating this procedure, we get an xn between α and β such that g(n)(xn) = 0. �



1.5. DIFFERENTIATION 53

Corollary: Under the same hypotheses, if

|f (n)(t)| ≤M, for all t ∈ (a, b),

then

|f(β)− Pn−1(β)| ≤ M

n!
|β − α|n, for all α, β ∈ (a, b).

Theorem: Let f : [a, b] → R be such that f (k) exists and is continuous for all k ∈ {2, . . . , n} in some
neighborhood of x0 ∈ (a, b). Suppose that

0 = f ′(x0) = f ′′(x0) = f ′′′(x0) = · · · = f (n−1(x0), but f (n)(x0) 6= 0.

Then:

(i) If n is even and f (n)(x0) > 0, then f has a relative (local) minimum at x0.

(ii) If n is even and f (n)(x0) < 0, then f has a relative (local) maximum at x0.

(iii) If n is off, then there is neight a local maximum nor a local minimum at x0.

Proof: (Sketch) Let x ∈ (a, b). By Taylor’s Theorem,

f(x) = Pn−1(x) +
f (n)(c)

n!
(x− x0)n, for some c ∈ (x, x0).

Since f(x0) = Pn−1(x), we have that

f(x)− f(x0) =
f (n)(c)

n!
(x− x0)n.

Now, consider signs. The proof follows. �



54 CHAPTER 1. COURSE NOTES

1.6 The Riemann Stieltjes Integral

1.6.1 Definition and Existence of the Integral

Definition: Let [a, b] ⊂ R. A partition P of [a, b] is {xk}k=nk=0 ⊂ [a, b] satisfying a = x0 ≤ x1 ≤ x2 ≤ · · · ≤
xn−1 ≤ xn = b. Let P([a, b]) be the set of all partitions of [a, b].

Definition: If f : [a, b] → R is bounded, for all i ∈ {1, . . . , n} let Mi := sup{f(x) | x ∈ [xi−1, xi]} and
mi := inf{f(x) | x ∈ [xi−1, xi]}. Define

U(P, f) :=

n∑
i=1

[Mi ·∆xi]

and

L(P, f) :=

n∑
i=1

[mi ·∆xi] ,

where ∆xi := xi − xi−1. Define ∫ b

a

f dx := inf{U(P, f) | P ∈P([a, b])}

∫ b

a

f dx := sup{L(P, f) | P ∈P([a, b])}

Note: If m := inf{f(x) | x ∈ [a, b]} and M := sup{f(x) | x ∈ [a, b]}, then

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a), ∀P ∈P([a, b]).

Definition: Denote

∫ b

a

f dx =

∫ b

a

f dx. Then we denote this value
∫ b
a
fdx and we say that f is

Riemann integrable on [a, b]. We say that f ∈ R([a, b]).

Definition: If f(x) ≥ 0 for all x ∈ [a, b] and f ∈ R([a, b]), then the area of the region caught between the

curve which is the graph of f and the interval [a, b] in the x-axis is defined to be

∫ b

a

fdx.

Let α : [a, b]→ R be monotone increasing. Let P ∈P([a, b]). Let ∆αi := α(xi)− α(xi−1). Let

U(P, f, α) :=

n∑
i=1

[Mi∆αi] ,

L(P, f, α) :=

n∑
i=1

[mi∆αi] .

Definition: Let ∫ b

a

f dα := inf{U(P, f, α) | P ∈P([a, b])},

∫ b

a

f dα := sup{L(P, f, α) | P ∈P([a, b])},
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Note that
m(α(b)− α(a)) ≤ L(P, f, α) ≤ U(P, f, α) ≤M(α(b)− α(a)), ∀P ∈P([a, b]).

If

∫ b

a

f dα =

∫ b

a

f dα, then f is Riemann-Stieltjes integrable with respect to α on [a, b]. We say that

f ∈ R(α), and we denote the integral

∫ b

a

f dα.

Definition: If P, P ∗ ∈ P([a, b]), then we say P ∗ is a refinement of P if P ⊂ P ∗. We say that
P ∪ P ∗ ∈P([a, b]) is the common refinement of P and P ∗.

Theorem 6.4: If P ∗ is a refinement of P , then

L(P, f, α) ≤ L(P ∗, f, α),

U(P, f, α) ≥ U(P ∗, f, α).

Proof: (by induction on n := |P ∗| − |P |) Note: We prove only the first inequality. The second is
proved analogously.

Suppose P ∗ = P ∪ {x∗}, with x∗ 6∈ P and xi−1 < x∗ < xi, with xi−1, xi ∈ P .

Now, let w1 := inf{f(x) | x ∈ [xi−1, x
∗]} and w2 := inf{f(x) | x ∈ [x∗, xi]}. Clearly, w1, w2 ≥ mi,

since the infimum mi is taken over a superset of the infimums w1, w2.

Hence, in the difference L(P ∗, f, α)− L(P, f, α), all terms outside of the interval [xi−1, xi] cancel out,
and what’s left is (w1(α(x∗)−α(xi−1))+w2(α(xi)−α(x∗)))−mi(α(xi)−α(xi−1)). Since w1, w2 ≥ mi

and (α(x∗)− α(xi−1) + (α(xi)− α(x∗)) = α(xi)− α(xi−1), we have that the difference is ≥ 0. Hence,
L(P, f, α) ≤ L(P ∗, f, α). �

Theorem 6.5: ∫ b

a

f dα ≤
∫ b

a

f dα.

Proof: Let P1, P2 ∈P and P ∗ := P1 ∪ P2 be the common refinement. Then,

L(P1, f, α) ≤ L(P ∗, f, α) ≤ U(P ∗, f, α) ≤ U(P2, f, α)

for all P1, P2 ∈P. So, ∫ b

a

fdα ≤ U(P2, f, α)

for all P2 ∈P. Hence, ∫ b

a

fdα ≤ inf
P∈P

U(P, f, α) =

∫ b

a

fdα. �

Theorem 6.6: f ∈ R(α) on [a, b] if and only if for all ε > 0 there exists P ∈P([a, b]) such that

0 ≤ U(P, f, α)− L(P, f, α) < ε.

Proof:

(⇐=). Observe that for all P ∈P([a, b]), we have

L(P, f, α) ≤
∫ b

a

fdα ≤
∫ b

a

fdα ≤ U(P, f, α).



56 CHAPTER 1. COURSE NOTES

Let ε > 0. By hypothesis:

0 ≤
∫ b

a

fdα−
∫ b

a

fdα < ε.

Since this is true for all ε > 0, we have that∫ b

a

fdα =

∫ b

a

fdα.

Therefore, f ∈ R(α) on [a, b]. �

(=⇒). Let f ∈ R(α) and let ε > 0. By hypothesis, there exist P1, P2 ∈P such that

0 ≤ U(P2, f, α)−
∫ b

a

fdα <
ε

2
,

and

0 ≤
∫ n

a

fdα− L(P1, f, α) <
ε

2
.

Letting P ∗ := P1 ∪ P2, by Theorem 6.4, we have that

U(P ∗, f, α) ≤
∫ b

a

fdα < L(P1, f, α) + ε ≤ L(P ∗, f, α) + ε.

So,

U(P ∗, f, α)− ε

2
≤
∫ b

a

fdα ≤ L(P ∗, f, α) +
ε

2
.

Thus,

0 ≤ U(P ∗, f, α)− L(P ∗, f, α) < ε. �

Theorem 6.7:

(a) If U(P, f, α)− L(P, f, α) < ε, then for any refinement P ∗ ∈P with P ⊂ P ∗, we have that

U(P ∗, f, α) ≤ L(P ∗, f, α) < ε.

(b) If U(P, f, α)−L(P, f, α) < ε, where P = {x0, x1, . . . , xn}, then given any i, for all si, ti ∈ [xi−1, xi], then

n∑
i=1

|f(si)− f(ti)|∆αi < ε.

(c) If f ∈ R(α) and the hypotheses of (b) hold, then∣∣∣∣∣
n∑
i=1

f(ti)∆αi −
∫ b

a

fdα

∣∣∣∣∣ < ε.
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Theorem 6.8: If f : [a, b]→ R is continuous, then f ∈ R(α) on [a, b].

Proof: Let ε > 0. Choose η > 0 such that (α(b) − α(a))η < ε. Since f is uniformly continuous
(continuous on a compact interval), there exists δ > 0 such that

|f(x)− f(t)| < η, ∀x, t ∈ [a, b] with |x− t| < δ.

Let P ∈P([a, b]) such that ∆xi < δ for all i. Now,

0 ≤Mi −mi < η

and so

U(P, f, α)− L(P, f, α) =

n∑
i=1

(Mi −mi)∆αi ≤ η
n∑
i=1

∆αi = η(α(b)− α(a)) < ε. �

Theorem 6.9: If f is monotonic on [a, b] and if α is continuous on [a, b], then f ∈ R(α) on [a, b].

Proof: Let ε > 0. Let n ∈ N. By the Intermediate Value Theorem and the fact that α is

monotonic and continuous, we have that there exists P ∈P([a, b]) such that ∆αi =
α(b)− α(a)

n
, for

all i. If f is monotonically increasing, then Mi = f(xi) and mi = f(xi−1), and so

U(P, f, α)− L(P, f, α) =

n∑
i=1

(Mi −mi)∆αi

=
α(b)− α(a)

n

n∑
i=1

(f(xi)− f(xi−1))

=
α(b)− α(a)

n
(f(b)− f(a)) < ε,

for all sufficiently large n. By Theorem 6.6, f ∈ R(α). �

Theorem 6.10: Let f : [a, b] → R be bounded and with only finitely many points of discontinuity on [a, b]
and α : [a, b] → R is monotonically increasing and continuous at every point of discontinuity for f . Then,
f ∈ R(α) on [a, b].

Proof: Let ε > 0 and M := supx∈[a,b] |f(x)|, and let E be the set of all points of discontinuity of
f . Since E is finite and α is continuous at the points of E, we can cover E by finitely many disjoint
intervals [uj , vj ] ⊂ [a, b] such that ∑

j

(α(vj)− α(uj)) < ε.

(So, E ∩ (a, b) ⊂
⋃
j(uj , vj), i.e., any point of discontinuity is not an endpoint of the intervals we’re

picking (unless it is a or b). We can do this by the continuity of α.)

Consider K := [a, b] r
⋃
j(uj , vj). K is closed and bounded in R, and so it is compact. Hence, f is

uniformly continuous on K. Hence, there exists δ > 0 such that |f(t)− f(s)| < ε whenever |s− t| < δ
and s, t ∈ K.

Let P ∈P([a, b]) satisfy:

(1) uj , vj ∈ P, ∀j,

(2) No point in (uj , vj) is in P ,

(3) If P 3 xi−1 6= uj for some j, then ∆xi < δ.
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Note that Mi −mi ≤ 2M for all i and Mi −mi ≤ ε, unless xi−1 = uj for some j. Then,

U(P, f, α)− L(P, f, α) ≤ [α(b)− α(a)]ε+ 2Mε.

Hence by Theorem 6.6, we have that f ∈ R(α). �

Example: Let f : [0, 1]→ R be defined by:

f(x) =

{
1, x ∈ Q ∩ [0, 1]
0, x ∈ (RrQ) ∩ [0, 1]

.

Let P ∈P([0, 1]). Then, for all i: Mi = 1 and mi = 0.

Theorem 6.11: Let f ∈ R(α) on [a, b]. Let m ≤ f ≤ M and let ϕ : [m,M ] → R be continuous. Then
ϕ ◦ f ∈ R(α) on [a, b].

Proof: See Rudin.

1.6.2 Properties of the Integral

Consider

θ(x) :=

{
0, x ≤ 0
1, x > 0

}
.

Theorem 6.15-6.16:

(a) If s ∈ (a, b) and f : [a, b]→ R is bounded and continuous at s, and α(x) = θ(x− s), then∫ b

a

f(x)dα(x) = f(s).

(b) If cn ≥ 0, and
∑∞
n=1 cn <∞, and {sn}n∈N ⊂ (a, b). Let f : [a, b]→ R be continuous, and

α(x) :=

∞∑
n=1

cnθ(x− sn),

then ∫ b

a

f(x)dα(x) =

∞∑
n=1

cnf(sn).

Proof of (a): Consider P := {x0, x1, x2, x3}, with x0 = a, x3 = b, and s ∈ (x1, x2). Thus,

U(P, f, α) = M2, and L(P, f, α) = m2.

As ∆x2 → 0, we have that M2,m2 → f(s). Thus,

U(P, f, α)− L(P, f, α)→ 0.

Since these considerations are valid for arbitrary refinements of P , we have that∫ b

a

fdα = f(s). �
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Proof of (b): Note that for all x ∈ R: |cnθ(x − sn)| ≤ cn, for all n ∈ N, so by the Comparison
Theorem, for all x ∈ R, the sum

∑∞
n=1 cnθ(x− sn) converges absolutely.

So, α : [a, b]→ R is monotone increasing. Note that α(a) = 0 and α(b) =
∑∞
n=1 cn. Let ε > 0 and let

N ∈ N such that

0 ≤
∞∑

n=N+1

cn < ε.

Set

α1(x) :=

N∑
n=1

cnθ(x− sn)

and

α2(x) :=

∞∑
n=N+1

cnθ(x− sn).

By part (a) and Theorem 6.12, we have that∫ b

a

fdα =

N∑
n=1

cnf(sn).

Note that

α2(b)− α2(a) =

∞∑
n=N+1

< ε.

But, ∆α2,i ≤ α2(b)− α2(a), for all i. Hence,∣∣∣∣∣
∫ b

a

fdα2

∣∣∣∣∣ ≤M(α2(b)− α2(a)) < Mε,

where M = sup
x∈[a,b]

|f(x)|. (Theorem 6.12)

Since α = α1 + α2, we have that∣∣∣∣∣∣∣∣∣∣
∫ b

a

fdα︸ ︷︷ ︸∫ b
a
fdα1+

∫ b
a
fdα2

−
N∑
i=1

cnf(sn)

∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣
∫ b

a

fdα1 −
∫ N

n=1

cnf(sn)

∣∣∣∣∣+

∣∣∣∣∣
∫ b

a

fdα2

∣∣∣∣∣ < Mε.

So, taking a limit as N →∞, the theorem follows. �

Theorem 6.17: Assume α : [a, b] → R is monotone increasing, and α′ ∈ R on [a, b]. Let f : [a, b] → R be
bounded. Then, f ∈ R(α) on [a, b] if and only if f · α′ ∈ R on [a, b] . In this case, we have that∫ b

a

fdα =

∫ b

a

f · α′dx.

Proof: Let ε > 0. By Theorem 6.6, there exists P = {x1, x2, . . . , xn} ∈P([a, b]), such that

U(P, α′)− L(P, α′) < ε.

By the Mean Value Theorem, for all i ∈ {1, . . . , n}, there exists ti ∈ [xi−1, xi] such that

∆αi = α′(ti)∆xi.
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If si ∈ [xi−1, xi], then by Theorem 6.7(b), we have that

m∑
i=1

|α′(si)− α′(ti)|∆xi < ε.

Let M− = sup
x∈[a,b]

|f(x)|. Observe that

n∑
i=1

f(si)∆αi =

n∑
i=1

f(si)α
′(ti)∆xi (F)

So, by making the substitution in (F), we have that∣∣∣∣∣
n∑
i=1

f(si)∆αi −
n∑
i=1

f(si)α
′(si)∆xi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

f(si)α
′(ti)∆xi −

n∑
i=1

f(si)α
′(si)∆xi

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

f(si)(α
′(ti)− α′(si))∆xi

∣∣∣∣∣
≤Mε.

Therefore,

n∑
i=1

f(si)∆αi ≤
n∑
i=1

f(si)α
′(si)∆xi +Mε ≤ U(P, fα′) +Mε.

Hence

U(P, f, α) ≤ U(P, fα′) +Mε.

Similarly, we have that

U(P, fα′) ≤ U(P, f, α) +Mε.

Thus,

|U(P, f, α)− U(P, fα′)| ≤Mε. �

Theorem 6.19: If ϕ : [A,B] → [a, b] is surjective, continuous, and strictly increasing, and f ∈ R(α) on
[a, b], then if we define

β := α ◦ ϕ : [A,B]→ R,

and g = f ◦ ϕ, we conclude that g ∈ R(β) on [A,B] and

∫ B

A

g dβ =

∫ b

a

f dα.

Proof: See Rudin.
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1.6.3 Integration and Differentiation

Theorem 6.20: ([equivalent to, but not normally called] Fundamental Theorem of Calculus) Let f ∈ R on
[a, b]. For all x ∈ [a, b], let

F (x) :=

∫ b

a

f(t)dt

(so F : [a, b]→ R). Then, F is continuous. Moreover, if f is continuous at x0 ∈ [a, b], then F is differentiable
at x0, and in fact F ′(x0) = f(x0).

Proof: Since f ∈ R, we have that f is bounded. Thus, there exists some M ∈ R such that

|f(t)| ≤M, ∀t ∈ [a, b].

Pick x, y such that a ≤ x < y ≤ b. Then, consider

|F (y)− F (x)| =
∣∣∣∣∫ y

a

f(t)dt−
∫ x

a

f(t)dt

∣∣∣∣ =

∣∣∣∣∫ y

x

f(t)dt

∣∣∣∣ ≤M(y − x).

For all ε > 0, if δ = ε/M , we have

|F (x)− F (y)| < ε, ∀|x− y| < δ.

Hence F is uniformly continuous on [a, b].

Now, if f is continuous at x0, then for all ε > 0, there exists δ > 0 such that |t− x0| < δ and t ∈ [a, b],
then we have that |f(t) − f(x0)| < ε. Hence, if x0 − δ < s ≤ x0 ≤ t < x0 + δ, then by Theorem
6.12(c,d), we have that∣∣∣∣F (t)− F (s)

t− s
− f(x0)

∣∣∣∣ =

∣∣∣∣ 1

t− s

∫ t

s

(f(u)− f(x0))du

∣∣∣∣
≤ 1

t− s

∫ t

s

|(f(u)− f(x0))du|

≤ ε

t− s
(t− s)

= ε.

Theorem 6.22: Let F,G : [a, b]→ R be differentiable with F ′ = f ∈ R and G′ = f ∈ R. Then,∫ b

a

F (x)g(x)dx = F (b)G(b)− F (a)G(a)−
∫ b

a

f(x)G(x)dx.

Proof: Observe that by the product rule:

(FG)′(x) = F ′(x)G(x) + F (x)G′(x) = f(x)G(x) + F (x)g(x).

So,
F (x)g′(x) = −f(x)G(x) + (FG)′(x)

for all x ∈ [a, b] (with one-sided derivatives at the endpoints).

Hence, ∫ b

a

F (x)g(x)dx =

∫ b

a

(FG)′(x)dx−
∫ b

a

f(x)G(x)dx.

By the Fundamental Theorem:∫ b

a

F (x)f(x)dx = F (x)G(x)
∣∣b
a
−
∫ b

a

f(x)G(x)dx

= F (b)G(b)− F (a)G(a)−
∫ b

a

f(x)G(x)dx. �
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1.6.4 Integration Of Vector Valued Functions

Now, consider
−→
f : [a, b] → Rk. We use the vector sign (−→) to denote vectors and vector-valued functions.

We can write
−→
f (x) = (f1(x), f2(x), · · · , fk(x)) for all x ∈ [a, b], with fi : [a, b]→ R.

Definition: We define ∫ b

a

−→
f (x) dα :=

(∫ b

a

f1(x) dα , · · · ,
∫ b

a

fk(x) dα

)
.

It is clear that
−→
f ∈ R(α) if and only if fi ∈ R(α) for all i ∈ {1, . . . , k}.

Definition: For a vector −→v ∈ Rk, we define

‖−→v ‖ :=
√−→v · −→v

where

−→v · −→v :=
k∑
i=1

vi
2.

If
−→
f : [a, b]→ Rk, then we define ‖

−→
f ‖ : [a, b]→ R by

‖
−→
f ‖(x) := ‖

−→
f (x)‖.

Theorem 6.25: (Analogous to Theorem 6.13(b)) If
−→
f : [a, b] → Rk and

−→
f ∈ R(α) for α : [a, b] → R

monotonically increasing, then ‖
−→
f ‖ ∈ R(α) and∥∥∥∥∥

∫ b

a

−→
f dα

∥∥∥∥∥ ≤
∫ b

a

‖
−→
f ‖ dα.

Proof: If
−→
f = (f1, · · · , fk), then

‖
−→
f ‖ =

(
k∑
i=1

fi
2

)1/2

.

By Theorem 6.11, fi
2 ∈ R(α) for all i ∈ {1, . . . , k}. Hence,

k∑
i=1

fi
2 ∈ R(α).

Now we show that the square root function is continuous. Recall that g(x) = x2 is continuous and one-
to-one on [0,M1/2] for some real M > 0. Since [0,M1/2] is closed and bounded, it is compact. Hence
by Theorem 4.17, the inverse function of g is continuous. The inverse function of g is g−1(x) :=

√
x,

which we now have is continuous on [0,M ], for all real M .

So, by Theorem 6.11, the function ‖
−→
f ‖ ∈ R(α) on [a, b].

Now, let

−→y :=

(∫ b

a

f1 dα , · · · ,
∫ b

a

fk dα

)
=:

∫ b

a

−→
f dα.
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Then,

‖−→y ‖2 =

k∑
i=1

yi
2

=

k∑
i=1

(
yi ·
∫ b

a

fi dα

)

=

∫ b

a

(
k∑
i=1

yi · fi(x)

)
dα(x).

