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Chapter 1

Course Notes

1.1 Chapter V - Fields and Galois Theory

1.1.1 Section V.1 - Field Extensions

Definition: Let K ⊂ F be fields. Then, F is an extension of K.

Note: We operate by starting with a fixed field K and thinking about all possible extensions F , rather than
starting with a field F and thinking about all possible subfields K.

Definition: Let u, u1, . . . , un ∈ F and X ⊆ F . Then,

K[u] denotes the subring of F generated by K and u.
K(u) denotes the subfield of F generated by K and u.

Theorem V.1.3:

K[u] = {f(u) | f ∈ K[x]}
K(u) = {f(u)/g(u) | f, g ∈ K[x], g(u) 6= 0}

K[u1, . . . , un] = {f(u1, . . . , un) | f ∈ K[x1, . . . , xn]}
K(u1, . . . , un) = {f(u1, . . . , un)/g(u1, . . . , un) | f, g ∈ K[x1, . . . , xn], g(u1, . . . , un) 6= 0}

K[X] = {f(u1, . . . , un) | f ∈ K[x1, . . . , xn], u1, . . . , un ∈ X, n ∈ N}
K(X) = {f(u1, . . . , un)/g(u1, . . . , un) | f, g ∈ K[x1, . . . , xn], u1, . . . , un ∈ X, g(u1, . . . , un) 6= 0, n ∈ N}.

Note: For the last two formulas, we could try to write each element as polynomials in an infinite number of
variables, but this becomes much less workable.

Definition: Let K ⊆ F be a field extension, and let u ∈ F . We say that u is algebraic over K if there exists
some f(x) ∈ K[x] with f 6= 0, such that f(u) = 0. We say that u is transcendental if u is not algebraic.

Note: Don’t think of the elements of K(x1, . . . , xn) as actual functions. Just think of them as purely
fractions of elements of the integral domain K[x1, . . . , xn]. For example: in F2[x], the functions x2 − x and
0 are equal, however they are completely different elements in the field.

1



2 CHAPTER 1. COURSE NOTES

Example: (Exercise V.1.6) If f ∈ K(x1, . . . , xn) and f 6∈ K, then f is transcendental over K. (Hint: the
variables x1, . . . , xn are transcendental over K, so use contradiction.)

Definition: K ⊆ F is called a simple extension if and only if there exists u ∈ F such that F = K(u).

Definition: K ⊆ F is called a finitely generated extension if and only if there exist u1, . . . , un ∈ F such
that F = K(u1, . . . , un).

Remark: Be aware of the different notions of “finiteness” for a field extension K ⊆ F :

(i) F is finite (and so K is finite).

(ii) F is finite dimensional as a vector space over F , sometimes referred to as a “finite extension”.

(iii) F = K(u1, . . . , un), so F is “finitely generated” over K.

Example: F = K[x] is (iii) but not (ii).

Theorem V.1.5: If K ⊆ F and u ∈ F is transcendental over K, then K(u) ∼= K(x), the field of rational
functions in one variable, by an isomorphism taking x 7→ u and which is the identity on K.

Proof: By the Universal Mapping Property of Polynomial Rings on K[x], there exists a unique
homomorphism

ϕ : K[x]→ F,

mapping x 7→ u and which is the identity on K.

Since u is transcendental, we have that ϕ is injective: [Kerϕ = { polynomials that send x to 0 }. Since
u is transcendental, f(u) 6= 0 if f 6= 0. So Kerϕ is trivial, and thus ϕ is injective.]

Since K(x) is the field of fractions of K[x], we can extend ϕ to a homomorphism ϕ̃ : K(x) → F ,
and since K(x) is generated over K by x, it is clear that Imϕ is generated over K by ϕ̃(x) = u, i.e.,
Im ϕ̃ = K(u). �

Note: By using the Universal Mapping Property of Polynomial Rings, we avoid needing to check
that ϕ was well-defined, a homomorphism, etc, since all of these properties hold automatically.

Theorem V.1.6: Let K ⊆ F be a field extension and suppose u ∈ F is algebraic over K.

(1) K(u) = K[u];

(2) K(u) ∼= K[x]/(f), where f ∈ K[x] is an irreducible monic polynomial of degree n ≥ 1 uniquely
determined by the conditions that [f(u) = 0] and [g(u) = 0, with g ∈ K[x], if and only if f divides g];

(3)
[
K(u) : K

]
= n;

(4) {1K , u, u2, . . . , un−1} is a basis of the vector space K(u) over K;

(5) Every element of K(u) can be written uniquely in the form a0 + a1u+ . . .+ anu
n−1, with aj ∈ K.

Proof: Consider the homomorphism ϕ : K[x] → F that maps x 7→ u and is the identity on K. This
exists uniquely by the Universal Mapping Property of Polynomial Rings. Since u is algebraic,
we have that Kerϕ 6= 0. Since K[x] is a Principal Ideal Domain, we can pick f to be the monic
generator of minimal degree of Kerϕ, so that Kerϕ = (f). We can pick it to be monic because K is a
field, so we can set the leading coefficient to 1.

We claim that f is irreducible. If f is not irreducible, then let g, h be such that f = gh, where
deg g < deg f . Then, 0 = f(u) = g(u)h(u). Since K[x] is an integer domain, either g(u) = 0 or
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h(u) = 0. But then, f is not the polynomial with minimal degree that generated Kerϕ. This is a
contradiction. Thus f is irreducible.

Now, Imϕ = K[u]. Since f is irreducible, the ideal (f) is a maximal ideal. Thus Imϕ is a field. So,
K[u] is a field. Thus K[u] = K(u), and so (1) and (2) are proved.

Next we claim that K[u] is generated by {K,u, u2, . . . , un−1}. Let f(x) = xn+an−1x
n−1+· · ·+a1x+a0.

Since f(u) = 0, we have that
−un = an−1x

n−1 + · · ·+ a1u+ a0.

So, K[u] is generated by {1, u, . . . , un−1}. Thus the set spans K[u]. It remains to show that that set
is linearly independent.

If {1, u, . . . , un−i} with i > 1 spans K[u], then those elements form a polynomial for which f(u) = 0,
contradicting the minimality of the degree of f . Thus, the set is linearly independent, and so it is a
basis for K[u]. Thus (4) is proved.

(3) follows immediately from the construction of (4) and the statement [(4)⇒ (5)] is a routine vector
space result. �

Definition: Let F be an extension of K and let u ∈ F . Then,

K(u) ∼=

 K(x), if u is transcendental,
K[x]/(f), if u is algebraic, for some monic irreducible

polynomial f , where deg f = n = |K(u) : K|.

This f is called the minimal polynomial of u over K.