Recall that |−→y ·
−→
f (x)| ≤ ‖−→y ‖‖

−→
f (x)‖, and so by Theorem 6.12(b):∫ b

a

(
k∑
i=1

yi · fi(x)

)
dα(x) ≤

∫ b

a

‖−→y ‖‖
−→
f ‖ dα

= ‖−→y ‖
∫ b

a

‖
−→
f ‖ dα.

If ‖−→y ‖ = 0, then the remaining assertion is trivially true. If ‖−→y ‖ 6= 0, then divide by it to get∥∥∥∥∥
∫ b

a

−→
f dα

∥∥∥∥∥ =: ‖−→y ‖ =

∫ b

a

‖
−→
f ‖ dα. �

1.6.5 Rectifiable Curves

Definition: Let −→γ : [a, b] → Rk. If −→γ , then it is an arc. If −→γ (a) = −→γ (b), then it is a closed curve. The
actual set of points Range(−→γ ) is called the trace of −→γ .

If P ∈P([a, b]) with P = {x0, x1, . . . , xn} and −→γ : [a, b]→ Rk is a curve, then

Λ(P,−→γ ) =

n∑
i=1

‖−→γ (xi)−−→γ (xi−1)‖.

Observe that if P1, P2 ∈P([a, b]) with P1 ⊂ P2, then

Λ(P1,
−→γ ) ≤ Λ(P2,

−→γ ).

Definition: Λ(−→γ ) := sup {Λ(P,−→γ ) | P ∈P([a, b])} .

Definition: If Λ(−→γ ) ∈ R, then −→γ is said to be rectifiable.

Definition: If f : R→ Rk or f : R→ C, then we say that f is Cn if f (n) is continuous.

Theorem 6.27: If −→γ : [a, b]→ Rk is C1, then it is rectifiable and Λ(−→γ ) =

∫ b

a

‖−→γ (t)‖ dt.

Proof: If a ≤ xi−1 < xi ≤ b, then

‖−→γ (xi)−−→γ (xi−1)‖ =

∥∥∥∥∥
∫ xi

xi−1

−→γ ′(t) dt

∥∥∥∥∥ ≤
∫ xi

xi−1

‖−→γ ′(t)‖ dt.
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So, for all P ∈P([a, b]),

Λ(P,−→γ ) ≤
n∑
i=1

∫ xi

xi−1

‖−→γ ′(t)‖ dt =

∫ b

a

‖−→γ ′(t)‖ dt.

Hence −→γ is rectifiable.

Let ε > 0. Since −→γ ′ is uniformly continuous, there exists δ > 0 such that if |s − t| < δ, then
‖−→γ ′(s) − −→γ ′(t)‖ < ε.Let P = {x0, x1, . . . , xn} ∈ P([a, b]) such that ∆xi < δ for all i. So, if t ∈
[xi−1, xi], we have that for all i, ‖−→γ ′(t)‖ ≤ ‖−→γ ′(xi)‖+ ε. So,∫ xi

xi−1

‖−→γ ′(t)‖ dt ≤ (‖−→γ ′(xi)‖+ ε) ·∆xi

=

∥∥∥∥∥
∫ xi

xi−1

[−→γ ′(t) +−→γ ′(xi)−−→γ ′(t)] dt

∥∥∥∥∥+ ε ·∆xi

≤

∥∥∥∥∥
∫ xi

xi−1

−→γ ′(t) dt

∥∥∥∥∥+

∥∥∥∥∥
∫ xi

xi−1

(−→γ ′(xi)−−→γ ′(t)) dt

∥∥∥∥∥︸ ︷︷ ︸
≤
∫ xi

xi−1

‖−→γ ′(xi)−−→γ ′(t)‖ dt︸ ︷︷ ︸
≤
∫ xi

xi−1

ε dt = ε ·∆xi

+ε ·∆xi

≤ ‖−→γ (xi)−−→γ (xi−1)‖+ 2ε ·∆xi.

Hence, ∫ b

a

‖−→γ ′(t)‖ dt =

n∑
i=1

∫ xi

xi−1

‖−→γ ′(t)‖ dt

≤
n∑
j=1

[‖−→γ (xi)−−→γ (xi−1)‖+ 2ε ·∆xi]

= Λ(P,−→γ ) + 2ε · (b− a).

Thus, ∫ b

a

‖−→γ ′(t)‖ dt ≤ Λ(−→γ ). �

Note: Let γ : [a, b] → C be rectifiable. For all t ∈ [a, b], let γt := γ
∣∣
[a,t]

. Trivially, each γt is rectifiable.

So, for all t, we can consider Λ(γt). We define |γ|(t) := Λ(γt). Note that |γ| is monotone increasing. So, we
can consider Riemann-Stieltjes integrals with |γ| as our weighting function. (This is the connection between
Riemann-Stieltjes integrals and these rectifiable curves.)

If we define ∫
γ

f d|γ| :=
∫ b

a

f(γ(t)) d|γ|(t)

for f : C→ C, then these are the contour integrals from elementary calculus. If γ is C1, then∫ b

a

f(γ(t)) d|γ|(t) =

∫ b

a

f(γ(t))γ′(t) dt
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so if γ is not C1, we need Riemann-Stieltjes integration to evaluate.

Note: We say that f : [a, b]→ R is of bounded variation if

sup

{
n∑
i=1

|f(xi)− f(xi−1)| | P = {x0, . . . , xn} ∈P([a, b])

}
∈ R.

A basic theorem in real analysis says that:

f : [a, b] → R is of bounded variation if and only if there exist monotone increasing functions
α, β : [a, b]→ R such that f = α− β.

So, we define an integral more general than the Riemann-Stieltjes integral as such:

If F, f : [a, b]→ R and if f is of bounded variation with α and β as above, define∫ b

a

F df :=

∫ b

a

F dα−
∫ b

a

F dβ.
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1.7 Sequences and Series of Functions

1.7.1 Discussion of Main Problem

Definition: Let E be a set and let (X, d) be a metric space. Let fn : E → X for all n ∈ N such that
{fn(x)}n∈N is convergent, for all x ∈ E. Then, for all x ∈ E, we can define

f(x) := lim
n→∞

fn(x)

which is defined from E to X. We say that

f = lim
n→∞

fn.

Example: In this example we show that properties of the fn do not carry over to f . Define fn : [0, 1]→ R
by fn(x) := xn. Then, the limit f is 0 on x ∈ [0, 1) and 1 at x = 1, which is not continuous, even though
each fn is C∞ (i.e., all derivatives exist and are continuous).

Remark: Now we show that asking whether the limit of continuous functions is continuous is equivalent to
asking whether we can interchange limits:

lim
t→x

f(t) = f(x)⇐⇒ lim
t→x

(
lim
n→∞

fn(t)
)

= lim
n→∞

(
lim
t→x

fn(t)
)
.

Example: Let fn : R→ R. Define fn(x) :=
x2

(1 + x2)n
. We consider the sum

∞∑
n=0

fn

if it exists. To see if it exists, we consider the sum pointwise. If x = 0 then the sum is zero. If x is nonzero,
then we have an infinite geometric series which converges to 1 + x2. So, the limit function is discontinuous
at zero.

1.7.2 Uniform Convergence

Definition: Let fn : (X, d)→ C. Let fn
n→∞−−−−→ f pointwise in X. Then, {fn}n∈N converges uniformly to f

in X if
∀ε > 0,∃N ∈ N : ∀n ≥ N, ∀x ∈ X : |fn(x)− f(x)| < ε.

Theorem 7.8: Let fn : E → C for all n ∈ N. Then, {fn}n∈N converges uniformly if and only if for all ε > 0,
there exists N ∈ N such that if m,n ≥ N then |fn(x)− fm(x)| < ε.

Proof:

(=⇒): Let {fn}n∈N converge uniformly to g. Let ε > 0. Then, there exists N ∈ N such that if
n ≥ N then for all x ∈ E, we have |fn(x)− f(x)| < ε/2. So, for all m,n ≥ N , we have that

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− fm(x)|
≤ |fn(x)− f(x)|+ |f(x)− fm(x)|
< ε/2 + ε/2

= ε.
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(⇐=): By Theorem 3.11, we have that for all x ∈ E, the limit lim
n→∞

fn(x) exists in C.

Define f(x) := lim
n→∞

fn(x) for all x ∈ E. Let ε > 0 and N ∈ N such that |fn(x)− fm(x)| < ε for

all n,m ≥ N and x ∈ E. Then, take m→∞ to get

|fn(x)− f(x)| ≤ ε, ∀n ≥ N, ∀x ∈ E. �

Lemma: A sequence {fn}n∈N of functions fn : E → C does not converge uniformly to f : E → C if and
only if there exists ε0 > 0 such that there exists a subsequence {fnk

}k∈N and {xk}k∈N ⊂ E such that

|fnk
(xk)− f(xk)| > ε, ∀k ∈ N.

Note that this is the positive negation of Theorem 7.8.

Example: Let fn(x) :=
x

n
, so that fn : R→ R. Let nk = k = xk. Then

fnk
(xn) = fk(k) = 1

for all k ∈ N. In this case f ≡ 0 and

|fnk
(xk)− f(xk)| = |1− 0| = 1 >

1

2
=: ε0.

Hence this sequence of functions does not uniformly converge on R.

Now consider the same sequence of functions restricted to [0, 1]. The functions still converge pointwise to 0,
and we no longer have this xk sequence. Observe that

|fn(x)− f(x)| =
∣∣∣x
n
− x

m

∣∣∣ ≤ |x|
n

+
|x|
m

<
2

min{n,m}
≤ 2

N
, ∀n,m ≥ N.

So, letting ε > 0, choose N ∈ N such that
2

N
< ε, and then the Cauchy criterion for uniform convergence is

satisfied. Hence this sequence does converge uniformly when the domain is restricted to [0, 1].

Example: Define fn(x) := xn for n ∈ N, with x ∈ (−1, 1]. Then

lim
n→∞

fn(x) =

{
0, x ∈ (−1, 1)
1, x = 1

Let nk = k and xk = (1/2)1/k. Then

|fnk
(xk)− f(xk)| =

∣∣∣∣12 − 0

∣∣∣∣ =
1

2
>

1

4
=: ε0.

Hence this sequence of functions does not converge uniformly on (−1, 1]. In fact it also does not converge
uniformly on (−1, 1).

Example: Consider the sequence of functions fn(x) :=
x2 + nx

n
for all x ∈ R. It’s clear that lim

n→∞
fn(x) = x

for all x ∈ R. Let nk := k and xk :=
√
k. Then,

|fnk
(xk)− f(xk)| = |1− 0| = 1 >

1

2
=: ε0.

So, this sequence of functions does not converge uniformly on R.



68 CHAPTER 1. COURSE NOTES

Theorem 7.9: Suppose that lim
n→∞

fn(x) = f(x) for all x ∈ E. Put Mn := sup
x∈E
{|fn(x) − f(x)|}. Then, fn

converges uniformly to f if and only if lim
n→∞

Mn = 0.

Theorem 7.10: (Weierstrass M -test) Let fn : E → C for all n ∈ N and |fn(x)| ≤ Mn < ∞ for all x ∈ E
and for all n ∈ N. If

∑
Mn converges, then

∑
fn converges uniformly.

Proof: If
∑
Mn converges, then for all ε > 0, there exists N ∈ N such that for all m,n ≥ N we have∣∣∣∣∣

m∑
i=n

fi(x)

∣∣∣∣∣ ≤
m∑
i=n

Mi < ε, ∀x ∈ E.

Now, the assertion follows from Theorem 7.8. �

Remark: Note that the converse to Theorem 7.10 is false.

Example: Consider

∞∑
n=0

2xn =
2

1− x
, ∀x ∈ (−1, 1). Observe that |2xn| ≤ 2 for all x ∈ (−1, 1), and

∑
2

does not converge. The sequence of functions does not converge on (−1, 1). So this is not a violation of the
converse.

However, if we cut the domain to (−1/2, 1/2), then the sequences does converge uniformly, but we get that
|2xn| ≤ 1, and

∑
1 does not converge, so this does violate the converse.

1.7.3 Uniform Convergence and Continuity

Theorem 7.11: Suppose fn → f converges uniformly (for fn : E → C) with E ⊂ C and (X, d) a metric space.
Let x ∈ E′ and suppose that lim

t→x
fn(t) = An for all n ∈ N. Then, {An}n∈N converges and lim

t→x
f(t) = lim

n→∞
An.

So,

lim
t→x

(
lim
n→∞

fn(t)
)

= lim
n→∞

(
lim
t→x

fn(t)
)
.

Proof: Let ε > 0. Since fn → f is uniform, we have that there exists N ∈ N such that if n,m ≥ N ,
then |fn(t)− fm(t)| < ε for all t ∈ E. Taking t→ x, we obtain

|An −Am| ≤ ε, ∀m,n ≥ N.

So {An}n∈N is Cauchy and therefore convergent (since (C, ‖ · ‖) is complete). Let A := lim
n→∞

An.

Estimating:
|f(t)−A| ≤ |f(t)− fn(t)|+ |fn(t)−An|+ |An −A|. (F)

Let ε > 0. Choose Ñ ∈ N such that

(i) |f(t)− fn(t)| < ε/3, for all t ∈ E and n ≥ Ñ

(ii) |AÑ −A| < ε/3.

Choose a neighborhood V of x such that

|fÑ −AÑ | < ε/3, for all t ∈ V ∩ E with t 6= q.

So, with n = Ñ in (F) and t ∈ V ∩ E, t 6= x, we have that |f(t)−A| < ε. �

Theorem 7.12: Under the assumptions of Theorem 7.11, if fn is continuous for all n ∈ N, then f is
continuous. The converse of this theorem is false.
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Example: Consider

∞∑
n=1

xn =
1

1− x
, for x ∈ [−1, 1). The convergence is not uniform.

Theorem 7.13: (Dini’s Theorem) If K ⊂ (X, d) is compact and

(a) fn : K → C is continuous, for all n ∈ N,

(b) fn → f pointwise, with f continuous as well,

(c) fn(x) ≥ fn+1(x) for all x ∈ K, n ∈ N.

Then, fn → f uniformly.

Proof: Let gn = fn − f for all n ∈ N. So, gn is continuous, for all n ∈ N and gn → 0 pointwise. Also,
gn(x) ≥ gn+1(x) for all x ∈ K. We need to prove that gn → 0 uniformly.

Let ε > 0 and Kn = {x ∈ K | gn(x) ≥ ε} = g−1n ([ε,∞)). Kn is closed and thus compact for all n ∈ N.
Also, Kn+1 ⊂ Kn for all n ∈ N. Pick x ∈ K. Since gn(x) → 0, x 6∈ Kn for all sufficiently large n.

Thus, x 6∈
⋂

(Kn). Hence,
⋂

(Kn) = ∅. Thus, {Kn}n∈N cannot have the finite intersection property.

Thus, there exists N ∈ N such that KN = ∅. Thus, |gN (x)| < ε for all x ∈ K. �

Definition: Let (X, d) be a matric space. Define C (X) to be the set of all complex valued, continuous,
bounded functions with domain X. We associate with each f ∈ C (X) its supremum norm:

‖f‖ = ‖f‖∞ := sup{|f(x)| | x ∈ X} <∞.

For any two functions f, g ∈ C (X), we define

d(f, g) := ‖f − g‖∞.

Theorem 7.15: (C (X), d) is a complete metric space.

Proof: That d is a metric is clear, since for all x ∈ X and f, g ∈ C (X), we have

|f(x)− g(x)| ≤ |f(x)− h(x)|+ |h(x)− g(x)|
≤ ‖f − h‖∞ + ‖h− g‖∞.

Taking the supremum over all x, we get the triangle inequality.

To see that the metric space is complete, let {fn}n∈N ⊂ C (X) be Cauchy. Then, {fn} is “uniformly
Cauchy” and converges pointwise to some f : X → C. By Theorem 7.8, fn → f uniformly.
By Theorem 7.12, the limit is continuous. Moreover, f is bounded since there is an n such that
|f(x)− fn(x)| < 1 for all x ∈ X, and fn is bounded. Thus, f ∈ C (X). Hence, (C (X), d) is a complete
metric space. �

1.7.4 Uniform Convergence and Integration

Theorem 7.16: Let α : [a, b] → R be monotonically increasing. Suppose fn ∈ R(α) on [a, b] for all n ∈ N.
If fn → f on [a, b], then f ∈ R(α) on [a, b], and∫ b

a

f dα = lim
n→∞

∫ b

a

fn dα.

Note that this is yet another theorem which allows us to interchange limit operations.
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Proof: Let εn := sup{|fn(x)− f(x)| | x ∈ [a, b]}. So, fn − εn ≤ f ≤ fn + ε. Hence, for all n ∈ N∫ b

a

(fn − εn) dα ≤
∫ b

a

f dα ≤
∫ b

a

f dα ≤
∫ b

a

(fn + εn) dα. (F)

Hence,

0 ≤
∫ b

a

f dα−
∫ b

a

f dα ≤
∫ b

a

2εn dα = 2εn(α(b)− α(a)).

Since εn → 0 as n→∞ by Theorem 7.9, we conclude that∫ b

a

f dα =

∫ b

a

f dα,

i.e., f ∈ R(α) on [a, b]. Therefore, (F) reads∫ b

a

(fn − εn) dα ≤
∫ b

a

f dα ≤
∫ b

a

(fn + εn) dα

for all n ∈ N. Hence

−
∫ b

a

εn dα ≤
∫ b

a

f dα−
∫ b

a

fn dα ≤
∫ b

a

εn dα.

Thus, ∣∣∣∣∣
∫ b

a

f dα−
∫ b

a

fn dα

∣∣∣∣∣ ≤ εn(α(b)− α(a))

for all n ∈ N. �

1.7.5 Uniform Convergence and Differentiation

Example: Consider
N∑
k=0

2−k cos(3kx).

This function converges uniformly on R to a function f(x) which is differentiable nowhere.

Theorem 7.17: Suppose fn : [a, b] → C is differentiable and {fn(x0)}n∈N converges for some x0 ∈ [a, b]. If
{f ′n}n∈N converges uniformly, then {fn}n∈N converges uniformly to a function f : [a, b]→ C and additionally(

lim
n→∞

fn(x)
)′

= f ′(x) = lim
n→∞

f ′n(x)

for all x ∈ [a, b].

Proof: Let ε > 0. By hypothesis, there exists N ∈ N such that if n,m ≥ N then

|fn(x0)− fm(x0)| < ε

2
and |f ′n(t)− f ′m(t)| ≤ ε

2(b− a)
, for all t ∈ [a, b].

By the Mean Value Theorem applied to fn − fm, we have that

|fn(x)− fm(x)− fn(t) + fm(t)| ≤ |f ′n(z)− f ′m(z)| · |x− t|

for some z between x and t.
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Hence, we have that

|f ′n(z)− f ′m(z)| · |x− t| ≤ ε

2(b− a)
≤ ε

2

for all x, t ∈ [a, b] and all n,m ≥ N . But,

|fn(x)− fm(x)| ≤ |fn(x)− fm(x)− fn(x0) + fm(x0)|+ |fn(x0)− fm(x0)|

<
ε

2
+
ε

2
= ε,

for all x ∈ [a, b] and n,m ≥ N . Thus, fn → f uniformly on [a, b].

Now, let x ∈ [a, b] and define

ϕn(t) :=
fn(t)− fn(x)

t− x
for t 6= x and t ∈ [a, b]. Now we define a corresponding function

ϕ(t) :=
f(t)− f(x)

t− x
.

By hypothesis,
lim
t→x

ϕn(t) = f ′n(x).

As shown above,

|ϕn(t)− ϕm(t)| ≤ ε

2(b− a)

for n,m ≥ N . Therefore, {ϕn}n∈N converges uniformly for t 6= x. Since {fn}n∈N converges to f , we
conclude from our definitions of ϕn and ϕ that

lim
n→∞

ϕn(t) = ϕ(t)

uniformly for t between a and b with t 6= x. Applying Theorem 7.11 to {ϕn}, we have that

lim
t→x

ϕ(t) = lim
n→∞

f ′n(x).

By the definition of ϕ(t), this completes the theorem. �

1.7.6 Equicontinuous Families of Functions

Let (X, d) be a metric space with E ⊂ X. Let fn : E → C.

Definition: The sequence of functions {fn}n∈N is pointwise bounded if for all x ∈ E, there exists Mx ∈ R
such that |fn(x)| ≤M for all n ∈ N.

Definition: The sequence of functions {fn}n∈N is uniformly bounded if there exists M ∈ R such that
|fn(x)| ≤M for all n ∈ N and x ∈ E.

Example: Define fn(x) = sin(nx), for x ∈ [0, 2π] and n ∈ N. Then, {fn}n∈N is uniformly bounded on [0, 2π]
and has no pointwise convergent subsequence.

Example: Define fn =
x2

x2 + (1− nx)2
for x ∈ [0, 1] and n ∈ N. Then, {fn}n∈N is uniformly bounded on

[0, 1] and fn → 0 pointwise and has no uniformly convergent subsequence.

Definition: Let F := {f : E → C}. The set F is said to be equicontinuous (on E) if for all ε > 0, there
exists δ > 0 such that |f(x)− f(y)| < ε for all x, y ∈ E with d(x, y) < δ and for all f ∈ F .