Remark: Consider the following diagram:

u ∈ F E 3 v
∪ ∪
K ∼= L

In this case, σ : K → L induces an isomorphism σ̃ : K[x]→ L[x], such that

σ̃(x) = x, σ̃(k) = σ(k).

Theorem V.1.8: If [u and v are transcendental] or if [u is a root of a non-zero irreducible polynomial

f ∈ K[x] and v is a root of σ ◦ f ∈ L[x]], then there exists an isomorphism σ̃ : K(u)
σ̃−→ L(v) extending σ.

Proof: Consider the following diagram:

F E
∪ ∪

K[x] ∼= L[x]
∪ ∪
K L

In the case that u and v are transcendental, we have an embedding of σ to K(u) ∼= K(x), as above.

In the algebraic case:
F E
∪ ∪

K[x]/(f) ∼= L[x]/(σ ◦ f)
∪ ∪
K L

We use the same technique of embedding σ through a series of three isomorphisms.
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Definition: If E,F are extensions of K, then a K-homomorphism from E to F is a field homomorphism
which is the identity on K.

Theorem V.1.10: If K is a field and f ∈ K[x] is a polynomial of degree n, then there exists a simple
extension F = K[u] such that:

(1) u ∈ F is a root of f ,

(2)
[
K(u) : K

]
≤ n with equality if and only if f is irreducible,

(3) If f is irreducible, then K(u) is unique up to K-isomorphism.

Proof: (Sketch) If f is reducible, then pick f1 to be an irreducible factor of f . Then, (f1) is a maximal
ideal in K[x]. Thus, K[x]/(f1) is a field extension of K. Now, K[x]/(f1) = K(u), where u := x+ (f1).
Also, we know that

[
K(u) : K

]
= deg f , with the basis {1, u, . . . , un−1}.

Definition: An extension K ⊂ F is an algebraic extension if every element of F is algebraic over K.

Definition: An extension K ⊂ F is a transcendental extension if there exists an element of F which is
transcendental over K.

Theorem V.1.11: If F is finite dimensional over K then F is finitely generated and algebraic over K.

Proof: (Sketch) Finite dimensional extension means that F is finite dimensional vector space over K.
F has a finite basis by finite dimensionality. This basis spans F . So, F is finitely generated by this
finite bases over K.

Take an element u ∈ F which is n-dimensional and consider {1, u, . . . , un}, a total of n+ 1 elements.
Thus, these elements are linearly dependent, and we can write u as a combination of the other elements.
Thus u is algebraic, for any arbitrary u ∈ F . �

Theorem V.1.12: If F = K(X) for some X ⊂ F and every element of X is algebraic over K, then F is an
algebraic extension over K. If X is finite, then F is finite dimensional.

Proof: (Sketch) Let α ∈ F . Then there exist finitely many elements u1, . . . , ur ∈ X such that
α ∈ K(u1, . . . , ur). The extension K ⊂ K(u1) is a finite extension since u1 is algebraic over K.
Similarly, the extension K(u1) ⊂ K(u1, u2) is a finite extension for the same reason. So, the extension
K ⊂ K(u1, u2) is algebraic over K. Continuing this process, we see that K(u1, . . . , ur) is a finite
dimensional extension of K. �

Theorem V.1.13: If K ⊂ E ⊂ F and E is algebraic over K and F is algebraic over E, then F is algebraic
over K.

Proof: Let α ∈ F . Since α is algebriac over E, it satisfies some nonzero polynomial f(x) =
anx

n + . . . + a1x + a0 ∈ E[x]. Thus, α is algebraic over K(a0, . . . , an). But, each of a0, . . . , an is
algebraic over K, so that K(a0, . . . , an) is a finite extension (i.e. |K(a0, . . . , an) : K| <∞).

By a previous theorem: |K(a0, . . . , an)(α) : K(a0, . . . , an)| < ∞. Hence, |K(a0, . . . , an)(α) : K| < ∞.
Thus α is algebraic over K. �
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Theorem V.1.14: Let K ⊂ F be a field extensions. Then E := {u ∈ F | u is algebraic over K} is a subfield
of F .

Proof: If α, β ∈ E, then K(α) is algebraic over K and K(α, β) is algebraic over K(α). So, K(α, β)
is algebraic over K. Now, α+ β, α− β, αβ, αβ−1 (if β 6= 0) ∈ K(α, β). �

Definition: In the theorem above, E is called the algebraic closure of K in F .

Special Topic: Ruler and Compass Constructions

Definition: Let F be a subfield of R. L is a line of F if it passes through points (a1, b1), (a2, b2), with
a1, b1, a2, b2 ∈ F .

Definition: Let F be a subfield of R. C is a circle of F if it is centered at a point (a, b) and has a radius r,
with a, b, r ∈ F .

Lemma: Let F be a subfield of R.

(a) If L1 and L2 are lines of F , then their point of intersection, if it exists, has coordinates in F .

(b) The intersection points of a line of F and a circle of F have coordinates in F (u), where
[
F (u) : F

]
≤ 2.

(c) The intersection points of two circles of F have coordinates in F (u), where
[
F (u) : F

]
≤ 2.

Corollary: Any length c which can be constructued in a finite number of steps gives an extension field F
of Q such that

[
F : Q

]
= 2n, for some n ∈ N.

Example: The length 3
√

2 is a root of x3 − 2 which is irreducible in Q[x] be Eisenstein’s Criterion. Hence[
Q( 3
√

2) : Q
]

= 3. Thus 3
√

2 is not a constructible length. So, constructing the length of the side of a cube
which has volume 2 is not possible.

Example: Since π is transcendental, it’s exists only in non-finite extensions of Q. Thus it is not a
constructible length. So, “squaring the circle” is not possible.

Example: We show that it is not possible to trisect the angle. With some trig, we get that

cos(3θ) = 4 cos3(θ)− 3 cos(θ).

Let θ =
π

9
, so that cos(3θ) =

1

2
. Now,

1

2
= 4x3 − 3x.

This has no rational root, and so its roots have field extensions of degree 3. Thus the length cos
(π

9

)
and

hence the angle
π

9
are not constructible.
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1.1.2 Section V.2 - The Fundamental Theorem

Definition: Let K ⊂ F . Then, AutK(F ) := {σ ∈ Aut(F ) | σ |K= idK}. We call this group the
Galois group of F over K.

Note: Automorphisms of a field F are automatically injective if they’re non-zero, since there are no non-
trivial ideals for the kernel to be. However, surjectivity does not come for free.