Theorem 7.23: If fn : E → C form a pointwise bounded sequences on a countable set E, then there exists
a subsequence {fnk

}k∈N which converges pointwise on E.
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Proof: Let E = {xn}n∈N. Now, for all m ∈ N, the sequence {fn(xm)}n∈N is a bounded sequence of
complex numbers and therefore has a convergent subsequence which we will denote {f1,k}, such that
{f1,k(x1)} converges as k →∞.

Now, we use a Cantor diagonalization argument. Consider the sequences S1, S2, S3, . . .:

S1 : f1,1 f1,2 f1,3 · · · −→ p1
S2 : f2,1 f2,2 f2,3 · · · −→ p2

...
...

...
...

. . .
...

...
Sn : fn,1 fn,2 fn,3 · · · −→ pn

...
...

...
...

. . .
...

...

We have the following properties:

(a) Sn is a subsequence of Sn−1 for n = 2, 3, 4, . . ..

(b) {fn,k(xk)} converges as k → ∞ (the boundedness of {fn(xn)} makes it possible to choose Sn in
this way).

(c) The order in which the functions appear is the same in each sequence; i.e., if one function precedes
another in S1, they are in the same relation in every Sn, until one of the other is deleted. Hence,
when going from one row in the above array to the next below, functions may move to the left
but never to the right.

We now go down the diagonal of the array and consider the sequence

S : f1,1, f2,2, f3,3, . . .

By (c), the sequence S (except possibly the first n−1 terms) is a subsequence of Sn, for n = 1, 2, 3, . . ..
Hence (b) implies that {fn,n(xi)} converges, as n→∞, for every xi ∈ E. �

Theorem 7.24: If (K, d) is a compact metric space with {fn}n∈N ⊂ C (K) and {fn} converges uniformly,
then {fn}n∈N is equicontinuous.

Proof: Let ε > 0. By hypothesis, there exists N ∈ N such that for all n ≥ N ,‖fn − fN‖∞ < ε. Since
fn is uniformly continuous, there exists δN > 0 such that for all x, y ∈ K with d(x, y) < δN and for all
i = 1, 2, . . . , N , we have that |fi(x)− fi(y)| < ε. So, if n > N and d(x, y) < δN , then

|fn(x)− fn(y)| ≤ |fn(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− fn(y)| < 3ε.

Combining the above facts, the theorem is proved. �

Now we prove a lemma that we will use in proving part (b) below.
Lemma: Every compact metric space (K, d) is separable, i.e., there exists a countable set E such that
E = K.

Proof: Let n ∈ N. Then, the set {B1/n(x)}x∈K is an open cover of K. So, there exists mn ∈ N such

that {B1/n(xi)}i=mn
i=1 is a cover of K. Consider

E =
⋃
n∈N
{xi}i=mn

i=1

which is a countable union of countable sets and is hence countable. Observe that this set E is dense
in K and hence E = K. �
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Theorem 7.25: (Arzelá-Ascoli Theorem) Let (X, d) be a metric space. If K ⊂ X is compact and fn ∈ C (K)
for all n ∈ N, and if {fn}n∈N is pointwise bounded and equicontinuous, then

(a) {fn}n∈N is uniformly bounded.

(b) {fn}n∈N contains a uniformly convergent subsequence.

Proof of (a): Let ε > 0. By hypothesis, there exists δ > 0 such that for all n ∈ N, if x, y ∈ K with
d(x, y) < δ, then |fn(x) − fn(y)| < ε. Consider the cover {Bδ(x)}x∈K . Since K is compact, there
exists {pk}k=nk=1 ⊂ K such that the finite set {Bδ(pk)}k=nk=1 convers K.

Since {fn}n∈N is pointwise bounded, we have that for all i ∈ {1, 2, . . . , n}, there exists Mi ∈ R such
that |fn(pi)| ≤ Mi for all n ∈ N. Let M := max{Mi | i ∈ {1, 2, . . . , n}}. Then, for all x ∈ E, we have
that |f(x)| ≤ |fn(pi)|+ ε ≤M + ε. Thus (a) holds. �

Proof of (b): Let E be a countable dense subset of K, which exists by the above Lemma. Now, by
Theorem 7.23, {fn}n∈N contains a subsequence {fnk

}k∈N converging pointwise on E. To simplify
notation, let gk := fnk

, for all k ∈ N. Let ε > 0. By equicontinuity, there exists δ > 0 such that if
x, y ∈ K and d(x, y) < δ, then for for all k ∈ N, we have that |gk(x) − gk(y)| < ε. Since E = K,
{Bδ(x)}x∈E is an open cover of K. By the compactness of K, there exists a finite open subcover
{Bδ(xk)}k=mk=1 of K.

By construction, there exists N ∈ N such that |gk(xs)−gj(xs)| < ε for all k, j ≥ N and s ∈ {1, . . . ,m}.
(To see this, apply the Cauchy condition for each s ∈ {1, . . . ,m} to find N1, . . . , Nm from the Cauchy
condition, and define N := max{N1, . . . , NM}.)

Let x ∈ K. So, x ∈ Bδ(xs) for some s ∈ {1, . . . ,m}. So, |gk(x)− gk(xs)| < ε for all k ∈ N. Hence, for
all j, k ≥ N , we have that

|gk(x)− gj(x)| ≤ |gk(x)− g − k(xs)|+ |gk(xs)− gj(xs)|+ |gj(xs)− gj(x)|
< 3ε.

Hence, the proof is complete. �

1.7.7 The Stone-Weierstrass Theorem

Theorem 7.26: (Weierstrass) Let f : [a, b] → C be continuous. There exists a sequence {Pn}n∈N of
polynomials such that Pn → f uniformly on [a, b]. If f is real-valued, the polynomials Pn can be chosen to
be real-valued.

Proof: Change variables to replace [a, b] with [0, 1]. Let y :=
x− a
b− a

and define ϕ(x) :=
x− a
b− a

. Then,

x ∈ [a, b] implies y ∈ [0, 1]. So, ϕ : [a, b]→ [0, 1] and ϕ−1 : [0, 1]→ [a, b]. Hence, Pn → f uniformly on
[a, b] if and only if Pn ◦ ϕ−1 → f ◦ ϕ−1 on [0, 1].

In addition, we can assume that f(0) = f(1) = 0, since if g(x) = f(x)− f(0)− x (f(1)− f(0)) and we
can find a uniformly convergent sequence of polynomials converging to g, then the same is true for f
since f−g is a polynomial. So, without loss of generality, we have let [a, b] = [0, 1] and f(0) = f(1) = 0.
Lastly, we define f(x) := 0 for x 6∈ [0, 1], so that f is now uniformly continuous on all of R.

For n ∈ N, let Qn(x) := cn(1−x2)n, where cn :=
1∫ 1

−1
(1− x2)n dx

, so that

∫ 1

−1
Qn(x) dx = 1. Observe
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that for all n ∈ N, we have

1

cn
=

∫ 1

−1
(1− x2)n dx

= 2

∫ 1

0

(1− x2)n dx

≥ 2

∫ 1/
√
n

0

(1− x2)n dx

≥ 2

∫ 1/
√
n

0

(1− nx2) dx (†)

=
4

3
√
n

>
1√
n
.

Hence cn ∈ (0,
√
n), for all n ∈ N.

Remark: To see the inequality used in (†): (1− x2)n ≥ (1− nx2), for all n ∈ N and x ∈ [0, 1].
Clearly, this is true if and only if

h(x) := (1− x2)n − (1− nx2) ≥ 0.

This is true because h(0) = 0 and h′(x) > 0 in (0, 1).

Now observe that for all δ ∈ (0, 1) and x ∈ [δ, 1], we have that

0 ≤ Qn(x) ≤
√
n
(
1− δ2

)n
and additionally for all δ ∈ (0, 1) and x ∈ [−1, δ] ∪ [δ, 1]

Qn(x)→ 0

and this convergence is uniform.

Next, for all n ∈ N and x ∈ [0, 1], define

Pn(x) =

∫ 1

−1
f(x+ t)Qn(t) dt

=

∫ 1−x

−x
f(x+ t)Qn(t) dt

=

∫ 1

0

f(t)Qn(t− x) dt.

Observe that Pn(x) is a polynomial in x for all n ∈ N.

Now let ε > 0. Choose δ > 0 such that |f(y)− f(x)| < ε/2 whenever |y − x| < δ.
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Define M := supx∈R |f(x)|. Then,

|Pn(x)− f(x)| =
∣∣∣∣∫ 1

−1
[f(x+ t)− f(x)]Qn(t) dt

∣∣∣∣
≤

∣∣∣∣∣
∫ −δ
−1

[f(x+ t)− f(x)]Qn(t) dt

∣∣∣∣∣+

∣∣∣∣∣
∫ δ

−δ
[f(x+ t)− f(x)]Qn(t) dt

∣∣∣∣∣+

∣∣∣∣∫ 1

δ

[f(x+ t)− f(x)]Qn(t) dt

∣∣∣∣
≤
∫ −δ
−1
|f(x+ t)− f(x)|Qn(t) dt+

∫ δ

−δ
|f(x+ t)− f(x)|Qn(t) dt+

∫ 1

δ

|f(x+ t)− f(x)|Qn(t) dt

≤ 2M

∫ −δ
−1

Qn(t) dt+
ε

2

∫ δ

−δ
Qn(t) dt+ 2M

∫ 1

δ

Qn(t) dt

≤ 2M
√
n
(
1− δ2

)n
+
ε

2

∫ 1

−1
Qn(t) dt+ 2M

√
n
(
1− δ2

)n
= 4M

√
n
(
1− δ2

)n
+
ε

2
.

Since

lim
n→∞

√
n(1− δ2)n = 0,

there exists N ∈ N such that if n ≥ N , then for all x ∈ [0, 1]

|Pn(x)− f(x)| < ε.

Lastly, if f is real-valued, then our construction yields real-valued functions. �

Corollary 7.27: For all a > 0, there exists a sequence of real-valued polynomials Pn such that Pn(0) = 0
for all N ∈ N and Pn(x)→ |x| uniformly on [−a, a].

Proof: By Theorem 7.26, ther exists a sequence {P̃n}n∈N of real-valued polynomials that converges

uniformly to |x| on [−a, a] So, P̃n → f(0) = 0. Now define Pn(x) = P̃n(x) − P̃n(0). These are the
polynomials that we want. �

Definition: Let E be a set and let f, g : E → C. Then, we define

(f + g)(x) = f(x) + g(x) ∀x ∈ E,
(fg)(x) = f(x) · g(x), ∀x ∈ E,
(cf)(x) = c · f(x), ∀c ∈ C, ∀x ∈ E.

Define F := {f : E → C}. Then,

(F ,+, scalar ·) is a complex vector space.

Additionally,

(F ,+, scalar ·, vector ·) is a complex algebra.

Definition: A ⊂ F is a complex algebra if for all f, g ∈ A and c ∈ C, we have

f + g ∈ A , f · g ∈ A , c · f ∈ A .

Example: The set of all odd polynomials is not an algebra because it is not closed under pointwise
multiplication. However, the set of all even polynomials is an algebra, as is the set of all polynomials.
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Definition: A complex (or real) algebra A is uniformly closed if for all sequences {fn}n∈N ⊂ A such that
fn → f uniformly, we have that f ∈ A .

Definition: Let A be an algebraic. Let B be the set of all uniform limits of sequences {fn}n∈N ⊂ A . Then,
B is called the uniform closure of A .

Theorem 7.29: Let B be the uniform closure of an algebra A of bounded functions. Then, B is a uniformly
closed algebra.

Proof: [See Rudin.]

Definition: Let A be a set of functions f : E → C. We say that A separates points of E if for all x1, x2 ∈ E
with x1 6= x2, we have that there exists f ∈ A such that f(x1) 6= f(x2).

Definition: A vanishes at no point in E if for all x ∈ E there exists f ∈ A such that f(x) 6= 0.

Theorem 7.31: Let A be an algebra of functions f : E → C which separates points in E and vanishes at
no point in E. Let x1, x2 ∈ E with x1 6= x2 and c1, c2 ∈ C. Then, there exists f ∈ A such that f(x1) = c1
and f(x2) = c2.

Proof: From the hypotheses, we have that there exists g, h, k ∈ A such that

g(x1) 6= g(x2),

h(x1) 6= 0,

k(x2) 6= 0.

Now define functions

u := gk − g(x1)k ∈ A ,

v := gh− g(x2)h ∈ A .

Verify that

f(x) :=
c1

v(x1)
v(x) +

c2
u(x2)

u(x) ∈ A

is the required function. �

Definition: For any real functions f, g, we define f ∨ g and f ∧ g by

(f ∨ g)(x) := max{f(x), g(x)},

(f ∧ g)(x) := min{f(x), g(x)}.

Theorem 7.32: (Stone-Weierstrass Theorem) Let (K, d) be a compact metric space and let
A ⊂ A = {continuous functions f : K → R} be a real algebra. If A separates points in K and vanishes
nowhere in K, then the uniform closure of A is A.

Proof: We prove several claims.

Claim: Let B be the uniform closure of A . Then, for all f ∈ B, we have |f | ∈ B.

Let a := sup{|f(x)| | x ∈ K} and let ε > 0. Corollary 7.27 implies that there exists some
c1, c2, . . . , cn ∈ R such that ∣∣∣∣∣

n∑
i=1

ciy
i − |y|

∣∣∣∣∣ < ε
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for all |y| ≤ a. Let

g :=

n∑
i=1

cif
i.

So, g ∈ A ⊂ B and |g(x)− |f(x)|| < ε for all x ∈ K. Therefore, |f | ∈ B.

Claim: For f, g ∈ B we have that f ∨ g ∈ B and f ∧ g ∈ B.

Note simply that

f ∨ g =
f + g

2
+
|f − g|

2
∈ B,

and similarly for f ∧ g. This extends to the fact that for functions f1, f2, . . . , fn we have that
f1 ∨ f2 ∨ · · · ∨ fn ∈ B and f1 ∧ f2 ∧ · · · ∧ fn ∈ B.

Claim: For all f ∈ A , for all x ∈ K, and for all ε > 0, there exists gx ∈ B such that gx(x) = f(x)
and gx(t) > f(t)− ε, for all t ∈ K.

Let F be as described. Since B satisfies the hypotheses of Theorem 7.31, we know that for all
y ∈ K, there exists hy ∈ B such that hy(x) = f(x) and hy(y) = f(y). Since hy is continuous, we
know that there exists open Jy ⊂ K such that hy(t) > f(t)−ε for all t ∈ Jy. But, {Jy}y∈K is an
open cover of K, so by the hypothesis, there exists a finite set {yi} ⊂ K such that K = ∪(Jyi).
Let gx := hy1 ∨ · · · ∨ hyn ∈ B. This gx satisfies the claim.

Claim: For all f ∈ A and ε > 0, there exists h ∈ B such that ‖h− f‖∞ < ε.

The earlier gx being continuous implies that there exists some neighborhood Vx containing x
such that gx(t) < f(t) + ε for all t ∈ Vx. Using the compactness of K again, there is some
open cover {Vxi}i=mi=1 such that K ⊂ ∪(Vxi). Define h := gx1 ∧ · · · ∧ gxm ∈ B. We know that
h(t) > f(t) − ε for all t ∈ K. Therefore, h(t) < f(t) + ε, for all t ∈ K. Thus, |h(t) − f(t)| < ε
for all t ∈ K, and hence ‖h− f‖∞ < ε.

This proves the theorem. �

Definition: Given a function f : E → C, we define f∗ by

f∗(x) = f(x)

where f(x) is the complex conjugate of f(x).

Definition: Let F := {f : E → C}. Then, A ⊂ F is self-adjoint if for all f ∈ A , we have that f∗ ∈ A .

Theorem 7.33: Suppose A ⊂ C (K) is a self-adjoint complex algebra. Let A separate points in K and
vanish at no point in K. Then, A is (uniformly) dense in C (K).

Proof: Let AR := {f ∈ A | f : E → R}. Observe that for all f ∈ A , we have that

u =
f + f∗

2
∈ AR,

v =
f − f∗

2
∈ AR.

By Theorem 7.31, for x1 6= x2, there exists f ∈ A such that f(x1) = 1 and f(x2) = 0. So,

u(x1) = 1 6= 0 = u(x2).
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Thus AR separates points of K. By hypothesis, given x ∈ K there exists g ∈ A such that g(x) 6= 0.
So, there exists λ ∈ C such that λg(x) > 0.

Define f = λg = u + iv. Note that u(x) > 0, and hence AR vanishes at no point of K. Applying
the Stone-Weierstrass Theorem (7.32), we have that AR is uniformly dense in CR(K). So, for all

f ∈ C (K), since we can write f = u+ iv with u, v ∈ A
‖·‖∞
R . So, we have that f = u+ iv ∈ A

‖·‖∞
.

Now there exists {gn}n∈N ⊂ AR such that gn → u uniformly, and there exists {hn}n∈N ⊂ AR such that
hn → v unfiromly. Hence, gn+ihn → f and the convergence is uniform. This completes the theorem. �
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1.8 Some Special Functions

1.8.1 Power Series

Theorem 8.1: Suppose
∑
cnx

n has radius of convergence R > 0. Let f(x) :=
∑
n≥0

xnx
n for all x ∈ (−R,R).

For all ε > 0, the power series
∑
cnx

n converges uniformly to f on [−R+ ε, R− ε], and f is continuous and
differentiable on (−R,R), and

f ′(x) =
∑
n≥1

ncnx
n−1, ∀x ∈ (−R,R).

Proof:

Let ε ∈ (0, R). For |x| ≤ R− ε, we have that

|cnxn| = |cn||x|n ≤ |cn|(R− ε)n.

But,
∑
|cn||R−ε|n converges. So, by Theorem 7.10, we have that

∑
cnx

n converges on [−R+ε, R−ε].
So, f is continuous on [−R+ ε, R− ε for all ε > 0, and so f is continuous for x ∈ (−R,R). Note that(

N∑
n=0

cnx
n

)′
=

N∑
n=0

ncnx
n−1.

Now, we have that

lim sup
n→∞

(n|cn|)1/n = lim sup
n→∞

(
n1/n

)
(|cn|)1/n = R.

So,
∑
ncnx

n−1 converges absolutely for all x ∈ (−R,R). By the argument above,
∑
ncnx

n−1 converges
uniformly on [−R+ ε, R− ε] for all ε > 0. �

Theorem 8.2: (Abel’s Theorem) Assume
∑
cnx

n has radius of convergence 1. Suppose
∑
cn converges.

Then
∑
cnx

n converges on (−1, 1]. Let

f(x) =

∞∑
n=0

cnx
n

for x ∈ (−1, 1]. We have

lim
x11

f(x) =

∞∑
n=1

cn = f(1).

Proof: Let sn =
∑n
k=0 cj and s−1 = 0. Then

m∑
n=0

cnx
n =

m∑
n=0

(sn − sn−1)xn

= (1− x)

m−1∑
n=0

snx
n + smx

m for all m ∈ N and x ∈ R.

Let s := lim
n→∞

sn =

∞∑
n=0

cn. For |x| < 1 and m→∞, we find that

f(x) = (1− x)

∞∑
n=0

snx
n.
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Let ε > 0. By hypothesis, there exists N ∈ N such that for all n ≥ N , we have that |s− sn| < ε. Note
that

(1− x)

∞∑
n=0

xn =
1− x
1− x

= 1

for all |x| < 1. Thus

|f(x)− r| =

∣∣∣∣∣(1− x)

∞∑
n=0

snx
n − s

∣∣∣∣∣
=

∣∣∣∣∣(1− x)

∞∑
n=0

snx
n − (1− x)

∞∑
n=0

sxn

∣∣∣∣∣
=

∣∣∣∣∣(1− x)

∞∑
n=0

(sn − s)xn
∣∣∣∣∣

≤ (1− x)

N∑
n=0

|sn − s||x|n +

∣∣∣∣∣(1− x)

∞∑
n=N+1

(sn − s)xn
∣∣∣∣∣

≤ (1− x)

N∑
n=0

|sn − s||x|n + (1− x)

∞∑
n=N+1

|sn − s||x|n

≤ (1− x)

N∑
n=0

|sn − s||x|n + ε

[
(1− x)

∞∑
n=N+1

xn

]
for x > 0

≤ (1− x)

N∑
n=0

|sn − s||x|n + ε

[
(1− x)

∞∑
n=0

xn

]

≤ (1− x)

N∑
n=0

|sn − s|xn + ε

≤ δ
N∑
n=0

|sn − s|+ ε for δ ∈ (0, 1) and x ∈ (1− δ, 1).

So, we can pick δ close enough to zero to shrink the sum. Hence we can make this sum as small as we
want, to get that

|f(x)− s| < 2ε

for all x ∈ (1− δ, 1), which completes the proof. �

Remark: We now prove a variant of the above theorem (which is actually how Rudin Theorem 8.2, even
though what he proves is the above theorem).

Theorem 8.2’: Let
∑
cn converge. Then with f(x) =

∞∑
n=0

cnx
n for x ∈ (−1, 1] we have

lim
x11

f(x) = f(1).

Proof: By Theorem 3.39, there exists a unique R ≥ 0 such that
∑
cnx

n converges if |x| < R and
diverges if |x| > R. We claim that if

∑
cn converges, then R ≥ 1. Assume R < 1. Then, R < |1| and∑

cn(1)n =
∑
cn converges. So, R ≥ 1. Now proceed by the above theorem. �
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Remark: We cannot always interchange summations. For an example where this fails, define,

ai,j =

 0, i < j
−1, i = j
2j−i, i > j

.

Now,

∞∑
i=1

∞∑
j=1

ai,j = −2 6= 0 =

∞∑
j=1

∞∑
i=1

ai,j .

We now prove a theorem which gives us a sufficient condition for summation interchange.

Theorem 8.3: For {ai,j}i,j∈N ⊂ R, suppose that

∞∑
j=1

|ai,j | = bi for all i ∈ N and
∑
bi is convergence. Then,

∞∑
i=1

∞∑
j=1

ai,j =

∞∑
j=1

∞∑
i=1

ai,j .

Proof: Let E := {xn}n∈(N∪{0}) with xn → x0. For all i ∈ N define fi : E → R by

fi(x) :=



∞∑
j=1

ai,j , if x = x0,

n∑
j=1

ai,j , if x = xn.

,

and define g : E → R by

g(x) :=

∞∑
i=1

fi(x)

for all x ∈ E. Note that fi(xn)
n→∞−−−−−→ fi(x0) for all i ∈ N.

So, fi is continuous at x0 for all i ∈ N. Note that

|fi(x)| ≤ bi

for all x ∈ E and all i ∈ N. Hence,

∞∑
i=1

fi

converges uniformly on E and so g is continuous at x0.
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Computing,

∞∑
i=1

∞∑
j=1

ai,j =

∞∑
i=1

fi(x0)

= g(x0)

= lim
n→∞

g(xn)

= lim
n→∞

( ∞∑
i=1

fi(xn)

)

= lim
n→∞

 ∞∑
i=1

n∑
j=1

ai,j


= lim
n→∞

 n∑
j=1

∞∑
i=1

ai,j


=

∞∑
j=1

∞∑
i=1

ai,j . �

Theorem 8.4: Suppose f(x) =

∞∑
n=0

cnx
n with |x| < R. If a ∈ (−R,R), then

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

for all |x− a| < R− |a|.

Proof: Note that

f(x) =

∞∑
n=0

cnx
n

=

∞∑
n=0

cn((x− a) + a)n

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
an−m(x− a)m

)
?
=

∞∑
m=0

( ∞∑
n=m

(
n

m

)
cna

n−m

)
(x− a)m.

Theorem 8.3 tells us that this exchange of limits is permissiable if

∞∑
n=0

∞∑
m=0

∣∣∣∣cn(nm
)
an−m(x− a)m

∣∣∣∣ =
∑
n=0

|cn| (|x− a|+ |a|)n <∞.

But this series does in fact converges as long as |x−a|+ |a| < R, i.e., |x−a| < R−|a|. So, the theorem
holds. �

Theorem 8.5: Suppose
∑
anx

n and
∑
bnx

n both converge in (−r, r) =: S. Let

E := {x ∈ S |
∞∑
n=0

anx
n =

∞∑
n=0

bnx
n}.
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If E has a limit point in S (i.e., E′ ∩ S 6= ∅), then an = bn for all n ∈ N ∪ {0}, and so E = S.

Proof: Let cn = an − bn and f(x) =
∑∞
n=0 cnx

n for x ∈ S. Then, f(x) = 0 for all x ∈ E. Let
A := E′ ∩ S and B := S r A. B is open relative to S and R. If A = A◦, then S = A t B. Since S is
connected, we must have either A = ∅ or B = ∅. By hypothesis, B = ∅. Since f is continuous, this
implies that f(x) = 0 for all x ∈ S. [To be continued.]

1.8.2 The Exponential And Logarithmic Functions

Example: Consider the differential equation y = y′, with y(0) = 1. Then, the solution is the power series

∞∑
n=0

xn

n!
.

Applying the ratio test, we see that the radius of convergence of this power series is∞. If we instead consider
the power series in the complex plane, as

E(z) :=

∞∑
n=0

xn

n!
,

then we still have radius of convergence ∞, i.e., it converges on the entire complex plane.

By Theorem 3.50, we have that

E(z)E(w) =

( ∞∑
n=0

zn

n!

)( ∞∑
m=0

wm

m!

)

=

∞∑
n=0

n∑
k=0

zkwn−k

k!(n− k)!

=

∞∑
n=0

(
1

n!

(
n∑
k=0

(
n

k

)
zkwn−k

))

=

∞∑
n=1

1

n!
(z + q)n

= E(z + w).

So, E(z)E(−z) = E(z − z) = E(0) = 1, and E(z) 6= 0 for all z ∈ C. Observe that

lim
h→0

E(x+ h)− E(x)

h
= E(x) lim

h→0

E(h)− E(0)

h
= E(x) > 0.

Therefore, E(z) is indeed a solution to the given initial value problem. We also have that E
∣∣
R is strictly

increasing and so has an inverse. Let L :=
(
E
∣∣
R

)−1
be that inverse. So, L is differentiable and also strictly

increasing. We have

L(E(x)) = x

for all x ∈ R, and so

L′(E(x))E′(x) = 1,

which tells us that L′(y) = 1
y .

Since L(E(0)) = 0, we have that L(1) = 0, and we have that

L(x) =

∫ x

1

1

y
dy.
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See Rudin for more analysis of these two functions E(x) and L(x) (which we secretly know to be our
exponential function exp(x) = ex and logarithmic function ln(x)).

Remark: Now, for arbitrary α ∈ R and x > 0, we can define

xα = eα ln(x).

1.8.3 The Trigonometric Functions

Example: Consider the initial value problems y′′ + y = 0, with either [y(0) = 1 and y′(0) = 0] or [y(0) = 0
and y′(0) = 1]. These two problems respectively have power series solutions

C(x) :=

∞∑
n=1

(−1)n

(2n)!
z2n

and

S(x) :=

∞∑
n=1

(−1)n

(2n+ 1)!
z2n+1.

We can extend these two functions onto the entire complex plane.

Remark: Observe that for all x ∈ R,

E(ix) + E(−ix)

2
= C(x)

and
E(ix)− E(−ix)

2i
= S(x).

This can be easily shown by looking at corresponding terms in the power series expansions of each side.

Remark: Observe also that for all z ∈ C and x ∈ R, we have that

E(z) = E(z)

and therefore

E(ix) = E(−ix).

Thus, C, S;R→ R.

Remark: Let x0 = min{x > 0 | C(x) = 0}. This exists because C−1({0}) is a closed set and C(0) = 1.
Now, x0 = π

2 , and so E(ix), S(x), C(x) are periodic with period 2π.

1.8.4 The Algebraic Completeness Of The Complex Field

[No notes for this section.]
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1.8.5 Fourier Series

Definition: The general trigonometric polynomial is

a0 +

N∑
n=1

(an cos(nx) + bn sin(nx))

where N ∈ N, x ∈ R, and {ai}, {bi} ⊂ C.

Remark: Since eiθ = cos(θ) + i sin(θ) with θ ∈ R, we can actually write a trigonometric polynomial in the
following form

f(x) =

N∑
n=−N

cne
inx

with {cj} ⊂ C.

Note:
1

2π

∫ π

−π
einx dx =

{
1, n = 0
0, n ∈ Z r {0} .

Thus,

1

2π

∫ π

−π
f(x)e−imx dx =

N∑
n=−N

cn
1

2π

∫ π

−π
einxe−imx︸ ︷︷ ︸
ei(n−m)x

dx

=

{
cm, |m| ≤ N
0, |m| > N

=

N∑
n=−N

cnδnm,

where

δnm =

{
1, n = m
0, n 6= m

.

Remark: For all N ∈ N, the set
{einx}n=Nn=−N

is linearly indepdendent (in C ([−π, π])).

Remark: Let (V,+, ·) be a vector space. Consider the inner product map

〈·, ·〉 : V × V → C

on V . Then, we can define
‖v‖ :=

√
〈v, v〉.

This is a norm and we can use it as a metric, with d(u, v) := ‖u− v‖.

Definition: We say that two vectors u, v ∈ V are orthogonal with respect to 〈·, ·〉 if 〈u, v〉 = 0. In the
case of Euclidean space and with the dot product, this is our geometric interpreation of orthogonality (i.e.
perpendicularity).

Consider: For all f, g ∈ C ([−π, π]), we define

〈f, g〉 :=

∫ π

−π
f(x)g(x) dx,
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and using an exercise from Chapter 7,

[0 = 〈f, f〉] =⇒ [f = 0],

since

〈f, f〉 =

∫ π

−π
|f(x)|2 dx.

However, in L2([−π, π]) := {f : [−π, π] → C | |f |2 ∈ R([−π, π])}, the same is not true. If the integral of
|f(x)|2 is zero, then it does not necessarily hold that f(x) = 0.

Remark: As above,
1

2π

∫ π

−π
einxe−imx dx =: δnm

for all n,m ∈ Z. Letting

ϕn(x) :=
1√
2π
einx

for all x ∈ [−π, π] and n ∈ Z, we have that

〈ϕn, ϕm〉 = δnm

and so the set {ϕn}n∈N is an orthonomal family in (C ([−π, π]), 〈·, ·〉).

Definition: Let ϕn : [a, b]→ C for all n ∈ N. Then, {ϕn}n∈N is orthonormal on [a, b] if

〈ϕn, ϕm〉 =

∫ b

a

ϕn(x)ϕm(x) dx = δnm

for all n,m ∈ N.

Definition: If {ϕn}n∈N is orthonormal on [a, b] and if we define

cn :=

∫ n

a

f(t)ϕn(t) dt = 〈f, ϕn〉

for all n ∈ N, then the {cn}n∈N are called the Fourier coefficients of f with respect to {ϕn}n∈N. In this case,
we write f

∑∑
cnϕn.

Theorem 8.11: Let f ∈ R on [a, b] and {ϕn}n∈N be orthonormal on [a, b]. Let

sn(x) :=

n∑
m=1

cm(f)ϕm(x)

and

tn(x) :=

n∑
m=1

γmϕm(x)

for {γm}m=n
m=1 ⊂ C. Then, ∫ b

a

|f − sn|2 dx ≤
∫ b

a

|f − tn|2 dx

for all n ∈ N and equality holds if and only if γm = cm(f) for all m = 1, 2, . . . , n.
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Proof: First note that

(〈f, tn, )〉 =

∫ b

a

ftn dt

=

n∑
m=1

∫ b

a

f(t)γmϕn(t) dt

=

n∑
m=1

γmcm.

But,

‖tn‖2 =

∫ b

a

tn(x)tn(x) dx

=

n∑
m=1

n∑
k=1

γmγk

∫ b

a

ϕm(x)ϕk(x) dx︸ ︷︷ ︸
δmk

=

n∑
m=1

|γm|2

for all n ∈ N. So,∫ b

a

|f − tn|2 dx =

∫ b

a

|f |2 dx−
∫ b

a

ftn dx−
∫ b

a

ftn dx+

∫ b

a

|tn|2 dx

=

∫ b

a

|f |2 dx−
n∑

m=1

γmcm −
n∑

m=1

γmcm +

n∑
m=1

|γm|2

=

∫ b

a

|f |2 dx−
n∑

m=1

|cm|2 +

n∑
m=1

|γm − cm|2.

This is minimized exactly when γm = cm for all m ∈ {1, 2, . . . , n}. If so, then∫ b

a

|sn|2 dx =

n∑
m=1

|cm|2 ≤
∫ b

a

|f |2 dx.

This completes the theorem. �

Theorem 8.12: If {ϕn}n∈N is orthonormal on [a, b] and f
∑∑

cnϕn, then

∞∑
n=1

|cn|2 ≤
∫ b

a

|f |2 dx
(

= ‖f‖22
)
.

This is called Bessel’s Inequality. In particular,

lim
n→∞

cn = 0

as long as ∫ b

a

|f |2 dx <∞.

Proof: Let n→∞ in the conclusion of the previous theorem. �
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Definition: Let

ϕn(x) :=
1√
2π
einx

for all n ∈ Z. The family {ϕn}n∈Z is orthonormal on [−π, π]. Now, we restrict our analysis to functions
f ∈ R([−π, π]) which are periodic with period 2π. Now, the Fourier series of f is the series whose coeffieiceints
cn are given by the integrals

cn :=
1

2π

∫ π

−π
f(x)e−inx dx

and

sN (x) = sN (f ;x) =

N∑
n=−N

cne
inx

is the N th partial sum of the Fourier series.

Remark: From the proof of Theorem 8.11, we have that

1

π

∫ π

−π
|sN (x)|2 dx =

N∑
n=−N

|cn|2

≤ 1

2π

∫ π

−π
|f(x)|2 dx.

Definition: We define the Dirichlet kernel by

DN (x) :=

N∑
n=−N

einx =
sin
[(
N + 1

2

)
x
]

sin
[
x
2

] . (F)

The leftmost equality if the definition. The rightmost equality is true because

(eix − 1)DN (x) = ei(N+1)x − e−iNx

and so

e−ix/2(eix − 1)︸ ︷︷ ︸
eix/2−e−ix/2

= ei(N+1/2)x − e−i(N+1/2)x.

Remark: Consider f : [−π, π]→ R periodic with period 2π. Now,

sN (f ;x) =

N∑
n=−N

(
1

2π

∫ π

−π
f(t)e−int dt

)
einx

=
1

2π

∫ π

−π
f(t)

N∑
n=−N

ein(x−t) dt

=
1

2π

∫ π

−π
f(t)DN (x− t) dt.

Using the change of variable y := x− t, we have,

1

2π

∫ π

−π
f(t)DN (x− t) dt. =

1

2π

∫ x+π

x−π
f(x− y)DN (y) dy

=
1

2π

∫ π

−π
f(x− y)DN (y) dy.
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Theorem 8.14: If for some x ∈ [−π, π] there exists δ > 0 and M <∞ such that

|f(x+ t)− f(x)| ≤M |t|

for all t ∈ (−δ, δ), then

lim
N→∞

SN (f ;x) = f(x).

Proof: Let

g(x) :=


f(x− t)− f(x)

sin
(
t
2

) , 0 < |t| ≤ π

0, t = 0
.

Note that,
1

2π

∫ π

−π
DN (x) dx = 1

and so

|sN (f ;x)− f(x)| =
∣∣∣∣ 1

2π

∫ π

−π
f(x− t)DN (t) dt− 1

2π

∫ π

−π
f(x)DN (t) dt

∣∣∣∣
=

∣∣∣∣∣ 1

2π

∫ π

−π
(f(x− t)− f(x)) · · ·

sin
((
N + 1

2

)
t
)

sin
(
t
2

) dt

∣∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

−π
g(t) sin

((
N +

1

2

)
t

)
dt

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

−π
g(t) cos

(
t

2

)
sin (Nt) dt+

1

2π

∫ π

−π
g(t) sin

(
t

2

)
cos (Nt) dt

∣∣∣∣ .
By hypothesis, we have that

|g(t)| = |f(x− t)− f(x)|∣∣sin ( t2)∣∣ ≤ M |t|∣∣sin ( t2)∣∣ .
For t ∈ (−δ, δ), the Mean Value Theorem allows us to bound

∣∣sin ( t2)∣∣ by |t| − |c|
∣∣cos

(
t
2

)∣∣ t, which
is then bounded by |t|α for some α > 0. By cancellation of |t|, we see that |g(t)| is bounded on (−δ, δ).
So, ∫ δ

−δ
|g(t)| dt ≤M · 2δ.

Thus, g ∈ R([−π, π]), and so as N →∞, the two integrals above go to zero, and this forces that

|SN (f ;x)− f(x)|

also goes to zero. �

Corollary: If f(x) = 0 for all x ∈ [−π, π], then for all such x,

lim
N→∞

SN (f ;x) = 0.

If f, g : [−π, π] → R (or C) are periodic with period 2π and if there exists δ > 0 and x ∈ [−π, π] such that
f(t) = g(t) for all t ∈ (x− δ, x+ δ), then f(t)− g(t) = 0 for all t ∈ (x− δ, x+ δ).

Theorem 8.15: If f : [−π, π]→ R is continuous and periodic with period 2π, then for all ε > 0 there exists
a trigonometric polynomial Pε such that ‖f − Pε‖∞ < ε.
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Theorem 8.16: (Parseval’s Theorem) Let f, g ∈ R([−π, π]) have period 2π and let f ∼
∑
cne

inx and
g ∼

∑
γne

inx. Then,

lim
N→∞

1

2π

∫ π

−π
|f(x)− sN (f ;x)|2 dx︸ ︷︷ ︸

=‖f−sN (f)‖22

= 0.

Additionally,

1

2π

∫ π

−π
f(x)g(x) dx =

∞∑
n=−∞

cnγn,

and

1

2π

∫ π

−π
|f(x)|2 dx =

∞∑
n=−∞

|cn|2.

Proof: To save writing, we use the notation

‖h‖2 :=

(
1

2π

∫ π

−π
|h(x)|2 dx

)1/2

,

〈f, g〉 :=
1

2π

∫ π

−π
f(x)g(x) dx,

‖f‖22 := 〈f, f〉.

Let ε > 0. By hypothesis, we can use Exercise 6.12 to conclude that there exists a continuous
(2π-periodic) function h such that ‖f − h‖2 < ε. By Theorem 8.15, there exists a trigonometric
polynomial P such that ‖h− P‖∞ < ε. So, ‖h− P‖2 < ε.

Defining deg(P ) =: N0, we have by Theorem 8.11 that

‖h− SN (h)‖2 ≤ ‖h− P‖2 < ε

for all N ≥ N0. So, by Theorem 8.11 again,

‖sN (h)− sN (f)‖2 = ‖sN (h− f)‖2 ≤ ‖h− f‖2 < ε.

Hence

‖f − sN (f)‖2 ≤ ‖f − h‖2 + ‖h− sN (h)‖2 + ‖sN (h)− sN (f)‖2 < 3ε

for all N ≥ N0. Since N0 depended on P and P depended on h and ε, and h depended on ε, this
completes the proof of the first equality.

Now, we have that

lim
N→∞

‖f − sN (f)‖2 = 0 = lim
N→∞

‖g − sN (g)‖2.

The Cauchy-Schwarz inequality tells us that

|〈einx, g(x)〉 − 〈einx, sN (g;x)〉| = |〈einx, g(x)− sN (g;x)〉|
≤ ‖einx‖2 · ‖g − sN (g)‖2
= ‖g − sN (g)‖2
N→∞−−−−−−→ 0.



1.8. SOME SPECIAL FUNCTIONS 91

This convergence is uniform for n ∈ Z. Additionally, we see that

〈SN (f), g〉 =

N∑
n=−N

cn〈einx, g〉

= lim
M→∞

N∑
n=−N

cn〈einx, SM (g)〉.

= lim
M→∞

M∑
m=−M

N∑
n=−N

cnγm 〈einx, eimx〉︸ ︷︷ ︸
=δnm

= lim
M→∞

N∑
n=−N

cnγn

=

N∑
n=−N

cnγn.

Hence,

|〈f, g〉 − 〈sN (f), g〉| = |〈f − SN (f), g〉|
≤ ‖f − SN (f)‖2 · ‖g‖2
N→∞−−−−−−→ 0.

This completes the proof of the second equality.

The third equality is the special case of the second equality in which f = g. �

1.8.6 The Gamma Function

[No notes for this section.]
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1.9 Functions of Several Variables

1.9.1 Linear Transformations

This section is a review of undergraduate-level linear algebra. Consequently, we provide just a short review
here. However, the material may be on exams, so it should be reviewed.

We can consider the set
L (Rn,Rm) := {A : Rn → Rm | A linear}.

This is the set of all linear transformations from Rn to Rm. This set is closed under additional and
multiplication in the following way:

(A+B)(−→x ) := A(−→x ) +B(−→x ), ∀−→x ∈ Rn,

(c ·A)(−→x ) := c ·A(−→x ), ∀−→x ∈ Rn, ∀c ∈ R.

We define
‖A‖ := sup{‖A(−→x )‖ | −→x ∈ Rn such that ‖−→x ‖ ≤ 1}.

Note that all three uses of ‖ · ‖ in the above definition are different.

We recall from linear algebra that L (Rn,Rm) ∼= Rnm as vector spaces. Consequently,

L (R,Rm) ∼= Rm

and
L (Rn,R) ∼= Rn.

1.9.2 Differentiation

Notation: We denote by
−→
f : Rn → Rm a function whose domain and range are vector spaces.

Remark: When we found derivatives previously, we were required to take quotients and limits as the
denominator of the quotient went to zero. Much fretting was done in the 19th century about how to consider
the quotient of vectors. It turns out that not only can we not find a way to divide vectors, but in fact there
does not exist such a way. So, we need to find a different way to generalize these derivatives.

Remark: In the one-dimensional case, we said that f : R → R is differentiable at x if there exists L ∈ R
such that

lim
h→0

f(x+ h)− f(x)

h
= L.

An equivalent condition for this is:

lim
h→0

f(x+ h)− f(x)− Lh
h

= 0.

This equivalent condition generalizes well to vector-valued functions.

Definition: We say that
−→
f : R→ Rm is differentiable at x if∥∥∥∥∥ lim

h→0

−→
f (x+ h)−

−→
f (x)− h ·

−→
L

h

∥∥∥∥∥ = 0
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for some
−→
L ∈ Rm. Of course, this is equivalent to saying

lim
h→0

‖
−→
f (x+ h)−

−→
f (x)− h ·

−→
L ‖

‖h‖
= 0

where ‖h‖ = |h|. Note that
−→
L is not really a vector. It’s really a linear transformation, but can be treated

as a vector by the discussion in the previous section, under the isomorphism L (R,Rm) ∼= Rm. So, if this

holds, the linear transformation
−→
L (x) is the derivative. As mentioned, when one side is one-dimensional (as

presented in this definition), we can treat
−→
L like a vector.