Example: Consider ϕ : F2(x) → F2(x) defined by ϕ(x) = x2. The same thing on the polynomial ring
ψ : F2[x] → F2[x] ⊂ F2(x) is a homomorphism by the Universal Mapping Property. This is then a
homomorphism into the superset F2(x). If an integral domain has a homomorphism into a field of fractions,
then its field of fractions also has a homomorphism into the field of fractions which, when restricted to the

integral domain, is the first homomorphism. So, ϕ : f(x)
g(x) 7−→

f(x2)
g(x2) , and so we see that ϕ is not surjective.

Thus ϕ is not an automorphism: ϕ 6∈ AutF2
F2(x).

Example: On the other hand, for K any field, let σa : K(x)→ K(x) defined by x 7→ ax, for a 6= 0. Now, in

this case, by the same reasoning above, f(x)
g(x) 7→

f(ax)
g(ax) . Clearly σa is surjective. Therefore, σa ∈ AutK K(x).

Additionally, since K is infinte, so is AutK K(x).

Example: Similarly, the map τb : K(x) → K(x) defined by x 7→ x + b is an automorphism. Again, by the
Universal Mapping Property, the map x 7→ x+b is a homomorphism on the polynomial ring K[x], and so
its a homomorphism from K[x] into K(x), and thus it induces a map from K(x) to K(x). This induced map

is f(x)
g(x) 7→

f(x+b)
g(x+b) , which is surjective. Thus τb is an automorphism that is fixed on K, and so τb ∈ AutK K(x).

Note: In the examples above, if a 6= 1 and b 6= 0, then σaτb(x) = ax + ab and τbσa = ax + b. Thus,
AutK K(x) is not abelian.

Theorem V.2.2: Let K ⊂ F and f(x) ∈ K[x], and let u ∈ F be a root of f . Then, for all σ ∈ AutK(F ), it
is true that σ(u) is also a root of f .

Proof: Let f(x) = anx
n + · · ·+ a1x+ a0. Since u is a root of f(x), we have that:

anu
n + · · ·+ a1u+ a0 = 0.

Applying σ to both sides:

σ(anu
n + · · ·+ a1u+ a0) = σ(0).

Since σ is a homomorphism:

σ(an)σ(u)n + · · ·+ σ(a1)σ(u) + σ(a0) = 0.

Since σ is the identity on K:

anσ(u)n + · · ·+ a1σ(u) + a0 = 0.

Therefore, σ(u) is a root of f . �

Remark: If a polynomial is reducible, then an automorphism σ moves roots only within the same irreducible
factors, but not between them.

Example: Let F = K. Then, AutK F = {IdF } =: 1.



1.1. CHAPTER V - FIELDS AND GALOIS THEORY 7

Example: Consider Q ⊂ Q( 3
√

2). Now, AutQ( 3
√

2) = 1, since 3
√

2 is the only root of x3 − 2 in Q( 3
√

2). So,
since any automorphism σ maps 3

√
2 to another root of x3 − 2, we have that σ( 3

√
2) = 3

√
2. Because σ is

already the identity on Q, we have that σ is the identity on all of Q( 3
√

2).

Example: Consider R ⊂ C = R(i). Any automorphism that is the identity on R is determined completely
by where it sends i to. It must send i to another root of x2 + 1 = 0. So, the two possibilities are:

i 7→ i,

i 7→ −i.

The first is the identity and is obviously an automorphism.

We must show that i 7→ −i is really an automorphism. If it is, then |AutR C| = 2, so AutR C ∼= Z2. A routine
verification shows that i 7→ −i is indeed an automorphism.

Theorem V.2.3: Let K ⊂ F . Let E be an intermediate field, and let H be a subgroup of AutK F .

(i) H ′ := {v ∈ F | σ(v) = v, for all σ ∈ H} (called the fixed field of H) is a field containing K.

(ii) E′ := {σ ∈ AutK F | σ(u) = u, for all u ∈ E} = AutE F is a subgroup of AutK F .

Definition: Let F be an extension of K such that the fixed field of AutK F is equal to K (i.e.
(AutK F )′ = K). Then we call F a Galois Extension of K and say that F is Galois over K.

Counterexample: Let Q ⊂ Q( 3
√

2). Then, Q′ = 1, and 1′ = Q( 3
√

2) 6= Q. So, Q( 3
√

2) fails to be a Galois
Extension of Q.

Remark: For F to be a Galois Extension over K, you have to have “enough” automorphisms to move every
element not in K to somewhere else.

Example: C is Galois over R. Q(
√

3) is Galois over Q. K(x) is Galois over K.

Fundamental Theorem of Galois Theory: If f is an finite dimensional Galois extension of K, then there
is an inclusion reversing one-to-one correspondence between the set of all intermediate fields an the set of all
subgroups of AutK(F ), such that:

E 7−→ E′ = AutE F

H ′ ←− [ H.

Additionally,

(i) The relative dimension of two intermediate fields is equal to the relative index of the corresponding
subgroups.

(ii) [F is Galois over every intermediate field E], but [E is Galois over K if and only if AutE F � AutK F ].
In this case AutK F/AutE F ∼= AutK E.

Remark: If K ⊂ L ⊂M ⊂ F , then AutK F ⊃ AutL F ⊃ AutM F ⊂ AutF F = 1.
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Lemma V.2.6: Let G = AutK F .

(i) F ′ = 1, K ′ = G.

(ii) 1′ = F .

(iii) L ⊂M =⇒M ′ ⊂ L′.

(iii’) H ⊂ J =⇒ J ′ ⊂ H ′.

(iv) L ⊂ L′′ and H ⊂ H ′′

(v) L′ = L′′′ and H ′ = H ′′′

Proof of (v): L′ ⊂ (L′)′′ = L′′′ by (iv). If you take L ⊂ L′′ and ′ each side, it reverses the inclusion,
so L′ ⊃ L′′′. �

Definition: We say an intermediate field M is closed if M = M ′′. We say a subgroup H of G is closed if
H = H ′′.

Theorem V.2.7: Let F be an extension field of K. Then, there is a one-to-one correspondence between the
closed subgroups of AutK F and the closed intermediate fields given by

E → E′ = AutE F.

Lemma V.2.8: Let K ⊂ L ⊂ M ⊂ F . If
[
M : L

]
is finite, then

[
L′ : M ′

]
≤
[
M : L

]
. In particular, if[

F : K
]

is finite, then |AutK F | ≤
[
F : K

]
.

Proof: (by induction on n =
[
M : L

]
) If n = 1, then M = L and the proof is trivial. Assume n > 1.

Let u ∈ M r L. Let k :=
[
L(u) : L

]
. If k < n, then by induction we have that

[
L′ : L(u)′

]
≤ k, and[

L(u)′ : M ′
]
≤ n

k . Hence,
[
L′ : M ′

]
=
[
L′ : L(u)′

][
L(u)′ : M

]
≤ k · nk = n.