Remark: It follows from this definition that if
−→
f is differentiable at −→x , then

−→
f is continuous at −→x .

Theorem 9.12: Let
−→
f : E → Rm for E ⊂ Rn. Let A1, A2 ∈ L (Rn,Rm) both be derivatives of

−→
f . Then,

A1 = A2.

Proof: Define B := A1 −A2, and consider the quantity

‖B
−→
h ‖

‖
−→
h ‖

.

By adding and subtracting the same thing and using the triangle inequality, we get that

‖B
−→
h ‖

‖
−→
h ‖

=
‖(A1 −A2)(

−→
h )‖

‖
−→
h ‖

≤ ‖
−→
f (−→x +

−→
h )−

−→
f (−→x )−A1(

−→
h )‖

‖
−→
h ‖

+
‖
−→
f (−→x +

−→
h )−

−→
f (−→x )−A2(

−→
h )‖

‖
−→
h ‖

which goes to zero as
−→
h → −→0 . Hence, for all

−→
h 6= −→0 , we have that

‖B(
−→
h )‖

‖
−→
h ‖

=
‖B(t ·

−→
h )‖

‖t ·
−→
h ‖

→ 0

as t→ 0. Therefore, ‖B(
−→
h )‖ = 0 for all

−→
h 6= −→0 . Hence, B =

−→
0 ∈ L (Rn,Rm). �

Remark: If
−→
f is differentiable on E, then we get a function f ′ : E → L (Rn,Rm), i.e., the derivative that

takes a vector of E and returns a linear transformation. (So, in one-dimensional calculus, we just treat the
returning linear transformation as a vector (i.e., as a number) for calculation.)

Remark: Let A ∈ L (Rn,Rm) and define
−→
f (−→x ) := A(−→x ) for all −→x ∈ Rn. Then,

−→
f (−→x ) = A for all −→x ∈ Rn.

Note: Rudin uses the shortcut notation A−→x := A(−→x ). We will use the same notation here.

Theorem 9.15: Let E = E◦ ⊂ Rn and
−→
f : E → Rm. Let

−→
f be differentiable at −→x0 ∈ E, with

−→
f (E) ⊂ U =

U◦ ⊂ Rm. Let −→g : U → Rk be differentiable at
−→
f (−→x0). Then,

−→
F := −→g ◦

−→
f : E → Rk is differentiable at −→x0,

and −→
F ′(−→x0) = −→g ′(

−→
f (−→x0))

−→
f ′(−→x0).

Proof: Let −→y0 :=
−→
f (−→x0), A :=

−→
f ′(−→x0), B := −→g ′(−→y0).

Define
−→u (
−→
h ) :=

−→
f (−→x0 +

−→
h )−

−→
f (−→x0)−A

−→
h ,

−→v (
−→
k ) := −→g (−→y0 +

−→
k )−−→g (−→y0)−B

−→
k .
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Now,

‖−→u (
−→
h )‖ = ε(

−→
h )‖
−→
h ‖ with ε(

−→
h )→ 0 as

−→
h → 0,

‖−→v (
−→
k )‖ = η(

−→
k )‖
−→
k ‖ with η(

−→
k )→ 0 as

−→
k → 0.

Given
−→
h ∈ Rn, let

−→
k :=

−→
f (−→x0 +

−→
h )−

−→
f (−→x0) ∈ Rm. Then

‖
−→
k ‖ = ‖A

−→
h +−→u (

−→
h )‖ ≤ ‖A

−→
h ‖+ ‖−→u (

−→
h )‖ ≤ ‖A‖‖

−→
h ‖+ ε(

−→
h )‖
−→
h ‖ ≤ (‖A‖+ ε(

−→
h ))‖

−→
h ‖.

Also,

−→
F (−→x0 +

−→
h )−

−→
F (−→x0)−BA

−→
h = −→g (−→y0 +

−→
k )−−→g (−→y0)−BA

−→
h

= B(
−→
k −A

−→
h ) +−→v (

−→
k )

= B−→u (
−→
h ) +−→v (

−→
k ).

So, for
−→
h 6= −→0 , we have that

0 ≤ ‖
−→
F (−→x0 +

−→
h )−

−→
F (−→x0)−BA

−→
h ‖

‖
−→
h ‖

≤ ‖B
−→u (
−→
h ) +−→v (

−→
k )‖

‖
−→
h ‖

≤ ‖B‖‖
−→u (
−→
h )‖+ ‖−→v (

−→
k )‖

‖
−→
h ‖

≤ ‖B‖ · ε(
−→
h ) · ‖

−→
h ‖+ η(

−→
k ) · ‖

−→
k ‖

‖
−→
h ‖

≤ ‖B‖ · ε(
−→
h ) · ‖

−→
h ‖+ η(

−→
k )(‖A‖+ ε(

−→
h )) · η(

−→
k ) · ‖

−→
h ‖

‖
−→
h ‖

−→
h→−→0−−−−−−→ 0. �

Remark: We use the standard basis {ê1, . . . , ên} ∈ Rn, where

ê1 := 〈1, 0, 0, . . . , 0〉,

ê2 := 〈0, 1, 0, . . . , 0〉,
...

ên := 〈0, 0, 0, . . . , 1〉.

Remark: Given A ∈ L (Rn,Rm), we can represent A by {û1, . . . , ûm}, such that

A(−→x ) =

m∑
i=1

fi(
−→x )û1

with
fi : Dom(A)→ R.

We call the fi the component functions (with respect to the standard basis).
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Definition: Let E = E◦ ⊂ Rn and let
−→
f : E → Rm. Define for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and −→x ∈ E

the following:

(Djfi)(
−→x ) := lim

t→0

fi(
−→x + têj)− fi(−→x )

t
.

We call Djfi the partial derivative of fi with respect to xj (where −→x = 〈x1, . . . , xn〉.)

Theorem 9.17: If E = E◦ ⊂ Rn and
−→
f : E → Rm and

−→
f is differentiable at −→x ∈ E, then (Djfi)(

−→x ) exists
for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, and

−→
f ′(−→x )êj =

m∑
i=1

(Djfi)(
−→x )ûi ∀i, j.

Proof: Let j ∈ {1, . . . , n}. By hypothesis,
−→
f ′(−→x ) exists, and so

−→
f (−→x + têj)−

−→
f =

−→
f ′(−→x )(têj) +−→r (têj),

where

lim
t→0

‖−→r (têj)‖
|t|

= 0.

We can pull the t out to get

−→
f (−→x + têj)−

−→
f = t

−→
f ′(−→x )(êj) +−→r (têj).

Hence,

lim
t→0

−→
f (−→x + têj)−

−→
f (−→x )

t
=
−→
f ′(−→x )êj .

Therefore,
m∑
i=1

(Djfi)(
−→x )ûi =

−→
f ′(−→x )êj

for all j ∈ {1, . . . , n}. �

Remark: Note that the converse is false. Consider f : R2 → R defined by

f(x, y) :=

{ xy

x2 + y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)
.

Consider the path û travelling on the line x = y, parametrized by −→r (t) = 〈t, t〉 for t ∈ (0,∞). Now,

f(−→r (t)) =
t2

t2 + t2
=

1

2
.

So, the limit along this path as t % 0 is 1
2 , which is not equal to f(−→r (0)). Thus, f is not continuous (hence,

not differentiable) at (0, 0). However, consider the partial derivatives. Firstly,

lim
t→0

f(
−→
0 ) + t〈1, 0〉)− f(

−→
0 )

t
= lim
t→0

f(t, 0)− f(0, 0)

t
= lim
t→0

0

t
= 0.

Also

lim
t→0

f(
−→
0 ) + t〈0, 1〉)− f(

−→
0 )

t
= lim
t→0

f(0, t)− f(0, 0)

t
= lim
t→0

0

t
= 0.

So, the partial derivatives both exist and equal 0 at (0, 0), even though f is not differentiable at (0, 0).
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Recall: For all A ∈ L (Rn,Rm) for all bases {ê1, . . . , ên} and {û1, . . . , ûm} respectively, there exists a unique
matrix [aij ] ∈M(R) such that

−→
f ′(−→x )êj =

m∑
i=1

aij ûi

for all j ∈ {1, . . . , n}.

So, we have shown that

[
−→
f ′(−→x ) =


(D1f1)(−→x ) (D2f1)(−→x ) · · · (Dnf1)(−→x )
(D1f2)(−→x ) (D2f2)(−→x ) · · · (Dnf2)(−→x )

...
...

. . .
...

(D1fm)(−→x ) (D2fm)(−→x ) · · · (Dnfm)(−→x )

 .
And, if

−→
h =

n∑
j=1

hj êj ,

then

−→
f ′(−→x )

−→
h =

m∑
i=1


n∑
j=1

((Djfi)(
−→x )hj)

 ûi.

Let −→γ : (a, b)→ E = E◦ ⊂ Rn be differentiable and let f : E → R be differentiable. Define

g := f ◦ −→γ : (a, b)→ R.

Then,
g′(t) : f ′(−→γ (t))−→γ ′(t)

for t ∈ (a, b). Now denote as matrices:
[g′(t)] = [a11],

[−→γ ′(t)] =


γ′1(t)
γ′2(t)

...
γ′n(t)

 ,
[f ′(−→γ (t)] =

[
(D1f)(−→x ) (D2f)(−→x ) · · · (Dnf)(−→x )

]
.

Now, we have that

[g′(t)] =

[
n∑
i=1

(Dif)(−→γ (t))−→γ ′i(t)

]
.

Define

(
−→
∇f)(−→x ) :=

n∑
i=1

(Dif)(−→x · êi) ∈ Rn.

Since

−→γ ′(t) =

n∑
i=1

−→γ i(t) · êi

it follows that
g′(t) = (

−→
∇f)(−→γ (t)) · −→γ ′(t). (F1)

Let −→x ∈ E, and let û ∈ Rn with ‖û‖ = 1. Choose

−→γ (t) := −→x + t · û
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for all t ∈ R. Then,
−→γ ′(t) = û

for all t ∈ R. Then, by (F1), we have that

g′(0) = (
−→
∇f)(−→x ) · û. (F2)

So, combining (F2) and
g(t)− g(0) = f(−→x + t · û)− f(−→x )

we have that

lim
t→0

f(−→x + t · û)− f(−→x )

t
= (
−→
∇f)(−→x ) · û =: (Dûf)(−→x ).

We call this the directional derivative of f at −→x in the direction û.

Definition: Let (V,+, ·) be a real vector space and let A ⊂ V . We say that A is convex if for all x, y ∈ A,
we have that

λ · x+ (1− λ) · y ∈ A

for all λ ∈ [0, 1].

Remark: Observe that for all −→x ∈ Rn and r > 0, we have that Br(
−→x ) is convex.

Theorem 9.19: Let E = E◦ ⊂ Rn be convex and let
−→
f : E → Rm. Let

−→
f be differentiable and let there

exists M ∈ R such that ‖
−→
f ′(−→x )‖ ≤M for all −→x ∈ E. Then,

‖
−→
f (
−→
b )−

−→
f (−→a )‖ ≤M‖

−→
b −−→a ‖

for all −→a ,
−→
b ∈ E.

Proof: Let −→a ,
−→
b ∈ E and define

−→γ (t) := (1− t) · −→a + t ·
−→
b

for all t ∈ R such that −→γ (t) ∈ E. Then, since E is convex, we have that [0, 1] ⊂ Dom(−→γ ).

Set −→g (t) :=
−→
f (−→γ (t)). Then by Theorem 9.15, it follows that

−→g ′(t) =
−→
f ′(−→γ (t))−→γ ′(t) =

−→
f ′(−→γ (t))(

−→
b −−→a ).

Hence,

‖−→g ′(t)‖ ≤ ‖
−→
f ′(−→γ (t))‖ · ‖

−→
b −−→a ‖ ≤M‖

−→
b −−→a ‖,

for all t ∈ [0, 1].

Now, we use Theorem 5.19 (the Mean Value Theorem) applied to the component maps −→gi : (a, b)→ R
(these a, b are not −→a ,

−→
b ). Since g is differentiable, so is each gi, and we can apply the Mean Value

Theorem to each gi. This gives us that

|
−→
fi (
−→
b )−

−→
fi (
−→a )| = |−→gi (1)−−→gi (0)| ≤ |−→gi ′(t)| · |1− 0|

for all t ∈ (0, 1), and by our earlier bound, we get that this is all less than or equal to
M√

2
‖
−→
b − −→a ‖

and this is true for every component, which gives us our result, since now

|−→g (1)−−→g (0)| ≤M‖
−→
b −−→a ‖. �
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Corollary: If, in addition,
−→
f (−→x ) =

−→
0 for all x ∈ E, it follows that

−→
f is constant.

Proof: Take M = 0. �

Definition: Let E = E◦ ⊂ Rn and
−→
f : E → Rm. We say that

−→
f is continuously differentiable if

−→
f ′ : E → Rm is continuous. We denote this by

−→
f ∈ C ′(E) or

−→
f ∈ C 1(E).

Theorem 9.21: Let E = E◦ ⊂ Rn and let
−→
f : E → Rm. Then,

−→
f ∈ C ′(E) if and only if Djfi exists and is

continuous for all j ∈ {1, . . . , n} and i ∈ {1, . . . ,m}.

Proof:
(=⇒) Let

−→
f ∈ C ′(E). Recall that if

−→
h =

n∑
k=1

hkêk

then
−→
f ′(−→x )

−→
h =

m∑
`=1

{
n∑
k=1

(Dkf`)(
−→x )hk

}
û`

with hk = δkj .

So,

(
−→
f ′(−→x )êj)ûi = (Djfi)(

−→
x)

for all −→x ∈ E and for all i, j. Hence

|(Djfi)(
−→y )− (Djfi)(

−→x )| =
∣∣∣((−→f ′(−→y )−

−→
f ′(−→x ))êj)ûj

∣∣∣
≤ ‖(
−→
f ′(−→y )−

−→
f ′(−→x ))êj‖‖ûi‖

≤ ‖
−→
f ′(−→y )−

−→
f ′(−→x )‖‖êj‖.

But, by hypothesis, as −→x → −→y the right hand side converges to 0. �

(⇐=) We now show that
−→
f ′ is continuous if and only if

−→
f ′i is continuous for all i ∈ {1, . . . ,m}. It

suffices to consider m = 1, i.e., f : Rn → R and f1 = f . Let Djf be continuous for all j ∈ {1, . . . , n}.
We want to show that this implies that

−→
f ′ is continuous. Let −→x ∈ E and ε > 0. Then since E = E◦,

it follows that there exists Br(
−→x ) ⊂ E. Then, the fact that Djf is continuous for all J ∈ {1, . . . , n}

implies that

|(Djf)(−→y )− (Djf)(−→x )| < ε

n
(†)

for all j ∈ {1, . . . , n} and −→y ∈ Br(−→x ).

Now let
−→
h =

n∑
j=1

hj êj and ‖
−→
h ‖ < r and −→v0 =

−→
0 . Define −→vk =

l∑
`=1

h`ê`, for k ∈ {1, . . . , n}.

Note that

f(−→x +
−→
h )− f(−→x ) =

n∑
j=1

(f(−→x +−→vj )− f(−→x +−−→vj−1)).

Also, ‖−→vk‖ ≤ ‖
−→
h ‖ < r for all k ∈ {1, . . . , n}. Since Br(

−→x ) is convex, we have that every line segment
with end points −→x +−−→vj−1 and −→x +−→vj all lie in Br(

−→x ).

Observe that

f(−→x +−→vj )− f(−→x +−−→vj−1 = f((−→x +−−→vj−1) + hj êj)− f(−→x −−−→vj−1).



1.9. FUNCTIONS OF SEVERAL VARIABLES 99

So,

f(−→x +−→vj )− f(−→x +−−→vj−1 = (Djf)(−→x +−−→vj−1 + θjhj êj)hj , (‡)

for some θj ∈ (0, 1). Note that

f(θ) =
−→
f (−→x +−−→vj−1 + θhj êj)

for all θ ∈ (0, 1), and this differs from (Djf)(−→x )hj by less than |hj | εn , by (†). Hence, (‡) implies that

∣∣∣∣∣∣f(−→x +
−→
h )− f(

−→
h )−

n∑
j=1

hj(Dnf)(−→x )

∣∣∣∣∣∣ = ‖
−→
h ‖

∣∣∣∣∣∣
n∑
j=1

(f(−→x +−→vj ) + f(−→x +−−→vj−1)− hj(Djf)(−→x )

∣∣∣∣∣∣
<

n∑
j=1

ε

n
|hj |

= ε

n∑
j=1

|hj |
n

≤ ε. �

1.9.3 The Contraction Principal

Definition: Let (X, d) be a metric space and let ϕ : X → X. If there exists c ∈ [0, 1) such that
d(ϕ(x), ϕ(y)) ≤ cd(x, y) for all x ∈ X, then ϕ is said to be a contraction mapping on X.

Theorem 9.23: If (X, d) is complete and if ϕ is a contraction mapping on X, then there exists a unique
x ∈ X such that ϕ(x) = x.

Proof: First we prove uniqueness. Assume toward a contradiction that there exist x, y ∈ X such that
x 6= y and ϕ(x) = x and ϕ(y) = y. Then,

d(x, y) = d(ϕ(x), ϕ(y)) ≤ cd(x, y)

for some c ∈ [0, 1). Since d(x, y) 6= 0, this is a contradiction. Therefore, any fixed point must be
unique.

Next we prove existence. Let x0 ∈ X. Define,

x1 := ϕ(x0), x2 := ϕ(x1), · · · , xn := ϕ(xn−1), · · ·

for all n ∈ N. Applying the contraction hypothesis,

d(xn+1, xn) = d(ϕ(xn), ϕ(xn−1))

≤ cd(xn, xn−1)

≤ c2d(xn−1, xn−2)

≤ · · ·
≤ cnd(x1, x0).
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So, if n ≤ m, we have that

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xm)

≤
m∑

i=n+1

d(xi, xi1)

≤ (cn + cn+1 + · · ·+ cm−1)d(x1, x0)

≤ cn(1 + c+ · · ·+ cm−1−n)d(x1, x0)

≤ cn
( ∞∑
k=0

ck

)
d(x1, x0)

= cn
(

1

1− c

)
d(x1, x0).

Since we know that lim
n→∞

cn = 0, we have that d(xn, xm)→ 0 as n→∞. This the sequence {xn}n∈N
is Cauchy. Since X is complete, there exists a limit point x ∈ X such that {xn} → x.

Since ϕ is continuous (contraction maps are clearly Lipschitz continuous), we have that

x = lim
n→∞

xn = lim
n→∞

ϕ(xn−1) = ϕ
(

lim
n→∞

xn

)
= ϕ(x).

Therefore, x is a fixed point of ϕ, and so we have shown existence. �

1.9.4 The Inverse Function Theorem

Theorem 9.24: (Inverse Function Theorem) Let E = E◦ ⊂ Rn. Let
−→
f : E → Rn be C ′. Let

−→
f ′(−→a ) be

invertible for some −→a ∈ E and let
−→
b =

−→
f (−→a ). Then

(a) There exists U = U◦ ⊂ Rn and V = V ◦ ⊂ Rn such that −→a ∈ U and
−→
b ∈ V , with the property that

−→
f
∣∣
U

is one-to-one and
−→
f (U) = V .

(b) If −→g =
(−→
f
∣∣
U

)−1
, then −→g ∈ C ′(V ).

Proof of (a): Let A =
−→
f ′(−→a ) and λ ∈ R be such that 2λ‖A−1‖ = 1. Since

−→
f ′(−→x ) is continuous at

−→a , we have that there exists U := Br(
−→a ) such that

‖
−→
f ′(−→x )−A‖ < λ

for all x ∈ U . Now, for all fixed −→y ∈ Rn, define ϕ : E → Rn by

ϕ(−→x ) := −→x +A−1(−→y −
−→
f (−→x ))

for all −→x ∈ E. Observe that ϕ depends on y. Also note that ϕ is really a vector function, but we will
not write −→ϕ .

Now, note that
−→
f (−→x ) = −→y if and only if ϕ(−→x ) = −→x . Since

ϕ′(−→x ) = I −A−1
−→
f ′(−→x ) = A−1(A−

−→
f ′(−→x ))

we have that

‖ϕ′(−→x ‖ ≤ ‖A−1‖ · ‖A−
−→
f ′(−→x )‖ < 1

2λ
· λ =

1

2
< 1
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for all −→x ∈ U . So, by Theorem 9.19,

‖ϕ(−→x )− ϕ(−→y )‖ ≤ 1

2
‖−→x −−→y ‖ (F1)

for all −→x ,−→y ∈ U . So, ϕ is a contraction and therefore ϕ has at most one fixed point in U , by

Theorem 9.23. So, there is at most one −→x ∈ U such that
−→
f (−→x ) = −→y (so, this is also true for all

−→y ∈ V :=
−→
f (−→u )). Hence,

−→
f
∣∣
U

: U → V is one-to-one and onto. Thus,
−→
f : U → V is invertible.