So, assume now that k = n, i.e. L(u) = M . Let f ∈ L[x] be the minimal polynomial of u. Let X be
the set of roots of f that lie in F . Then, L′ = AutL F acts on the set of roots X and M ′ = AutM F =
AutL(u) F is the stabilizer of u in L′.

By the Orbit-Stabilizer Theorem, we have a bijection between the cosets of M ′ in L′ and the orbit
of u under the action of L′. Hence

[
L′ : M ′

]
≤ |X| ≤ deg f =

[
M : L

]
. �

Lemma V.2.9: Let K ⊂ F be an extension and let H,J ≤ G = AutK F with H < J . If
[
J : H

]
is finite,

then
[
H ′ : J ′

]
≤
[
J : H

]
.

Proof: Let n =
[
J : H

]
. Suppose toward a contradiction that

[
H ′ : J ′

]
< n. Then, there exist

u1, . . . , un+1 ∈ H ′ that are linearly independent over J ′. Let τ1, . . . , τn be coset representatives of H

in J , i.e. J =

n⋃
i=1

τiH.

Consider the system of equations:

τ1(u1)x1 + τ1(u2)x2 + · · ·+ τ1(un+1)xn+1 = 0,

τ2(u1)x1 + τ2(u2)x2 + · · ·+ τ2(un+1)xn+1 = 0,

...

τn(u1)x1 + τn(u2)x2 + · · ·+ τn(un+1)xn+1 = 0.

Since the system has n equations in n+ 1 variables, it has non-trivial solutions.
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By renumbering if necessary, pick one (a1, . . . , an+1) such that a1 = 1 (by making a1 6= 0 and dividing)
and such that the number r of nonzero entries is minimal among all nonzero solution. By renumbering,
write the solution so that all nonzero entries come first:

a1, . . . , ar 6= 0, ar+1, . . . , an+1 = 0.

The idea is to find a “shorter” nontrivial solution, we pick σ ∈ J such that σ(a1) = 1 and σ(a2) 6= a2

and such that (σ(a1), . . . , σ(ar), 0, . . . , 0) is also a solution. By subtracting the above solution from
(a1, . . . , an+1), we get a nonzero solution with at least one additional zero (since σ(a1)−a1 = 1−1 = 0
and σ(a2)− a2 6= 0).

Without loss of generality, let τ1 ∈ H. So, the first equation has

u1 + u2a2 + · · ·+ un+1an+1 = 0.

Thus since the ui are linearly independent over J ′, we must have some aj 6∈ J ′ (otherwise all ai = 0,
which is not true). Without loss of generality, let a2 6∈ J ′. Then there exists σ ∈ J such that
σ(a2) 6= a2.

Now consider the above system of equations with each τi replaced by στi.

[στ1]u1)x1 + [στ1](u2)x2 + · · ·+ [στ1](un+1)xn+1 = 0,

[στ2](u1)x1 + [στ2](u2)x2 + · · ·+ [στ2](un+1)xn+1 = 0,

...

[στn](u1)x1 + [στn](u2)x2 + · · ·+ [στn](un+1)xn+1 = 0.

Each τi is a left coset representative of H in J . So, J acts on the set of left cosets of H by left
multiplication:

g : τiH 7→ (gτi)H = τi′H, for some i′. Note that g ∈ J .

Hence the set {gτi}ni=1 is also a set of left coset representatives, for each g ∈ J . In particular, the set
{στi}ni=1 is a set of left coset representatives. So,

στi = τπ(i)hi for some permutation π ∈ Sn, and hi ∈ H.

Then, (στi)(uj) = (τπ(i)hi)(uj) = τπ(i)(hiuj) = τπ(i)(uj). So, the second system of equations is the
same as the first system of equations, except with the order of the equations permuted by π.

Since σ is a field automorphism and a1, . . . , an+1 is a solution of the original system of equations,
we have that (σ(a1), . . . , σ(an+1)) is a solution of the new system. But since we know that the two
systems are equal, the set of solutions to each is the same. But, we picked (a1, . . . , an+1) to have r be
the minimal number of nonzero elements, and the solution (σ(a1), . . . , σ(an+1)) has one less nonzero
element. This is a contradiction. Therefore

[
H ′ : J ′

]
≤ n. �

Lemma V.2.10:

(i) If L is closed and
[
M : L

]
<∞, then M is closed and

[
L′ : M ′

]
=
[
L : M

]
, i.e. “Any finite extension of

a closed field is closed.”

(ii) If H is closed and
[
J : H

]
<∞, then J is closed and

[
H ′ : J ′

]
=
[
J : H

]
.

(iii) If F is a finite dimensional Galois extension of K, then all intermediate fields are closed, and all
corresponding automorphism subgroups are closed, and |AutK F | =

[
F : K

]
.
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Proof of (i): We want to show that M = M ′′. It’s always true that M ⊆M ′′. Thus
[
M : L

]
≤
[
M ′′ :

L
]
. Since L is closed, L = L′′ and thus

[
M : L

]
≤
[
M ′′ : L′′

]
. By Lemma 2.9,

[
M ′′ : L′′

]
≤
[
L′ : M ′

]
.

By Lemma 2.8,
[
L′ : M ′

]
≤
[
M : L

]
. So,

[
M : L

]
≤
[
M ′′ : L

]
=
[
M ′′ : L′′

]
≤
[
L′ : M ′

]
≤
[
M : L

]
.

Thus we have equality throughout, and so M = M ′′ and
[
L′ : M ′

]
=
[
M : L

]
. �

Proof of (ii): Similarly,
[
J : H

]
≤
[
J ′′ : H

]
=
[
J ′′ : H ′′

]
≤
[
H ′ : J ′

]
≤
[
J : H

]
. So, we have equality

throughout, thus J = J ′′ and
[
H ′ : J ′

]
=
[
J : H

]
. �

Proof of (iii): If F is a finite dimensional Galois extension, then that means K = K ′′, and 1 = 1′′

whether or not F is Galois. Apply (i) with M := F and L := K. All intermediate fields will also be
finite dimensional so they’ll definitely be closed. See book for details. �

To say that F is Galois over an intermediate field M means that M ′′ = M (i.e., for every element not in M ,
there is an automorphism in AutM F that moves it somewhere else). We’d like to be able to say something
about if F is Galois over K then is L (where F ⊂ L ⊂ K) Galois over K?

This is the only part left to show of the Fundamental Theorem:

If F is Galois over K, then L ⊃ K is Galois if and only if L′ �G, and if so, then AutK L ∼= G/L′.