Let −→y0 ∈ V . So, there exists a unique −→x0 ∈ U such that
−→
f (−→x ) = −→y0. Choose r > 0 such that

Br(
−→x0) ⊂ U .

We claim that −→y ∈ V whenever ‖−→y −−→y0‖ < λr. To see this, let −→y ∈ Rn satisfy ‖−→y −−→y0‖ < λr. Let
ϕ correspond to this −→y . Then,

‖ϕ(−→x0)−−→x0‖ = ‖A−1(−→y −−→y0)‖ ≤ ‖A−1‖λr.

If −→x ∈ Br(−→x0), then (F1) implies that

‖ϕ(−→x )−−→x0‖ ≤ ‖ϕ(−→x )− ϕ(−→x0)‖+ ‖ϕ(−→x0)−−→x0‖ ≤
1

2
‖−→x −−→x0‖+

r

2
≤ r.

So,

ϕ(−→x ) ∈ Br(−→x0).

Thus, ϕ : Br(
−→x0)→ Br(

−→x0), and we know that Br(
−→x0) is complete.

So, the Banach Fixed Point Theorem implies that there exists a unique −→x ∈ Br(−→x0) such that

f(−→x ) = −→y . So, −→y ∈ f(Br(
−→x0)) ⊂ f(U) = V . Therefore V is open, and part (a) of the proof is

complete. �

Proof of (b): Let −→y ∈ V and −→y +
−→
k ∈ V so that there exists a unique −→x ∈ U and −→x +

−→
h ∈ U such

that −→y = f(−→x ) and −→y +
−→
k = f(−→x +

−→
h ). For ϕ corresponding to this −→y , we see that

ϕ(−→x +
−→
h )− ϕ(−→x ) =

−→
h +A−1(

−→
f (−→x )−

−→
f (−→x +

−→
h )

=
−→
h −A−1

−→
k .

By (F1), we have that

‖
−→
h −A−1

−→
k ‖ ≤ 1

2
‖
−→
h ‖.

So,

‖A−1
−→
k ‖ ≥ 1

2
‖
−→
h ‖

because if not, then

‖
−→
h −A−1k‖ ≥ ‖h‖ − ‖A−1

−→
k ‖ > ‖

−→
h ‖ − 1

2
‖
−→
h ‖ =

1

2
‖
−→
h ‖

which is a contradiction.

Therefore, we have the bound

‖
−→
h ‖ ≤ 2‖A−1

−→
k ‖ ≤ 2‖A−1‖‖

−→
k ‖ = λ−1‖

−→
k ‖.

Thus,

‖
−→
f ′(−→x )−A‖ · ‖A−1‖ < λ · 1

2λ
· 1

2
< 1.
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By Theorem 9.8, this implies that
−→
f ′(−→x ) is invertible. Let T =

(−→
f ′(−→x )

)−1
. Then,

−→g (−→y +
−→
k )−−→g (−→y )− T

−→
k = −→g (

−→
f (−→x +

−→
h ))−−→g (

−→
f (−→x ))− T

−→
k

= −→x +
−→
h −−→x − T

−→
k

=
−→
h − T

−→
k

= T (T−1
−→
h −

−→
k )

= T (
−→
f ′(−→x )

−→
h )− T (

−→
f (−→x +

−→
h )−

−→
f (−→x ))

= ‖T‖ · ‖
−→
f (−→x +

−→
h )−

−→
f (−→x )−

−→
f ′(−→x )

−→
h ‖/‖

−→
k ‖.

Therefore,

‖−→g (−→y +
−→
k )−−→g (−→y )− T

−→
k ‖

‖
−→
k ‖

≤ ‖T‖
λ
· ‖
−→
f (−→x +

−→
h )−

−→
f (−→x )−

−→
f ′(−→x )

−→
h ‖

−→
h

.

As k → 0, we have that h → 0, and so the right-hand side of the above inequality approaches 0.
Therefore, −→g is differentiable at −→y and

−→g (−→y ) =
(−→
f ′(−→x )

)−1
=
(−→
f ′ (−→g (−→y ))

)−1
.

Since −→g is differentiable, it follows that it’s also continuous. Additionally,
−→
f ′ is continuous and the

operation of taking inverses of invertible elements of L (Rn,Rm) is a continuous map. �

Theorem 9.25: Let E = E◦ ⊂ Rn and let
−→
f : E → Rn be continuously differentiable. If

−→
f ′(−→x ) is invertible

for all −→x ∈ E, then
−→
f is an open mapping on E. (Recall that if f : (X, d1)→ (Y, d2) is invertible, then f is

open if and only if f−1 is continuous.)

Proof: Let W = W 0 ⊂ E, and let −→y ∈
−→
f (W ). Let −→x ∈W be such that f(−→x ) = −→y . By the Inverse

Function Theorem, we have that there exists U = U◦ and V = V ◦ both contained in Rn such that
−→x ∈ U , −→y ∈ V and

−→
f
∣∣
U

is one-to-one. By the Inverse Function Theorem again, we have that

(
−→
f
∣∣
U

)−1 is continuous. So, f : U → V is an open mapping. Therefore,

−→y ∈
−→
f (U ∩W ) =

(−→
f (U ∩W )

)◦
⊂
−→
f (W ).

Therefore, −→y is an interior point of
−→
f (W ). Since −→y was arbitrary, we have shown that

−→
f (W ) is open.

�
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1.10 Integration of Differential Forms

[This chapter was not covered in this course.]
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1.11 The Lebesgue Theory

1.11.1 Set Functions

Definition: A nonempty family R of sets is called a ring if for all A,B ∈ R, we have that A ∪ B ∈ R and
A r B ∈ R. Note that this implies A ∩ B ∈ R since A ∩ B = A r (A r B), and it implies that ∅ ∈ R since
ArA = ∅.

Definition: A ring R is a σ-ring if
∞⋃
n=1

An ∈ R

for all sequences {An}n∈N ⊂ R. So, R is a σ-ring if it is closed under countable unions. Note that this implies

∞⋂
n=1

An = A1 r

( ∞⋃
n=1

A1 rAn

)
∈ R.

Example: Let S 6= ∅ be a set and let R = P (S). Then, P (S) is a σ-ring.

Example: Consider the smallest ring R containing all intervals {(a, b) | a, b ∈ R, a < b}. We can subtract
two of these open intervals to get a half-open-half-closed interval, and we can intersect two of them to get
all closed intervals. Hence R contains all open intervals, all half-open-half-closed intervals, and all closed
intervals, and all sets that can be constructed under our ring operations (including all singletons, and so all
finite sets). It can be shown that the Cantor set is not in R, so we at least have that R is not as big as P (R).

Example: The smallest σ-ring R containing all intervals {(a, b) | a, b ∈ R, a < b} now does contain the
Cantor set, and in fact all countable sets.

Definition: Let R be a ring of sets. A set function ϕ on R Is a function ϕ : R → R∗. (Recall that R∗
denotes the extended reals.)

Definition: A set function ϕ : R→ R∗ is additive if for all N ∈ N and {An}Nn=1 ⊂ R such that An∩Am = ∅
for all n 6= m, we have that

ϕ

(
N⋃
n=1

An

)
=

N∑
n=1

ϕ(An).

Definition: A set function ϕ on a σ-ring R is σ-additive if for all {An}n∈N ⊂ R such that An ∩Am = ∅ for
all n 6= m, we have that

ϕ

( ∞⋃
n=1

An

)
=

∞∑
n=1

ϕ(An).

Properties of Additive Set Functions:

(1) If A,B ∈ R and B ⊂ A, then

ϕ(ArB) + ϕ(B) = ϕ(A ∩B) = ϕ(A).

So,

ϕ(ArB) = ϕ(A)− ϕ(B).
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(2) It’s clear that

ϕ(∅) = ϕ(ArA) = ϕ(A)− ϕ(A) = ∅.

(3) Additionally,

ϕ(A1 ∪A2)− ϕ(A1) = ϕ(A2 rA1).

(4) Since A1 ∪A2 = (A1 ∩A2) t (A2 rA1) t (A1 rA2), we have

ϕ(A1 ∪A2)− ϕ(A2 rA1)− ϕ(A1 rA2) = ϕ(A1 ∩A2).

Hence we have

ϕ(A1 ∪A2) = ϕ(A2 rA1) + ϕ(A1)

ϕ(A1 ∪A2) = ϕ(A1 rA2) + ϕ(A2),

and adding these together,

2ϕ(A1 ∪A2) = ϕ(A2 rA1) + ϕ(A1 rA2) + ϕ(A1) + ϕ(A2)

ϕ(A1 ∪A2) = −ϕ(A1 ∩A2) + ϕ(A1) + ϕ(A2)

ϕ(A1 ∪A2) + ϕ(A1 ∩A2) = ϕ(A1) + ϕ(A2).

(5) If ϕ is nonnegative (i.e., ϕ : R→ [0,∞)), then for all A1, A2 ∈ R such that A1 ⊂ A2, we have that

ϕ(A2) = ϕ(A2 rA1) + ϕ(A1) ≥ ϕ(A1).

So, nonnegative additive set functions are monotone increasing.

Theorem 11.3: Suppose that ϕ is a σ-additive set function on a σ-ring R. Let {An}n∈N ⊂ R satisfy
An ⊂ An+1 for all n ∈ N and

A :=

∞⋃
n=1

An ∈ R.

Then, we have that

lim
n→∞

ϕ(An)→ ϕ(A).

Proof: Let B1 := A1, and let B2 := A2 rA1, etc, defining Bn := An rAn−1. Now,

Bi ∩Bj = ∅

for all i 6= j, and so

An =

n⋃
k=1

Bk

and

A =

∞⋃
k=1

Bk.

Since ϕ is σ-additive, we have that

ϕ(An) =

n∑
k=1

ϕ(Bk)

and

ϕ(A) =

∞∑
k=1

ϕ(Bk). �
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Remark: Rudin uses the term “countably additive” where we use the term “σ-additive”.

Remark: A σ-ring R is a σ-algebra if there exists E ∈ R such that E ∩A = A for all A ∈ R. (Equivalently,
E ∩A = A for all A ∈ R.)

Remark: We now present two theorems which will be proved in a later homework assignment.

Theorem HW-1: Let A be a set and Rα be a ring (resp,̇ σ-ring) for all α ∈ A. Then,

R :=
⋂
α∈A

Rα

is a ring (resp., σ-ring).

Theorem HW-2: Let S be a nonempty collection of sets. Then, there exists a unique ring (resp., σ-ring)

R(S) such that S ⊂ R(S) and if R̃ is a ring (resp., σ-ring) which contains S, then R(S) ⊂ R̃.

Example: Let S := {(a, b) | a, b ∈ R, a < b}. Then, as mentioned before, the ring R(S) contains all intervals
and all finite unions of intervals.

Example: The σ-ring R(S) contains every open set A ⊂ R. To see this, let A = A◦ ⊂ R. Then, for all
x ∈ A ∩Q, there exists rx > 0 such that Brx ⊂ A. Since Q is dense in R, it’s clear that

A ⊂
⋃

x∈A∩Q
Brx(x) ⊂ A.

This shows that R(S) contains every open set A ⊂ R. Additionally, every closed set is in R(S) because we
can write each closed set as Rr (RrB) and both R and RrB are in R(S).

Definition: Let Ω := Rd. Define S to be the set of all “intervals” in Rd. We say that I ⊂ Rd is an interval
if

I = {(x1, . . . , xd) | xi ∈ Ii, Ii is an interval in R}.

Definition: If A ⊂ Rd is a union of finitely many intervals, then A is an elementary set. Define ξ to be the
set of all elementary sets in Rd.

Definition: Define m : ξ → R by: for all intervals I ∈ ξ, write

I = {(x1, . . . , xd) | ai ≤ xi ≤ bi}

and then

m(I) :=

d∏
i=1

(bi − ai).

For d = 1, m(I) = the length of I. For d = 2, m(I) = the area of I, etc.

Remark: If A ∈ ξ is of the form

A =

n⋃
i=1

Bi,



1.11. THE LEBESGUE THEORY 107

with Bi an interval for all i and Bi ∩Bj = ∅ for all i 6= j, then

m(A) =

n∑
i=1

m(Bi).

Definition: An additive set function ϕ : ξ → [0,∞) is regular if for all A ∈ ξ and ε > 0, there exists a closed

F ⊂ Rd and open G ⊂ Rd such that F ⊂ A ⊂ G (so that ϕ(F ) ⊆ ϕ(A) ⊆ ϕ(G)) and

ϕ(G)− ε ≤ ϕ(A) ≤ ϕ(F ) + ε.

1.11.2 Construction of the Lebesgue Measure

Definition: Let ϕ : ξ → [0,∞] be additive. Then, ϕ is regular if for all A ∈ ξ and ε > 0, there exists

F,G ∈ ξ such that F = F , G = G◦, F ⊂ A ⊂ G, and

ϕ(G)− ε ≤ ϕ(A) ≤ ϕ(F ) + ε.

Claim: m is regular.

Definition: Let µ : ξ → [0,∞) be additive and regular. Let E ⊂ Rp and {An}n∈N be a covering of E by
with {An}n∈N ⊂ ξ. Define

µ∗ : P (Rp)→ [0,∞]

by

µ∗(E) := inf

{ ∞∑
n=1

µ(An) | {An}n∈N ⊂ ξ is a cover of E

}
.

We call µ∗ the outer measure on Rp corresponding to µ.

Remark: µ∗ has the properties that µ∗(E) ∈ [0,∞] and if E1 ⊂ E2, then µ∗(E1) ≤ µ∗(E2).

Theorem 11.8:

(a) For all A ∈ ξ, we have that µ∗(A) = µ(A) (so that µ∗ is an extension of µ).

(b) If E =

∞⋃
n=1

En (with En ⊂ Rp), then

µ∗(E) ≤
∞∑
n=1

µ∗(En).

This property is called subadditivity.

Proof of (a): Let A ∈ ξ and ε > 0. Since µ is regular, there exists G = G◦ ∈ ξ such that
µ(G) ≤ µ(A) + ε with A ⊂ G, since µ(A) ≤ m(G) ≤ µ(A) + ε. So, {G} is a cover of A by elementary
sets and

µ∗(A) ≤ µ(G) ≤ µ(A) + ε.

Since ε > 0 was arbitrary, µ∗(A) ≤ µ(A).

By the definition of µ∗, there exists {An}n∈N ⊂ ξ such that

A ⊂
∞⋃
n=1
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and
∞∑
n=1

µ(An) ≤ qµ∗(A) + ε.

Assume that An = A◦n for all n, since the An can be chosen this way.

Since µ is regular, we have that there exists F = F ∈ ξ such that F ⊂ A and µ(F ) ≥ µ(A)− ε. Since
F is compact, we have that F ⊂ A1 ∪ · · · ∪AN with some reordering. Hence,

µ(A) ≤ µ(F ) + ε ≤
N∑
n=1

µ(An) + ε ≤ µ∗(A) + 2ε

(using the fact that if E1 ⊂ E2, then µ∗(E1) ≤ µ∗(E2)). Since ε was arbitrary, we have shown that

µ(A) ≤ µ∗(A).

Since the inequality in the other direction always holds, we have shown that µ(A) = µ∗(A) for all
elementary sets A. �

Proof of (b): See Rudin. �

Definition: For all A,B ⊂ Rp, define the symmetric difference by

S(A,B) := (ArB) ∪ (B rA) = (A ∪B) r (A ∩B).

Then define d(A,B) := µ∗(S(A,B)).

Definition: Let S be a set. A pseudometric d on S is a map

d : S × S → [0,∞)

satisfying

(a) d(x, y) = d(y, x) for all x, y ∈ S,

(b) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ S

(c) d(x, x) = 0 for all x ∈ S.

The piece of the definition of a normal metric that is missing is that d(x, y) = 0 only if x = y.

Remark: Now we explore some properties of S(A,B) and d(A,B). For all A,B ⊂ Rp, we have that

S(A,B) = (A ∪B) r (A ∩B) = S(B,A)

and therefore,
d(A,B) = d(B,A).

For all A,B,C ⊂ Rp, we see that
S(A,B) ⊂ S(A,C) ∪ S(C,B)

since ArB ⊂ (Ar C) ∪ (C rB) and B rA ⊂ (C rA) ∪ (B r C). Hence,

d(A,B) = µ∗(S(A,B))

≤ µ∗(S(A,C)) + µ∗(S(C,B))

= d(A,C) + d(C,B),

for all C ⊂ Rp.

Moreover,
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(a) S(A1 ∪A2, B1 ∪B2) ⊂ S(A1, B1) ∪ S(A2, B2), since

(A1 ∪A2)ssm(B1 ∪B2) ⊂ (A1 rB1) ∪ (A2 rB2).

(b) Taking complements of (a) and using DeMorgan’s Law, we have

S(A1 ∩A2, B1 ∩B2) = S(AC1 ∪AC2 , BC1 ∪BC2 )

⊂ S(AC1 , B
C
1 ) ∪ S(AC2 , B

C
2 )

= S(A1, B1) ∪ S(A2, B2).

(c) Lastly, we have that
S(A1 rA2, B1 rB2) ⊂ S(A1, B1) ∪ S(A2, B2)

since A1 rA2 = A1 ∩AC2 .

Summarizing these last three results: S(A1 ∪A2, B1 ∪B2)
S(A1 ∩A2, B1 ∩B2)
S(A1 rA2, B1 rB2)

 ⊂ S(A1, B1) ∪ S(A2, B2).

Hence,
d(A,B) = µ∗(S(A,B)).

For all A ∈P(Rp), we have that

d(A,A) = µ∗(S(A,A)) = µ∗(∅) = µ(∅) = 0.

Note that if A is any finite subset of Rp and B = ∅, then

d(A,B) = µ∗(S(A,B)) = µ∗(A) = µ(A) =

n∑
i=1

m({xi}) = 0.

(We haven’t proved enough to show that in this case d(A,B) always, but we can say it’s true for µ = m.)

Remark: If (S, d) is a pseudometric space, then consider the equivalence relation

x ∼ y if d(x, y) = 0.

(1) If x ∼ y, then d(x, y) = 0 = d(y, x) and so y ∼ x.

(2) Let x ∈ S. Then, d(x, x) = 0, and so x ∼ x.

(3) Let x ∼ y and y ∼ z, then d(x, y) = d(y, z) = 0. But 0 ≤ d(x, z) ≤ d(x, y) + d(y, z) = 0. Therefore
d(x, z) = 0 and so x ∼ z.

Therefore, ∼ is indeed an equivalent relation. So, for x ∈ S, we can consider the equivalence class [x] :=
{y ∈ S | y ∼ x}. We can quotient S by the equivalence relation to get the partition S/ ∼= {[x] | x ∈ S}. On

S/ ∼, define d̃ by: for all [x], [y] ∈ S/ ∼,

d̃([x], [y]) := d(x, y).

It is not immediately clear that this is well-defined, so we need to show that if x1, x2 ∈ [x] and y1, y2 ∈ [y],
then d(x1, y1) = d(x2, y2). Well,

d(x1, y1) ≤ d(x1, x2) + d(x2, y1)

≤ d(x1, x2) + d(x2, y2) + d(x2, y2) + d(y2, y1)

= d(x2, y2).
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Symmetrically, d(x2, y2) ≤ d(x1, y1), and so we have equality. Therefore, d̃ is well-defined.

Remark: Now, on S/ ∼, we can define d̃ as above and consider (S/ ∼, d̃). For our notation:

(P(Rp), d) is the psuedometric space, and

(P(Rp)/ ∼, d̃) is the associated metric space.

For {[xn]}n∈N ⊂P(Rp)/ ∼, we have
lim
n→0

[xn] = [x].

If {An}n∈N ⊂P(Rp) and if lim
n→∞

d(An, A) = 0 for some A ∈P(Rp), then we say that {An}n∈N “converges

to A” (though the limit may not be unique) if {[An]}n∈N actually converges to [A].

Definition: Let µ : ξ → [0,∞) be additive and regular. Define

MF (µ) := {A ∈P(Rp) | ∃{An}n∈N ⊂ ξ such that d(An, A)→ 0}.

The sets in MF (µ) are said to be finitely µ-measurable. Now define

M(µ) :=

{
A ∈P(Rp) | ∃{An}n∈N ⊂MF (µ) such that A =

∞⋃
n=1

An

}
.

The sets in M(µ) are said to be µ-measurable.

Theorem 11.10: M(µ) is a σ-ring and µ∗
∣∣
M(µ)

is countably additive.

Proof: Let A,B ∈ M(µ). So, there exist {An}n∈N, {Bn}n∈N ⊂ ξ such that d(An, A) → 0 and
d(Bn, B)→ 0 as n→∞. Now, we have that d(An ∪Bn, A ∪B)→ 0

d(An ∩Bn, A ∩B)→ 0
d(An rBn, ArB)→ 0

.

So, A ∪B, A ∩B and ArB are all elements of MF (µ). Hence MF (µ) is a ring.

Now now that µ∗(An)→ µ∗(A). So, µ∗(A) < +∞. Recall that

µ(An)︸ ︷︷ ︸
=µ∗(An)

+ µ(BN )︸ ︷︷ ︸
=µ∗(Bn)

= µ(An ∪Bn)− µ(An ∩Bn).

So, as n→∞,
µ∗(A) + µ∗(B) = µ∗(A ∪B)− µ∗(A ∩B).

If A ∩B = ∅, then µ∗(A) = µ∗(B) = µ∗(A ∪B), i.e., µ∗
∣∣
MF (µ)

is finitely additive.