Definition: Let K ⊂ E ⊂ F . We say that E is stable relative to K ⊂ F if for all σ ∈ AutK F , we have that
σ(E) ⊆ E.

Lemma V.2.11: Assume E is stable. Then,

(1) E′ = AutE F is a normal subgroup of AutK F .

(2) If H � AutK F then H ′ is stable.

Proof of (i): Let τ ∈ AutE F and σ ∈ AutK F , and let u ∈ E. Then, στσ−1(u) = σ(τσ−1(u)) =
σ(σ−1(u)), since σ−1(u) ∈ E by stability, and since τ fixes E. Thus στσ−1(u) = u. Hence
στσ−1 ∈ AutE F . �

Proof of (ii): Let u ∈ H ′ and let σ ∈ AutK F and let τ ∈ H. Since H � AutK F , we have τσ = στ ′

for some τ ′ ∈ H. So, τ(σ(u)) = σ(τ ′(u)) = σ(u) for some u ∈ H ′ and τ ′ ∈ H. Therefore σ(u) ∈ H ′. �

Lemma V.2.12: If F is Galois over K and E is a stable intermediate field, then E is Galois over K. (We
know that F is Galois over its intermediate fields, but we don’t know yet when the intermediate fields are
Galois over K.)

Proof: Let u ∈ E rK. We will find an element σ ∈ AutK E such that σ(u) 6= u. Since F is Galois
over K, there exists σ ∈ AutK F such that σ(u) 6= u, since u ∈ F rK. Then, since E is stable, we
have that the σ

∣∣
E
∈ AutK E, and now σ

∣∣
E

(u) 6= u. Hence E is Galois over K. �
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Lemma V.2.13: Let K ⊂ E ⊂ F . If E is algebraic over K and E is Galois over K, then E is stable over K.

Proof: Let u ∈ E, σ ∈ AutK F . We have to show that σ(u) ∈ E. Let f(x) ∈ K[x] be the
minimal polynomial of u. Let u = u1, u2, . . . , un be the distinct roots of f(x) in E. Let g(x) :=
(x− u1)(x− u2) · · · (x− un) ∈ E[x].

Then, AutK E permutes the set {u1, . . . , un}. So, AutK E fixes g(x). But, E is Galois over K. Thus
g(x) ∈ K[x]. Hence f(x) | g(x). On the other hand, deg f ≥ # of roots in E. So, f(x) = g(x). Hence
all roots of f(x) lie in E. Therefore, σ(u) ∈ E, so E is stable. �

Definition: We say that τ ∈ AutK E is extendable to F if there exists σ ∈ AutK F such that σ
∣∣
E

= τ . The
extendable automorphisms form a subgroup.

Lemma V.2.14: If E is a stable intermediate field, then (AutE F � AutK F , from a previous lemma) and

AutK F/AutE F ∼= [the subgroups of extendible automorphisms in AutK E.]

Proof: E is stable, so we have a map AutK F
by domain restriction−−−−−−−−−−−−−→ AutK E, and the image of that

map is the subgroup of extensible automorphism, by definition. Additionally, the kernel of that map
is {σ ∈ AutK F | σ

∣∣
E

= Id} = AutE F . �

Part (ii) of Fundamental Theorem: E is Galois over K if and only if E′ �G.

Proof:

(=⇒) : Suppose E is Galois over K. E is finite dimensional over K, hence algebraic. So E is
stable by Lemma 2.13, thus E′ �G by Lemma 2.1(i). �

(⇐=) : Suppose E′ is normal in AutK F . Then E′′ is stable by Lemma 2.13. But all
intermediate fields are closed, so E = E′′. By Lemma 2.12, E is Galois over K. �

Proof of part of part (iii) of Fundamental Theorem: Assume that E′ � G, i.e. E is Galois over K,
and E is stable. By part of Lemma 2.14, we have that AutK F/AutE F ∼= [extendible automorphisms]
≤ AutK E (†). By their relative degrees, |AutK F | = |AutE F | · |AutK E|, since

[
F : K

]
=
[
F : E

]
·
[
E : K

]
.

So, we must have equality in (†). Thus AutK F/AutE F ∼= AutK E. �

Theorem V.2.15: (Artin) Let F be a field and let G be a group of automorphisms of F . Let K be the
fixed field of G. Then, F is Galois over K. If |G| <∞, then F is finite dimensional and AutK F = G.

Proof: Let u ∈ F r K. Then, there exists σ ∈ G such that σ(u) 6= u. Thus F is Galois over K.
Suppose G is finite. Then, F = 1′, and K = G′, and

[
F : K

]
=
[
1′ : G′

]
≤
[
G : 1

]
= |G|. Thus F is a

finite dimensional Galois extension of K, and |AutK F | =
[
F : K

]
≤ |G|, so AutK F = G. �



12 CHAPTER 1. COURSE NOTES

Special Topic: Symmetric Rational Functions

Consider the symmetric group Sn and the polynomial ring K[x1, . . . , xn].

For each σ ∈ Sn and f(x1, . . . , xn) ∈ K[x1, . . . , xn], let

(σf)(x1, . . . , xn) := f(xσ(1), . . . , xσ(n)).

Then, the map σ̃ : f 7→ σf is an automorphism on K[x1, . . . , xn].

The map Φ : Sn → AutK(K[x1, . . . , xn]) defined by σ 7→ σ̃ is a homomorphism. To see this, we check that
Φ(στ)(f) = (σ̃τ)f = σ̃(τ̃(f)) = Φ(σ)Φ(τ)(f):

σ̃(τ̃(f(x1, . . . , xn))) = σ̃(f(xτ(1), . . . , xτ(n))

= f(xσ(τ(1)), . . . , xσ(τ(n)))

= f(x(στ)(1), . . . , x(στ)(n))

= (σ̃τ)(f(x1, . . . , xn)).

Then, we get an induced action of Sn on K(x1, . . . , xn), the field of rational fractions. (An injective
homomorphisms from an integral domain to an integral domain induces an injective homomorphism on
the field of fractions of each the domain and the codomain. In our case, it’s also surjective.)

The induced action is:

σ

(
f(x1, . . . xn)

g(x1, . . . , xn)

)
=
f(xσ(1), . . . , xσ(n))

g(xσ(1), . . . , xσ(n))
.

Now, we have a group acting on a field, resulting in the fixed subfield E of Sn on K(x1, . . . , xn), which is
called the field of symmetric rational functions. [Recall that the fixed subfield consists of all the elements
who are unchanged by applying all elements of Sn. In this case, it is all rational functions that are unchanged
by reordering the indeterminates.] By Artin’s Theorem, E ⊂ K(x1, . . . , xn) is Galois of degree n! with
Galois group Sn.