Now, A ∈M(µ) and so there exists a sequence {A′n}n∈N ⊂MF (µ) such that

A =

∞⋃
n=1

A′n.

Let A1 := A′1 and An := (A′1 ∪ · · · ∪A′n) r (A1 ∩ · · · ∩A′n−1). Then,

An ∩Am = ∅

for all n 6= m and

A =

∞⋂
n=1

An.
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Then,

µ∗(A) ≤
∞∑
n=1

µ∗(An).

On the other hand, since
n⋃
k=1

Ak ⊂ A

we have that

µ∗(A) ≥ µ∗
(

n⋃
k=1

Ak

)
=

n∑
k=1

µ∗(Ak)

for all n ∈ N. Now, we have shown inequality in both directions, so

µ∗(A) =

∞∑
n=1

µ∗(An).

If µ∗(A) <∞, then define

Bn :=

n⋃
k=1

Ak.

Now,

d(A,Bn) = µ∗(S(A,Bn)) = µ∗

( ∞⋃
k=n+1

Ak

)
=

∑
k=n+1

µ∗(Ak).

which goes to zero as n→∞. So A ∈MF (µ).

If {An}n∈N ⊂M(µ), then ⋃
n∈N

An =
⋃
n∈N

[⋃
k∈N

Ank

]
∈M(u).

Now, let A,B ∈M(µ) with

A :=
⋃
n∈N

An, B :=
⋃
n∈N

Bn

with
An, Bn ∈MF (µ)

for all n ∈ N. Note that

An ∩B =

∞⋃
k=1

(An ∩Bk)︸ ︷︷ ︸
∈MF (µ)

∈M(µ)

for all n ∈ N. Since
µ∗(An ∩B) ≤ µ∗(An) <∞

we have that An ∩B ∈MF (µ). Also,
An rB ∈MF (µ)

since An rB = An r (An ∩B).

So,

A ∩B =
⋃
n∈N

(An ∩B) ∈M(µ)

and
ArB =

⋃
n∈N

(ArBn) ∈M(µ).

This completes the theorem. �
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Remark: If µ : ξ → [0,∞) is additive and regular, then there exists a ring MF (µ) and a σ-ring M(µ) such
that

ξ ⊂MF (µ) ⊂M(µ)

(and if A ∈M(µ) then [A ∈MF (µ) if and only if µ∗(A) <∞]) and there exists µ∗ : M(u)→ [0,∞] which is
σ-additive and µ∗

∣∣
ξ

= µ.

Remark: Rudin’s notation calls the restriction to M(µ) of µ∗ as “µ” again, though this is not the same µ
that we started with.

Definition: If µ = m, then µ(:= µ∗
∣∣
M(µ)

) is called the Lebesgue Measure on (Rp, dE).

Definition: A nonnegative, countable additive set function on a σ-ring is called a measure. Note that this
definition varies among different texts.

Remarks:

(1) ξ ⊂ R(ξ) ⊂ MF (µ). Additionally, ξ ⊂ Σ(ξ) ⊂ M(µ). Rudin calls Σ(ξ) a Borel σ-ring. This is denoted
B. Note that if you want a given integration theory to work on continuous functions, the corresponding
σ-ring must contain B.

(2) µ is regular also, in the sense that for all A ∈ M(µ) and every ε > 0, there exist F = F and G = G◦,
with F,G ∈M(µ), such that F ⊂ A ⊂ G and such that

µ(GrA), µ(Ar F ) < ε.

(3) Observe that {A ∈M(µ) | µ(A) = 0} is a σ-ring.

(4) In the case of the Lebesgue measure, every countable set has µ-measure 0. The Cantor set P is in M(µ)
and µ(P ) = 0. (Recall that P = ∩(En), so for all n ∈ N,

0 ≤ µ(P ) ≤ µ(En) = m(En) =

(
2

3

)n
→ 0.

Also, µ(Q) = 0. So, µ(RrQ) = µ(R)− µ(Q) = µ(R).

(5) To see a concrete example other than m which leads to a measure, define α : R→ R to be a monotone
increasing function. Then define

µ([a, b)) := α(b−)− α(a−),

µ([a, b]) := α(b+)− α(a−),

µ((a, b]) := α(b+)− α(a+),

µ((a, b)) := α(b−)− α(a+).

In the above definitions, b− if the left-hand limit of α at b, which is defined because α is monotone.
The definitions for b+, a−, a+ are analogous.

We can extend this µ to ξ by additivity. Then, µ : ξ → [0,∞) (i.e. finite) and µ is regular and additive.
The corresponding measure M(µ) is called the Lebesgue-Stieltjes Measure.

1.11.3 Measure Spaces

[No notes from this section.]
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1.11.4 Measurable Functions

Definition: Given (X,Σ) and (Y, Σ̃), a function f : X → Y is measurable if for all A ∈ Σ̃, we have
f−1(A) ∈ Σ.

Definition: A ⊂ X is measurable if A ∈ Σ.

Remark: Rudin makes the following definition of a measurable function, which makes some implicit
assumptions.

Definition: We say that f : X → R∗, for (X,M) is measurable if f−1((a,∞)) ∈M , for all a ∈ R.

Remark: If f : Rp → R is continuous then for all a ∈ R, f−1((a,∞)) ∈ Σ(ξ),

Theorem 11.15: The following are equivalent:

(a) {x | f(x) > a}(= f−1((a,∞))) is measurable, for all a ∈ R.

(b) {x | f(x) ≥ a}(= f−1([a,∞))) is measurable, for all a ∈ R.

(c) {x | f(x) < a}(= f−1((−∞, a))) is measurable, for all a ∈ R.

(d) {x | f(x) ≤ a}(= f−1((−∞, a])) is measurable, for all a ∈ R.

Proof: Note that

f−1([a,∞)) =

∞⋂
n=1

f−1
((

a− 1

n
,∞
))

,

f−1((−∞, a)) = X r f−1([a,∞)),

f−1((−∞, a]) =

∞⋂
n=1

f−1
((
−∞, a+

1

n

))
,

f−1((a,∞)) = X r f−1((−∞, a]).

The theorem follows from these relations. �

Theorem 11.16: If f is measurable, then |f | is measurable.

Proof: See Rudin. �

Theorem 11.17: Let {fn}n∈N be a sequence of measurable function on (X,M,µ). Define g, h : X → R∗ by

g(x) := sup{fn(x) | n ∈ N},

h(x) := lim sup
n→∞

fn(x).

Then, both g and h are also measurable.

Proof: Let a ∈ R. First, we show

g−1((a,∞)) =

∞⋃
n=1

f−1n ((a,∞)).

Well, for all x ∈ g−1((a,∞)), there exists an n such that x ∈ f−1n ((a,∞)), and so fn(x) ∈ (a,∞), i.e.,
x ∈ g−1((a,∞)). Conversely, let x ∈ g−1((a,∞)). Then, there exists n ∈ N such that a+ 1

n < g(x) =
sup{fn(x) | n ∈ N}, which shows that x is an element of the right-hand side. This proves the theorem
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for g(x) because now we have shown that g(x) is a countable union of measurable sets, which must be
measurable.

Before we prove that h is measurable, we will prove the following lemma:

Lemma: Let {an}n∈N ⊂ R and define for all m ∈ N,

bm := sup{an | n ≥ m}.

Then,
s := lim sup

n→∞
an = inf{bn | n ∈ N}.

Proof of Lemma: Since s = limk→∞ ank
for some subsequence {ank

}k∈N of {an}n∈N, we have
that

s ≤ sup{an | n ≥ m} = bm

for all m ∈ N. So,
s ≤ inf{bn | n ∈ N}.

On the other hand, if
c := inf{bm | m ∈ N} > s

then
c− s =: d > 0

and
bm − s ≥ c− s = d > 0

for all m ∈ N. So, there exists a subsequence {ank
}k∈N such that

ank
≥ s+

d

2

for all k ∈ N. This is a contradiction by Theorem 3.17. Hence, s ≥ c. �

Corollary of Lemma: Observe that

h(x) = inf{gm(x) | m ∈ N}

where
gm(x) = sup{fn(x) | n ≥ m}

for all x ∈ X.

The theorem follows for h. �

Recall: Let f be a function from X to R. Then, for all x, we define

(f ∨ g)(x) := max{f(x), g(x)},

(f ∧ g)(x) := min{f(x), g(x)}.

Corollary: If f and g are measurable, then so are f ∧g and f ∨g. Hence so are f+ := f ∨0 and f− := f ∧0.

Note: Observe that
f+, f− : X → [0,∞)

and
f = f+ − f−.
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Also,
f+(x) · f−(x) = 0

for all x ∈ X, and so

f2 =
(
f+
)2

+
(
f−
)2

.

Corollary: The limit of a (pointwise) convergent sequence of measurable functions is measurable.

Theorem 11.18: Let f, g : X → R be measurable. Let F : R2 → R be continuous and let

h(x) := F (f(x), g(x))

for all x ∈ X. Then, h is measurable.

Remark: Consider F : R2 → R defined by F (x, y) := x + y or F (x, y) := xy. By the theorem, both
of these are measurable.

Proof: For all a ∈ R, define Ga := F−1((a,∞)) ⊂ R2, which is open and hence Borel-measurable. So,
there exists a countable sequence {In}n∈N of open intervals in R2 such that

Ga =

∞⋃
n=1

In.

Say that In = (an, bn)× (cn, dn). Then, observe that

f−1((an, bn)) = {x ∈ X | f(x) ∈ (an, bn)} = f−1((an,∞)) ∩ f−1((−∞, bn))

is measurable (as it is the finite inetrsection of measurable sets). So,

{x ∈ X | (f(x), g(x)) ∈ In} = f−1((an, bn)) ∩ g−1((cn, dn))

is measurable (since the above argument works for g as well). So, for all a ∈ R,

h−1((a,∞)) = {x ∈ X | (f(x), g(x)) ∈ Ga} =

∞⋃
n=1

{x ∈ X | (f(x), g(x)) ∈ In}.

We’ve just prove that each of these terms is measurable, and so h−1((a,∞)) is a countable union of
measurable sets, and is hence measurable. Therefore, h is a measurable function. �

1.11.5 Simple Functions

Definition: Let s : X → R. If s(X) is a finite set, then s is a simple function.

Definition: Let E ⊂ X. The characteristic function KE of E is

KE =

{
1, x ∈ E

0, x 6∈ E

Note that KE(X) ⊂ {0, 1}.

Remark: Let s : X → R be a simple function. So,

s(X) = {c1, . . . , cn} ⊂ R.
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For all i ∈ {1, . . . , n} we define

Ei := s−1({ci})

and so

s =

n∑
i=1

ciKEi
.

Note that this representation is not unique.

Remark: Observe that KE is measurable if and only if E is measurable, and

K−1E

((
1

2
,∞
))

= E,

K−1E ((a,∞)) = ∅, ∀a ≥ 1,

K−1E ((a,∞)) = E, ∀a ≥ 0

K−1E ((a,∞)) = X. ∀a < 0.

Theorem 11.20: Let f : X → R. Then, there exists {sn}n∈N of simple functions such that sn → f as
n→∞. If f is measurable, we may choose sn to be measurable for all n ∈ N. If f ≥ 0, then we may choose
{sn}n∈N such that sn+1 ≥ sn for all n ∈ N. If f is bounded, then sn → f uniformly on X.

Proof: If f ≥ 0, then consider for all n ∈ N

Eni
:=

{
x | i− 1

2n
≤ f(x) <

i

2n

}
= f−1

([
i− 1

2n
,
i

2m

))
for i ∈ {1, 2, . . . , n2n}. Define

Fn := {x | f(x) ≥ n} = f−1([n,∞)).

Set

sn :=

n2n∑
i=1

i− 1

2n
KEni

+ nKFn
.

So,

|fn(x)− sn(x)| < 1

2n

for all x ∈ f−1([0, n)). Hence, there exists N ∈ N such that N > f(x) for all x ∈ x. So, for all n ≥ N ,
we have

|fn(x)− sn(x)| < 1

2n
.

In this case (the case f ≥ 0) we now see that {sn}n∈N is a monotone sequence.

In the general case, we recall that for f : X → R we may write f = f+ − f−, and apply the above
case to these two individually. �

1.11.6 Integration

Definition: Consider (X,M)→ (R, B). Let

s :=

n∑
i=1

ciKEi
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where Ei ∈ M for all i ∈ {1, 2, . . . , n}, with Ei ∩ Ej = ∅ when i 6= j. Let E ∈ M . Given a measure
µ : M → R, we define ∫

E

KEidµ := µ(Ei ∩ E).

Then, define ∫
E

s dµ :=

n∑
i=1

ciµ(Ei ∩ E) =

n∑
i=1

ci

∫
E

KEi .

Definition: Let f : (X,M,µ)→ (R, B). If f ≥ 0 and E ∈M , then we define∫
E

f dµ := sup

{∫
E

s dµ
∣∣ 0 ≤ s ≤ f, s simple and measurable

}
.

In the general case, if f = f+ − f−, define∫
E

f dµ :=

∫
E

f+ dµ−
∫
E

f− dµ

if both terms on the right are finite, or as long as we do not end up with ∞−∞. If both terms are finite,
then we say that f is Lebesgue integrable and we say that f ∈ L (u) on E.

Remark:

(a) If f : X → R is measurable and bounded and µ(E) <∞, then f ∈ L (µ) on E.

Proof: There exists T ∈ R such that |f(x)| ≤ T for all x ∈ X, so that

0 ≤ f+(x), f−(x) ≤ T.

Let s ∈ S(f+,M,E). Then,∫
E

s dµ =

n∑
i=1

ciµ(E ∩ Ei) ≤ T
∑
i=1

µ(E ∩ Ei) ≤ Tµ(E).

This holds for all s ∈ S(f+,M, µ). �

(b) Let a ≤ f(x) ≤ b for all x ∈ E and µ(E) <∞, then

aµ(E) ≤
∫
E

f+ dµ ≤ bµ(E).

Note that s = aKE ∈ S(f+,M,E) and
∫
E
s dµ = aµ(E).

(c) If f, g ∈ L (µ) on E and f(x) ≤ g(x) for all x ∈ E, then∫
E

f dµ ≤
∫
E

g dµ.

(Note: for all s ∈ S(f,M,E), if s ≤ f ≤ g then s ∈ S(g,M,E).)

(d) If f ∈ L (µ) on E and c ∈ R, then cf ∈ L (µ) on E and
∫
E
cf dµ = c

∫
E
f dµ.

(e) If µ(E) = 0 and f : X → R is measurable, then f ∈ L (µ) on E and
∫
E
f dµ = 0. (Let s ∈ S(f,M,E)

and s =

n∑
i=1

ciKEi
, and then

∫
E

s dµ =

m∑
i=1

ci

∫
E

KEi
dµ =

n∑
i=1

ciµ(E ∩ Ei) ≤
n∑
i=1

ciµ(E) = 0.
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Theorem 11.24:

(a) Let f : X → [0,∞) be measurable. For all A ∈M , define

0 ≤ ϕf (A) :=

∫
A

f dµ.

Then ϕf (A) : M → R∗ is countable additive (and nonnegative) and hence (what Rudin calls) a measure.

(b) If f ∈ L (µ) on X, then ϕf : M → R is also countably additive. (Note that ϕf = ϕf+ − ϕf−).

Proof of (a): Let {An}n∈N ⊂ M such that An ∩ Am = ∅ for all n 6= m and define A :=
⋂
n∈N

An.

Then, if f = KE (for E ∈M) then since µ is σ-additive, we have that

ϕf (A) =

∫
A

f dµ

=

∫
A

KE dµ

= µ(A ∩ E)

= µ

((⋂
n∈N

AN

)
∩ E

)

= µ

(⋂
n∈N

(An ∩ E)

)

=

∞∑
n=1

µ(An ∩ E)

=

∞∑
n=1

∫
An

KE dµ

=

∞∑
n=1

ϕf (An).

If f =
∑n
i=1 ciKEi , then

ϕf (A) =

∫
A

n∑
i=1

ciKEi
dµ

=

n∑
i=1

ci

∫
A

KEi
dµ

=

n∑
i=1

ci

( ∞∑
m=1

∫
Am

KEi
dµ

)

=

∞∑
m=1

(∫
Am

n∑
i=1

ciKEi dµ

)

=

∞∑
m=1

∫
Am

f dµ

=

∞∑
m=1

ϕf (Am).

This shows countable additivity in the case where f is a simple function.
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Now consider the general case where f : X → [0,∞) is measurable. Then, for all s ∈ S(f,M,A), we
have

ϕs(A) =

∫
A

d µ

=

∞∑
n=1

∫
An

s dµ

≤
∞∑
n=1

∫
An

f dµ

=

∞∑
n=1

ϕf (An).

This is true for arbitrary s. Hence it is true for the supremum of S(f,M,A). So,

ϕf (A) ≤
∞∑
n=1

ϕf (An).

Let ϕf (An) < ∞ for all n ∈ N. Let ε > 0. Then there exists s1 ∈ S(M,f,A1) and there exists
s2 ∈ S(M,f,A2) such that ∫

A1

s1 dµ ≥ ϕf (A1)− ε,

and ∫
A2

s2 dµ ≥ ϕf (A2)− ε.

Clearly, this implies that ∫
A1

KA1
s1 dµ ≥ ϕf (A1)− ε,

and ∫
A2

KA2
s2 dµ ≥ ϕf (A2)− ε.

Note that s1KA1
∈ S(M,f,A1) and s2KA2

∈ S(M,f,A2). Also, KBKA1
= KB∩A1

. Now,

KA1
s1 +KA2

s2 ∈ S(M,f,A1 ∪A2).

Hence,

ϕf (A1 ∪A2) ≥
∫
A1∪A2

(KA1
s1 +KA2

s2) dµ

=

∫
A1∪A2

KA1
s2 dµ+

∫
A1∪A2

KA2
s2 dµ

=

∫
A1

KA1
s1 dµ+

∫
A2

KA2
s2 dµ

≥ ϕf (A1) + ϕf (A2)− 2ε.

Since ε > 0 was abritrary, we have that

ϕf (A1 ∪A2) ≥ ϕf (A1) + ϕf (A2).

Iterating this process finitely, we conclude that

ϕf (A1 ∪ · · · ∪An) ≥ ϕf (A1) + · · ·+ ϕf (An).
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Now, let ϕf (An) <∞ for all n ∈ N. Let ε > 0. Note that

ϕf (A) = sup{
∫
A

s dµ | s ∈ S(M,f,A)}

and

ϕf (A1 ∪ · · · ∪An) = sup{
∫
A1∪···∪An

s dµ | s ∈ S(M,f,A1 ∪ · · · ∪An)}.

Let s ∈ S(M,f,A1 ∪ · · · ∪An). Then,∫
A1∪···∪An

sKA1∪···∪An︸ ︷︷ ︸
∈ S(M,f,A)

dµ =

∫
A1∪···∪An

s dµ ≤ ϕf (A).

Therefore,
ϕf (A1 ∪ · · · ∪An) ≤ ϕf (A).

(This establishes the monotonicity of ϕf , which we had to prove separately because we don’t know
that ϕf is additive.)

Hence,

ϕf (A) ≥
n∑
k=1

ϕf (Ak)

for all n ∈ N, and thus

ϕf (A) ≥
∑
n∈N

ϕf (An).

We have shown the inequalities in both directions, and so we have shown equality in the case ϕf (An) ≤
∞.

If ϕf (Ak) = +∞ for some k ∈ N, then there exists {sn}n∈N ⊂ S(M,f,Ak), such that

lim
n→∞

∫
Ak

sn dµ = +∞.

But,
snKAk

∈ S(M,f,A)

for all n ∈ N and

ϕf (A) ≥
∫
A

snKAk
dµ =

∫
Ak

sn dµ→ +∞.

So, if even one of these terms is infinite, the whole sum is, and the proof is now complete for all cases. �

Proof of (b): Now assume f ∈ L (µ) on X. Write f = f+ − f−. By part (a), both ϕf+ and ϕf−
are countably additive. So,

ϕf+(A)− ϕf−(A) =

∞∑
n=1

ϕf+(An)−
∞∑
n=1

ϕf−(An).

By part (a), both of these sums are convergent and in fact absolutely convergent, so we can rearrange
terms. Hence,

ϕf+(A)− ϕf−(A) =

∞∑
n−=1

(
ϕf+(An)− ϕf−(An)

)
=

∞∑
n=1

ϕf (An),

which completes the theorem. �
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Corollary: Let A,B ∈ M with B ⊂ A and µ(A r B) = 0. Then, for all f : X → [0,∞) which are
measureable, we have that ∫

A

f dµ =

∫
B

f dµ

so that ϕf (A) = ϕf (B).

Proof: We have proved that ϕf is an additive non-negative set function on M . So,

ϕf (A)− ϕf (B) = ϕf (ArB) =

∫
ArB

f dµ = 0. �

Remark: Let f, g : X → R be in L (µ) on X. Define f ∼ g to mean µ({x ∈ X | f(x) 6= g(x)}) = 0. This
is an equivalence relation on the set {f : X → R | f measurable}. This can be easily shown using the above
corollary.

Note that if f ∼ g, then ∫
E

f dµ =

∫
E

g dµ

for all E ∈M .

Definition: Consider a property P . We say that f has property P µ-almost everywhere (or, almost
everywhere with respect to µ), with shorthand µ-a.e., if

µ({x ∈ X | f does not have property P at x}) = 0.

Remark: Let f : X → [0,∞) be measurable and let∫
E

f dµ = 0

for some E ∈M . Then, f(x) = 0 µ-almost everywhere.

The analogous property for Riemann Integration is: If f : R→ [0,∞) is Riemann integrable and∫ b

a

f dx = 0

then f(x) = 0 for all x ∈ [a, b].

Theorem 11.26: Consider (X,M,µ) and (R, ξ). Let E ∈ M and let f : X → R be measurable. Then,
f ∈ L (µ) on E (i.e., f ∈ L (E,µ)) if and only if |f | ∈ L (µ) on E. If f ∈ L (E,µ), then∣∣∣∣∫

E

f dµ

∣∣∣∣ ≤ ∫
E

|f | dµ.

Proof: Let f ∈ L (E,µ). Then, E = A ∪B, where

A := f−1([0,∞)) ∩ E,

B := f−1((−∞, 0)) ∩ E.

Then, Theorem 11.24(a) implies that

0 ≤ ϕ|f |(E) =

∫
E

|f |dµ =

∫
E

|f |+dµ−
∫
E

|f |−dµ =

∫
A

|f |dµ+

∫
B

|f |dµ =

∫
A

f+dµ+

∫
B

f−dµ <∞.
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So, we have shown that |f | ∈ L (E,µ). Since f ≤ |f | and −f ≤ |f |, we have that∫
E

f dµ ≤
∫
E

|f | dµ

and

−
∫
E

f dµ ≤
∫
|f | dµ.

If |f | ∈ L (E,µ), then by Theorem 11.24, we have that

∞ > ϕ|f |(E)

=

∫
A

f+dµ+

∫
B

f−dµ

=

∫
A

f+dµ+

∫
B

f+dµ+

∫
B

f−dµ+

∫
A

f−dµ

=

∫
E

f+dµ+

∫
E

f−dµ. �

Theorem 11.27: Suppose f is measurable on E with |f | ≤ g and g ∈ L (E,µ). Then, f ∈ L (E,µ).

Proof: We have that f+ ≤ g and f− ≤ g. Use the previous theorem. �

Theorem 11.28: (Lebesgue’s Monotone Convergence Theorem) Let E ∈ M and let fn : X → R be
measurable for all n ∈ N such that

0 ≤ f1(x) ≤2 (x) ≤ · · · ≤ fn(x) ≤ · · ·

for all x ∈ E. Let fn(x)→ f(x) for all x ∈ E. Then,∫
E

fn dµ→
∫
E

f dµ

Remark: These hypothesis are all critical. Without them, some very distasteful things can happen.
Additionally, uniform convergence does not allow us to interchange limits as it does in the Riemann
integral case.

Proof: We have that {∫
E

fn dµ

}
n∈N
⊂ [0,∞]

and these are monotone increasing. So, there exists α ∈ R+ such that

lim
n→∞

∫
E

fn dµ = α.

But, ∫
E

fn dµ ≤
∫
E

f dµ

and so

α ≤
∫
E

f dµ.

Now let c ∈ (0, 1) and s ∈ S(M,f,E). Set En := {x ∈ E | fn(x) ≥ cs(x)}. So, En ⊂ En+1 for all
n ∈ N. Since fn(x)→ f(x) for all x ∈ E, we have

E =
⋃
n∈N

En.
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So, for all n ∈ N, we have ∫
E

fn dµ ≥
∫
En

fn dµ ≥
∫
En

cs dµ = c

∫
En

s dµ.

Let n → ∞ above. Since the integral is a countably additive set function by Theorem 11.24, we
have that we can apply Theorem 11.3 to the last integral on the right above, to obtain

α ≥ c
∫
E

s dµ.

Letting c→ 1, we see that

α ≥
∫
E

s dµ.

Hence,

α ≥
∫
E

f dµ.

Combining these facts, the theorem follows. �

Theorem 11.29: (Linearity of the Lebesgue Integral) Let f = f1 + f2 with f1, f2 ∈ L (e, µ). Then,
f ∈ L (E,µ) and ∫

E

f dµ =

∫
E

f1 dµ+

∫
E

f2 dµ.

Proof: If f1, f2 are simple, then we’re done. If f1, f2 : X → [0,∞), we can choose monotonically
increasing {s′n}n∈N ⊂ S(M,f1, E) and monotonically increasing {s′′n}n∈N ⊂ S(M,f2, E) such that
s′n → f1 and s′′n → f2. Define

sn := s′n + s′′n.

By Lebesgue’s Monotone Convergence Theorem, we can let n→∞ to obtain∫
E

(f1 + f2)dµ =

∫
E

f1 dµ+

∫
E

f2 dµ.

Next, consider f1 ≥ 0 and f2 ≤ 0. Then, set

A := f−1([0,∞)),

B := f−1((−∞, 0)).

Observe that E = A ∪B. Then, f , f1, and |f2| are all nonnegative on A. So, f1 = f + (−f2), and∫
A

f1 dµ =

∫
A

f dµ+

∫
A

f2 dµ. (F1)

Similarly, −f, f,−f2 are all nonnegative on B, and so∫
B

(−f2) dµ =

∫
B

f1 dµ+

∫
B

(−f) dµ.

Thus, ∫
B

f1 dµ =

∫
B

f dµ−
∫
B

f2 dµ. (F2)

The general case is obtained by splitting E into four sets Ei, on each of which f1 and f2 have constant
sign. Then, the cases above prove the result. �
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Theorem 11.31: (Fatou’s Lemma) Consider the setting (X,M,µ) and (R, B). Let E ∈ M and fn : X →
[0,∞) be measurable for all n ∈ N and

f(x) := lim inf
n→∞

fn(x)

for all x ∈ E. Then, ∫
E

f dµ ≤ lim inf
n→∞

fn dµ.

Define

gn := inf{fi | i ≥ n}

and note

0 ≤ g1 ≤ g2 ≤ · · · ≤ gn ≤ fn

for all n ∈ N. We also have that

lim
n→∞

gn(x) = f(x).

So,

lim inf
n→∞

∫
E

fn dµ = sup

{
inf

{∫
E

fm dµ | m ≥ n
}
| n ∈ N

}
≥ sup

{∫
E

gn dµ | n ∈ N
}

=

∫
E

f dµ.

By Theorem 11.28, ∫
E

gn dµ→
∫
E

f dµ. �

Theorem 11.32: (Lebesgue’s Dominated Convergence Theorem) Let E ∈M and fn : X → R be measurable
such that fn → f on E. If there exists g ∈ L (E,µ) such that

|fn(x)| ≤ g(x)

for all x ∈ E and n ∈ N, then

lim
n→∞

∫
E

fn dµ =

∫
E

f dµ.

Proof: Theorem 11.27 implies that fn ∈ L (E,µ) for all n ∈ N. Note that fn + g ≥ 0 and so by
Fatou’s Lemma we get that∫

E

f dµ+

∫
E

g dµ =

∫
E

(f + g)dµ ≤ lim inf
nto∞

∫
E

(fn + g)dµ = lim inf
n→∞

∫
E

fn dµ+

∫
E

g dµ.

This implies that

lim inf
n→∞

∫
E

fn dµ ≥
∫
E

f dµ

Consider now (g − fn) ≥ 0, so a similar argument yields∫
E

f dµ ≥ lim inf
n→∞

(∫
E

fn dµ

)
. �



1.11. THE LEBESGUE THEORY 125

1.11.7 Comparison With The Riemann Integral

Theorem 11.33: We are in the setting (R,M(m),m) with (R, B).

(a) If f ∈ R on [a, b], then f ∈ L on [a, b] and∫ b

a

f dx = R

∫ b

a

f dx.

(b) Let f : [a, b]→ R be bounded. Then, f ∈ R on [a, b] if and only if f is continuous m-almost everywhere.

Proof: Let f : [a, b]→ R be bounded. Then, there exists

{Pk}k∈N ⊂P([a, b])

such that

Pk+1 ⊂ Pk, (sxi)k <
1

k

and

lim
k→∞

L(Pk, f) = R

∫ b

a

f dx

and

lim
k→∞

U(Pk, f) = R

∫ b

a

f dx.

If

Pk = {x0, x1, . . . , xn},

then define

Lk, Uk : [a, b]→ R

by

Uk(a) = Lk(a) = f(a)

and

Uk(x) = Mi, x ∈ (xi−1, xi]

and

Lk(x) = mi, x ∈ (xi−1, xi].

Observe that

Lk ≤ f ≤ Uk

on [a, b], for all k ∈ N. Also,

L1 ≤ L2 ≤ · · · ≤ Ln ≤ f ≤ Un ≤ · · · ≤ U2 ≤ U1

on [a, b], for all n ∈ N. Thus,

L(x) := lim
k→∞

Lk(x)

and

U(k) := lim
k→∞

Uk(x).

exist for all x ∈ [a, b]. So, L and U are Lebesgue measurable on [a, b], and we have that

L ≤ f ≤ U
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on [a, b]. Now see that ∫ b

a

Lk dx =

n∑
i=1

mi∆xi = L(Pk, f)

and ∫ b

a

Uk dx =

n∑
i=1

Mi∆xi = U(Pk, f).

So,

lim
k→∞

∫ b

a

Lk dx = R

∫ b

a

f dx

and

lim
k→∞

∫ b

a

Uk dx = R

∫ b

a

f dx.

Consider {Lk − L1}k∈N and {Uk − U1}k∈N. Note that the first sequence isnonnegative and increasing
and that the second sequence is nonpositive and decreasing. So, by the monotone convergence theorem,

lim
k→∞

∫ b

a

Lk dx− lim
k→∞

∫ b

a

L1 dx = lim
k→∞

[∫ b

a

Lk dx−
∫ b

a

L1 dx

]
= lim
k→∞

∫ b

a

(Lk−L1)dx =

∫ b

a

(L−L1)dx =

∫ b

a

L dx−
∫ b

a

L1 dx,

and

lim
k→∞

∫ b

a

Uk dx− lim
k→∞

∫ b

a

U1 dx = lim
k→∞

[∫ b

a

Uk dx−
∫ b

a

U1 dx

]
= lim
k→∞

∫ b

a

(Uk−U1)dx =

∫ b

a

(U−U1)dx =

∫ b

a

U dx−
∫ b

a

U1 dx.

So, ∫ b

a

L dx = R

∫ b

a

f dx

and ∫ b

a

U dx = R

∫ b

a

f dx.

Now, assume that f ∈ R on [a, b]. So, we have that∫ b

a

f dx = R

∫ b

a

f dx.

Also, ∫ b

a

L dx =

∫ b

a

U dx

implies that ∫ n

a

(U − L) dx = 0.

Since U − L is nonnegative, we have that

U(x) = f(x) = L(x),

Lebesgue-almost everywhere. This allows us to conclude (with a little thought) that f is measurable.

Now, L and U are bounded. If

x 6∈
⋃
k∈N

Pk
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(i.e., if x is not an endpoint of any partition), then U(x) = L(x) if and only if f is continuous at
x. Hence, f is continuous Lebesgue-almost everywhere if and only if U(x) = L(x) Lebesgue-almost
everywhere if and only if f ∈ R on [a, b] (we have not yet shown the =⇒ direction of the last
equivalence). To see this claim, note that if L(x) = U(x) Lebesgue-almost everywhere, then∫ b

a

L dx =

∫ b

a

U dx

and so

R

∫ b

a

f dx = R

∫ b

a

f dx.

This completes the proof. �

1.11.8 Integration of Complex Functions

Definition: Let f : X → C and f = u+ iv, for u, v : X → R. Then, we say that f is measurable if both u
and v are measurable (equivalently, if

|f | = (u2 + v2)
1
2

is measurable). For all E ∈M , we say that f ∈ L (E,µ) if |f | ∈ L (E,µ) (if and only if u, v ∈ L (E,µ)). In
this case, ∫

E

f dµ =

∫
E

u dµ+ i

∫
E

v dµ.

1.11.9 Functions of Class L 2

Definition: We start with Rudin’s implied definition:

L 1(X,µ) :=

{
f : X → C |

∫
X

|f | dµ <∞
}

and the actual definition

L 2(X,µ) :=

{
f : X → C |

∫
X

|f |2 dµ <∞
}
.

For all f, g ∈ L 2(X,µ), we define

〈f, g〉 :=

∫
X

fg dµ.

We also define a norm

‖f‖ := 〈f, f〉1/2.

This is the L 2 norm so we sometimes denote it ‖f‖2. This is almost a norm in the way we have previously
defined them. The are missing the positive-definite property, since there can exit f 6= 0 with ‖f‖2 = 0.

Theorem 11.35: (Cauchy-Schwarz Inequality) Let f, g ∈ L 2(X,µ). Then, f, g ∈ L (X,µ) and∫
X

|fg| dµ ≤ ‖f‖2‖g‖2.

Proof: See Rudin.
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Theorem 11.36: Let f, g, h ∈ L 2(X,µ). Then,

d(f, g) := ‖f − g‖2 ≤ ‖f − h‖2 + ‖h− g‖2 =: d(f, h) + d(h, g).

Proof: See Rudin.

Theorem 11.38: Consider C ([a, b]), the set of all complex-valued continuous functions on [a, b]. This is
dense in L 2([a, b], dx).

Proof: See Rudin.

Definition: We say that f, g ∈ L 2(X,µ) are orthogonal if 〈f, g〉 = 0.

Definition: Let {ϕn}n∈N ⊂ L 2(X,µ). We say that {ϕn}n∈N is an orthogonal family if 〈ϕn, ϕm〉 = 0 for all
n 6= m. We say that {ϕn}n∈N is an orthonormal family if 〈ϕn, ϕm〉 = δn,m for all n,m ∈ N.

Theorem 11.40: (Parseval’s Theorem) [Let f ∈ L 2(X,µ) and let {ϕn}n∈N be an orthonormal family.
Then, with

cn :=

∫
X

fϕn dµ

we write
f ∼

∑
cnϕn.

] Suppose

f(x) ∼
∞∑

n=−∞

cn√
2π
einx

in the setting (X,µ) = ([−π, π], dx). Let

sn

n∑
j=−n

cj√
2π
eijx.

Then,
lim
n→∞

‖f − sn‖2 = 0

and
∞∑

n=−∞
|cn|2 =

∫ π

−π
|f |2 dµ = ‖f‖22.

Proof: See Rudin.

Corollary: (Riemann-Lebesgue Lemma) Let

f ∈ L 2([−π, π], dx).

Then,

lim
n→∞

∫ π

−π
f(x)einxdx = 0.

Corollary: If
f ∈ L 2([−π, π], dx)

and
cn(f) = 0

for all n ∈ Z, then ‖f‖2 = 0 and f = 0 Lebesgue-almost everywhere.
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Theorem 11.42: L 2(µ) is complete.

Proof: Let {fn}n∈N ⊂ L 2(X,µ) be Cauchy. Then, there exists {nk}k∈N ⊂ N such that

‖fnk
− fnk+1

‖2 <
1

2k

for all k. Let g ∈ L 2(X,µ). By the Cauchy-Schwarz Inequality, we have

∣∣〈|fnk
− fnk+1

|, |g|〉
∣∣ =

∫
X

|g||fnk
− fnk+1

| dµ ≤ ‖fnk
− fnk+1

‖2‖g‖2 ≤
‖g‖2
2k

.

Therefore,
∞∑
k=1

∫
X

|g(fnk
− fnk+1

| dµ ≤ ‖g‖2
∞∑
k=1

2−k = ‖g‖2.

So by Theorem 11.30, ∫
X

[ ∞∑
k=1

∣∣g(fnk
− fnk+1

)
∣∣] dµ ≤ ‖g‖2.

This implies that
∞∑
k=1

|g(x)(fnk+1
(x)− fnk

(x))| dµ < +∞

µ-almost everywhere (see Rudin for explanation). Hence,

∞∑
k=1

|fnk+1
(x)− fnk

(x)| < +∞

µ-almost everywhere (see Rudin for explanation). So,

∞∑
k=1

(fnk+1
(x)− fnk

(x))

is absolutely convergent, hence convergent, µ-almost everywhere. This sum is telescoping, and so has
partial sums

SN = fnN+1
− fn1 .

So, {fnk
}k∈N converges to f(x) µ-almost everywhere.

Define
E := {x ∈ X | g(x) := lim

k→∞
fnk

(x) exists} ∈M.

So, X r E is measurable and µ(X r E) = 0. Define

f(x) =

{
g(x), x ∈ E

0, x ∈ X r E
.

This is a measurable function, since

f−1((a,∞))−1 =

{
g−1((a,∞)), a ≥ 0

f−1((a,∞)) ∪ (X r E), a < 0
.

The rest of the proof is straightforward. See Rudin. �
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Abel’s Theorem, 79
absolute convergence, 34
absolute value, 5
additive, 104

σ-additive, 104
arc, 63
Archimedean Property, 4
Arzelá-Ascoli Theorem, 73
at most countable, 6

ball, see open ball
Bessel’s Inequality, 87
bijection, 1
Borel σ-ring, 112
bounded

pointwise, 71
uniformly, 71

bounded above, 2
bounded map, 42
bounded set, 10, 42
bounded variation, 65
Br(x), see open ball

Cn, 63
C, 4
C (X), 69
Cantor diagonalization, 72
Cantor Set, 18
Cauchy convergence, 29
Cauchy product, 35
Cauchy sequence, 23
Cauchy-Schwarz, 127
chain rule, 47
clopen set, 10
closed set, 10
closure, 10
compact set, 13
Comparison Test, 28
complete metric space, 25
complex algebra, 75
complex number, 4
component functions, 94
conditional convergence, 34
conjugate, 4
connected set, 18
continuity, 40

continuous differentiable, 98
contraction mapping, 99
convergent sequence, 20
convex subspace, 97
countable set, 6
covering, 107
curve, 63

closed curve, 63

DeMorgan’s Law, 7
dense set, 10
derived set, 10
diameter of a set, 24
differentiable, 46
differentiablity of vector-valued function, 92
Dini’s Theorem, 69
directional derivative, 97
Dirichlet kernel, 88
discontinuity

of the first kind, 44
of the second kind, 44

discrete metric, 9, 20
discrete topology, see discrete metric
domain, 1
Dominated Convergence Theorem, 124

e, 30
elementary set, 106
equicontinuous, 71
equipollent, 2
equivalence class, 2
equivalence relation, 2
extended reals, 4, 25

Fatou’s Lemma, 124
field, 3
finite, 4
Finite Intersection Property, 14
finite set, 6
finitely µ-measurable, 110
Fourier coefficients, 86
Fourier series, 88
Fundamental Theorem of Calculus, 61

Generalized Mean Value Theorem, 48
greatest lower bound, 3
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greatest lower bound property, 3

Hölder continuity, 51
Heine-Borel Theorem, 16

index set, 7
infimum, 3
infinite set, 6
injective, 1
integrable

Riemann integrable, 54
Riemann-Stieltjes integrable, 55

Integration by Parts, 61
interior, 9
interior point, 9
Intermediate Value Theorem, 44
interval, 106
Inverse Function Theorem, 100
isolated point, 10

k-cell, 15

L’Hôpital’s Rule, 50
L 2, 127
Λ, 63
least upper bound, 2
least upper bound property, 3
Lebesgue integrable, 117
Lebesgue Measure, 112
Lebesgue’s Dominated Convergence Theorem, 124
Lebesgue-Stieltjes Measure, 112
liminf, 26
limit of a sequence, 20
limit point, 10
limsup, 26
Lipschitz continuity, 51
local maximum, 48
local minimum, 48

Mean Value Theorem, 48
measurable, 113
measurable function, 113
measure, 112
metric space, 8
Monotone Convergence Theorem, 122
monotonic, 25, 45
µ-measurable, 110

negative, 3
neighborhood, 9

open ball, 9
open cover, 13
order, 2
ordered field, 3
ordered set, 2

orthogonal, 85, 128
orthogonal family, 128
orthonormal, 86
orthonormal family, 128
outer measure, 107

Parseval’s Theorem, 90, 128
partial derivative, 95
Partial Summation Formula, 33
partial sums, 27
partition, 54
perfect set, 17
permutation, 37
pointwise bounded, 71
positive, 3
positive definiteness, 8
power series, 32
product rule, 46
proper subset, 1
pseudometric, 108

Q, 8
quotient rule, 46

range, 1
Ratio Test, 31
rearrangement, 37
rectifiable, 63
refinement, 55
regular, 107
regular additive set function, 107
Riemann-Lebesgue Lemma, 128
Riemann-Stieltjes integral, 54
ring, 104
Rolle’s Theorem, 48
Root Test, 31

self-adjoint, 77
separate, 76
separation, 18
sequence, 6, 20

trivial, 20
set function, 104
σ-additive, 104
σ-ring, 104
simple function, 115
Squeeze Theorem, 26
Stone-Weierstrass Theorem, 76
subadditivity, 107
subsequence, 22
subsequential limit, 26
subsequential limits, 23
subset, 1

proper, 1
sum rule, 46
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supremum, 2
supremum norm, 69
surjective, 1
symmetric difference, 108

Taylor’s Theorem, 52
Topologist’s Sine Curve, 19
trace, 63
triangle inequality, 8
trigonometric polynomial, 85

uncountable set, 6
uniform closure, 76
uniform continuity, 42
uniform converge, 66
uniformly bounded, 71
uniformly closed, 76
upper bound, 2

vanish, 76
vector-valued function, 62

Weierstrass M -test, 68
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