Let G be a finite group. By Cayley’s Theorem, there exists n such that G ∼= [a subgroup of Sn]. Identity
G with that subgroup.

Consider fields K(x1, . . . , xn) ⊃ F ⊃ E and corresponding groups 1 ⊂ G ⊂ Sn.

Let F be the fixed field of G. Then, K(x1, . . . , xn) is Galois over F with Galois group G. (This shows that
given any group G, we can find its fixed field, and a field extension of its fixed field which is Galois over the
fixed field, with Galois group G.)

Elementary Symmetric Functions

Consider the variables, x1, . . . , xn.

The first elementary symmetric function is

f1 = x1 + · · ·+ xn =

n∑
i=1

xi.

The second elementary symmetric function is

f2 =
∑

1≤i<j≤n

xixj .

The thid elementary symmetric function is

f3 =
∑

1≤i<j<k≤n

xixjxk.
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Finally, the nth symmetric function is just

fn = x1x2 · · ·xn.

To see that they’re symmetric, consider K(x1, . . . , xn)[y] with the polynomial

(y − x1) · · · (y − xn) = yn − f1y
n−1 + f2y

n−2 + · · ·+ (−1)nfn.

Hence, each fi is symmetric.

Remark: These roots relate to matrices. f1 is the trace - the sum of the eigenvalues. fn is the product
of the eigenvalues. Each fi makes up the coefficients of the characteristic polynomial. The study of these
relationships dates at least back to Newton.

Theorem V.2.18: If K is a field, E the subfield of all symmetric rational functions in K(x1, . . . , xn) and
f1, . . . , fn the elementary symmetric functions, then E = K(f1, . . . , fn). (So, the elementary symmetric
functions generate the field of symmetric functions and the ring of symmetric polynomials. If you write down
any symmetric polynomial (ex: xk1 + xk2 + · · ·+ xkn), it’s not immediately clear that it is a polynomial made
up of elementary symmetric functions, but it is. The theorem is in fact even true if you replace K by Z,
which is an even stronger statement – Newton proved this.)

Proof: The proof is in the book. It is somewhat elementary, but has a complicated induction argument.
It should be worked through individually. �
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1.1.3 Section V.3 - Splitting Fields, Algebraic Closure, and Normality

Definition: Let S ⊂ K[x] be a set. An extension E of K is a splitting field of S if and only if

(i) Every polynomial in S splits (i.e., factors into linear factors) over E, and

(ii) E is generated over K by the roots of the polynomials in S.

The first condition says that the splitting field is big enough to contain all roots of the polynomials, and the
second condition says that the splitting isn’t too big to contain unneeded things. If S is finite, then finding
the splitting field of a bunch of polynomials is equivalent to finding the splitting field of the one polynomial
which is product of those polynomials.

Theorem V.3.2: If K is a field and f(x) ∈ K(x) has degree n ≥ 1, then there is a splitting field F of f
over K with

[
F : K

]
≤ n!.

Proof: (by induction on deg f) Let g be an irreducible factor of f . Adjoin a root u of g to K so that
K(u) = K[x]/(g). Now, the extension K(u) ⊃ k has degree deg g ≤ deg f = n. Then, in K(u)[x], now
f factors as (x− u)f1, where deg f1 = n− 1 < n.

By induction, there exists a splitting field E of f1 over K(u) of degree ≤ (n − 1)!. Now we need to
check that:

(1) E is a splitting field for f over K, and

(2)
[
E : K

]
≤ n!.

The second condition has just been shown, since n · (n − 1)! = n!. The first condition is true since
E = K(u)(r1, . . . , rn−1), where r1, . . . , rn−1 are the roots in f1 (by induction), so E is certainly the
splitting field for f over K. �

[Note: one of the exercise has you show that the degree of the splitting field actually divides n!.]

Theorem V.3.3: The following are equivalent:

(1) Every nonconstant polynomial f ∈ F [x] has a root in F .

(2) Every nonconstant polynomial f ∈ F [x] splits in F .

(3) Every irreducible f ∈ F [x] has degree 1.

(4) F has no algebraic extensions except itself.

(5) There exists a subfield K of F such that F is algebraic over K and every polynomial f ∈ K[x] splits
over F .

Definition: A field F is algebraically closed if and only if every nonconstant polynomial in F [x] has a root
in F (i.e., if it satisfies the equivalent conditions of Theorem V.3.3. An extension field F of a field K is
called an algebraic closure of K if F is algebraic over K and F is algebraically closed.

Theorem V.3.6: Every field K has an algebraic closure. Any two algebraic closures of K are K-isomorphic.

Remark: This proof uses Zorn’s Lemma. It is a tricky application, since the “set of all fields that are
algebraic over K” is not a set (or we’d have the Russell Paradox). Rather, it’s a proper class. (In this
course, we use Von Neumann-Bernays-Gödel Set Theory.) For this proof, we find the set that has a
“copy” of all fields that are algebraic over K (in the same way that Z does not contain all finite sets,
but does contain a “copy” of all finite sets.
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First we prove a lemma.
Lemma V.3.5: If F is an algebraic extension of K, then |F | ≤ ℵ0|K|.

Remark: |F | ≤ ℵ0|K| means “If K is finite, then|F | ≤ ℵ0, and if K is infinite, then |F | ≤ |K|.”
since

ℵ0|K| =
{
ℵ0, Kis finite
|K|, Kis infinite

.

Proof: Let Tn := {polynomials of degree n over K}. Then, Tn ≤ K × · · · ×K︸ ︷︷ ︸
n+1

. If |K| < ∞,

then clearly the number of polynomials over K is countable. Now assume that |K| is infinite.

Let T be the set of all polynomials over K. Then |T | =

∣∣∣∣∣
∞⋃
n=0

Tn

∣∣∣∣∣ ≤ ℵ0|K|.

For each irreducible monic polynomial in K[x] choose an ordering of its roots in F . Let u ∈ F .
Let f(x) ∈ K[x] be the minimal polynomial of u, with roots ordered u1, . . . , uk(f). Then u = uk
for some j.

Define F → T × N by u 7→ (f(x), j). This is obviously an injective map, so |F | ≤ |T × N| =
|T | ≤ ℵ0|K|. �

Consequence: The algebraic numbers in R are countable, and therefore transcendental
numbers exist.

Proof: Now that we have shown this lemma, we can find a set not much bigger than K containing
a copy of each algebraic extension of K. Let S be a set with |S| > ℵ0|K|. We have an injective map
θ : K → S, by cardinalities, so now identify K with a subset of S, i.e., assume K ⊂ S.

Let S be the class of all fields E such that E ⊂ S, and K ⊂ E as fields, and E algebraic over K. We
call S a class because we don’t know if its actually a set yet. We show that S is a set by showing it’s
a subclass of some class that is already a set.

If E ∈ S, then as a field, E is completely determined by:

(a) its set of elements,

(b) the multiplication operation, and

(c) the addition operation.

Note that (a) is a subset of P(S), and (b) and (c) are subsets of P(S × S × S). So, the field E is
determined by a tuple (E,µ, α), for E ∈ P(S), µ, α ∈ P(S × S × S). Thus, we have an injective map:

S −→ P(S)× P(S × S × S)× P(S × S × S).

If S is a set then so is P(S), etc, and so is anything mapping injectively into a set. Hence S is a set.
(Note that the hard part is not proving S is a set, but rather appreciating why it’s necessary to prove
that it is.)

Say that E1 ≤ E2 if E2 is a field extension of E1. This forms a partial order. Thus S is partially
ordered, and we know S 6= ∅, since K ∈ S. Given a chain, consider its union. That union is still a
field, and each element of the union is in some chain element, and thus algebraic over K. Thus the
union is an algebraic extension over K and is still in S, thus still in S.

Hence the hypotheses of Zorn’s Lemma are satisfied. Therefore, we conclude that S has a maximal
element F .
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Claim: F is algebraically closed.

Proof: Assume toward a contradiction that F is not algebraically closed. Then, there exists
f ∈ F [x] which is irreducible and has deg f > 1. Let u be a root of f in some extension field,
i.e., u 6∈ F . Consider the extension F (u). Clearly, F (u) % F . Since u is algebraic over F and F
is algebraic over K, we have that u algebraic over K and hence F (u) is algebraic over K. Thus
|F (u)| ≤ ℵ0|K| < |S|. We still have that |F | ≤ ℵ0|K| < |S|.

So, the identity map of F can be extended to an injection ψ of F (u) into S (since S is so much
bigger than F and F (u) that there is still room for F (u) to be moved into S. Now, we can make
ψ(F (u)) into a field using the operations of F (u). Clearly, ψ(F (u)) is an algebraic extension
ofK inside S, so ψ(F (u)) > F . This contradicts maximality of F . So F is algebraically closed. �

The above proves that every field has an algebraic closure, but it still remains to show that any two algebraic
closures are K-isomorphic. A corollary to this second part is that every polynomial has a splitting field
contained in its algebraic closure, since the field generated by all roots of all polynomials becomes an algebraic
closure and is thus isomorphic to the original algebraic closure.

Theorem V.3.8: Let σ : K → L be an isomorphism of fields, let S be a set of polynomials (of positive
degree), and let S′ := {σf | f ∈ S} ⊆ L[x]. If F is a splitting field for S over K and M is a splitting field for
S′ over L, then σ can be extended to an isomorphism from F to M .

Proof: Suppose first that S = {f}. Now, S′ = {σf}. Note the assumption that |S| = 1 is equivalent
to S being any finite set of polynomials, since the splitting field of a finite set of polynomials is equal
to the splitting field of the one polynomial which is the product of all of the polynomials.

Let u be a root of f in F . Let g be an irreducible factor of f having u as a root. Let u′ ∈ M be the
corresponding root of σg.

F M
(deg f1 < deg f) ∪ ∪

K(u)
σ̃−−−−−−−−→ L(u′)

(deg g > 1) ∪ ∪
K

σ−−−−−−−−→ L

Then, by an earlier theorem, σ extends to an isomorphism σ̃ : K(u) → L(u′) defined by u 7→ u′.
(In fact, both K(u) and L(u′) are isomorphic to K[x]/(g).) In K(u), f = (x − u)f1, and in L(u′),
σf = (x−u′)σ̃f1. To apply induction (on deg f), we have to check that F is a splitting field of f1 over
K(u) and that M is a splitting field of σ̃f1 over L(u′).

Now, applying the induction hypothesis, σ̃ can be extended to an isomorphism from F to M . Hence
σ is extendible to an isomorphism from F to M .

Now let S be arbitrary (i.e., S could be infinite). We consider triples (E, τ,E′), where K ⊂ E ⊂ F
and L ⊂ E′ ⊂ M and τ : E → E′ is an isomorphism such that τ

∣∣
K

= σ. Note that we don’t have to
worry about this “set” of triples T not being a set, since E and E′ are just subsets of fields and τ is
an isomorphism, so nothing strange could go on.

Partially order the triples by: (E, τ,E′) ≤ (E1, τ1, E
′
1) if and only if E ≤ E1, E′ ≤ E′1, and τ1

∣∣
E

= τ .
Note that T 6= ∅ since (K,σ, L) ∈ T . To find an upper bound for any chain, we want to find an

isomorphism α :
⋃
i∈I

Ei →
⋃
i∈I

E′i. If u ∈ ∪Ei, then u ∈ Ei for some i. Define α(u) = τi(u).

To see that α is well defined: this does not depend on choice of Ei containing u, since if u ∈ Ei ⊂ Ej ,
then τj

∣∣
Ei

= τi. So, the triple (∪Ei, α,∪E′i) is an upper bound for any chain over i. We have verified

the hypothesis of Zorn’s Lemma, so there exists some maximal element (F0, τ0,M0) ∈ T .
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Claim: F0 = F , and M0 = M .

Proof: Suppose toward a contradiction that F0 $ F . Then there exists a polynomial f ∈ S
such that f does not split over F0. Let u ∈ F r F0 be a root of f . u′ is a root in M of the
corresponding factor of σf ∈M0[x].

F M
∪ ∪

F0(u) −−−−−→ M0(u′)
∪ ∪
F0

τ0−−−−−→ M
∪ ∪
K

σ−−−−−→ L

By an earlier Theorem, τ0 can be extended to an isomorphism F0(u)→M0(u′). This contradicts
the maximality of (F0, τ0,M0). Hence F = F0. Clearly, since F is a splitting field for S over
K and F = F0, we have that τ0(F0) ⊆M is a splitting field for S′ over L. Hence τ0(F0) = M . �

Definition: An irreducible polynomial f ∈ K[x] is separable if the roots of f in a splitting field are distinct.
If K ⊂ F , then u ∈ F is separable over K if it is algebraic over K and its corresponding irreducible polynomial
in K[x] is separable. A field extension K ⊂ F is separable if every element of F is separable over K.

Remark: In a field with characteristic 0, every polynomial is separable. This is an exercise.

Example: Let K = F2(t) (the field of rational functions in F2) and let f ∈ K[x] be x2 − t. Clearly K does
not contain any roots of f , so f is irreducible. But, if u is a root of f in some extension of K, say K(u), then
we have

f = x2 − u2 = (x+ u)(x− u) = (x− u)2.

Hence, f is an inseparable polynomial.

Theorem V.3.11: Let F be an extension of K. The following are equivalent:

(i) F is algebraic and Galois over K.

(ii) F is separable over K and F is a splitting field of a set S of polynomials in K[x].

(iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof of (1) =⇒ [(2) & (3)]: Let u ∈ F . Let f ∈ K[x] be the irreducible monic polynomial
with f(u) = 0. Let {u = u1, u2, . . . , uk} be the roots of f in F (since F is algebraic).Let g(x) =
(x− u1) · · · (x− uk). Then, AutK F permutes the roots, so fixes g(x).

Since F is Galois over K, we have that g(x) ∈ K[x]. So, f | g, but deg g ≤ deg f , and thus f = g.
Hence F splits over F and all the roots are distinct, so u is separable. Hence F is separable over K. �

Proof of (2) =⇒ (3): From the set S let T be the subset of irreducible polynomials. Then F is a
splitting field over K of T . �

Proof of (3) =⇒ (1): Since F is a splitting field of polynomials in K, it’s algebraic over K. Let
u ∈ F r K. We have to find σ ∈ AutK F with σ(u) 6= u. Note that u is algebraic over K. u ∈
K(u1, . . . , uk), where ui are roots of some elements of T (even if T is infinite, u can be written as a
combination of a finite number of roots).

Let E = K(u1, . . . , uk, . . . , ut), where the ui are now all roots of the irreducible monic polynomials of
{u1, . . . , uk}, i.e., E is the splitting field of a finite subset of T . Suppose there exists τ ∈ AutK E such
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that τ(u) 6= u. Then, by one of our theorems on splitting fields, τ can be extended to σ ∈ AutK F .
So, it is sufficient to consider the finite case.

Assume F = E, i.e., T is finite. Then, |F : K| is finite as well. We will argue by induction on
n :=

[
F : K

]
. Let g ∈ K[x] be the minimal polynomial of u and let s = deg g.

F

K(u)

n

s
< n

K

n

s > 1

So, n
s = |AutK(u)F |.

Let K0 be the fixed field of AutK F . Then, K0 ⊃ K, and
[
F : K0

]
= |AutK F |, and F is Galois over

K0 (by Artin). So, in order to prove that K = K0, we just have to show that
[
F : K

]
= |AutK F |.

Let H = AutK(u) F = the stabilizer in AutK F of u. The function g has s distinct roots in F . If ui is
any root of g, then K(u) ∼= K(ui), and this isomorphism can be extended to a
K-isomorphism of F (by a Theorem on splitting fields), i.e., AutK F acts transitively on the set of s
roots of g. Hence,

[
AutK F : H

]
= s by the Orbit-Stabilizer Theorem. So, |AutK(u) F | = n

s and[
AutK F : H

]
= s. Hence |AutK F | = n and so K = K0. �

Definition: We say that an extension K ⊂ F is a normal extension if every polynomial in K[x] which has
a root in F , actually splits in F .

Theorem V.3.14: Let F be an algebraic extension of K. The following are equivalent:

(i) F is normal over K.

(ii) F is a splitting field of some set of polynomials in K[x].

(iii) If K is an algebraic closure of K containing F , then for any K-monomorphism σ : F → K, we have
σ(F ) = F .
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Special Topic: Two Applications

Theorem V.3.16: Suppose E is an algebraic extension of K. Then, there exists an extension F ⊃ E called
the normal closure of K such that

(1) F is normal (and algebraic) over K.

(2) No proper subfield of F containing E is normal over K.

(3) If E is separable over K, then F is Galois over K.

(4) If E is finite dimensional over K, then F is finite dimensional over K.

Proof: E contains some of the roots of some polynomials in K, so we let F contain all of the roots
of those polynomials. This gives us that F is a splitting field over K and hence normal, hence (1). A
proper subfield of F is missing some roots of polynomials, and hence is not normal over K, hence (2).
If E is separable, then each polynomial that has roots in E is separable. So, F is Galois by Theorem
3.11, hence (3). If E is finite dimensional extension, then it adjoins a finite number of roots from K,
hence the roots from a finite number of polynomials. Hence F is finite dimensional over K, hence (4).

Primitive Element Theorem (V.6.15): Let K ⊂ F be a finite dimensional field extension. Assume either
(1) [K is finite], or (2) [K is infinite and F is a separable extension of K]. Then, there exists u ∈ F such
that F = K(u).

Proof: We proved case (1) in 5000 algebra: If K is a finite field, then F as a finite dimensional
extension is also a finite field, and so its multiplicative group F× is cyclic. Pick u to be a generator of
that multiplicative group, and then F = K(u) is clear.

Note in case (2) that every field of characteristic zero is a separable extension, so this theorem applies
to it. Let F be a finite dimensional separable extension over K, and let E be the normal closure of K.
Hence E is Galois over K by Theorem V.3.16. Thus, there exists finitely many intermediate fields
K ⊂M ⊂ E. So, there are only finitely many intermediate fields K ⊂M ⊂ F .

If F = K, we’re done vacuously. Otherwise F % K, and we can choose u ∈ F such that |K(u) : K| is
maximal. We will now show that K(u) = F .

Suppose K(u) 6= F . Then, there exists v ∈ F r K(u). Consider the set {K(u + av) | a ∈ K}. By
finiteness of this set (by the finite number of intermediate fields) and infiniteness of K , there exist
a, b ∈ K such that a 6= b and K(u+ av) = K(u+ bv) =: L.

So, since u+av ∈ L and u+ bv ∈ L, then the difference (a− b)v ∈ L, hence v ∈ L and so u ∈ L. Hence
K(u+av) = L ⊃ K(u, v) % K. Since K(u+av) is a simple extension, this contradicts the maximality
by degree of K(u). So, K(u) = F . �
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Special Topic: The Fundamental Theorem of Algebra

Fundamental Theorem of Algebra: C is algebraically closed.

Remark: We assume that:

(A) Every element of C has a square root.

(B) Every real polynomial of odd degree has a real root.

Proof: We show that there is no nontrivial finite extension of C. Suppose F is a finite extension of
C. Then F is a finite extension of R, and of course F is separable over R.

Let E be the normal closure of F over R. So, E is a finite Galois extension of R. By the Fundamental
Theorem of Galois Theory, the subgroups of AutR F are in bijection with the intermediate fields
R ⊂M ⊂ E. Note that |AutRE| <∞.

Let H be a Sylow 2-subgroup of AutRE. Then, |AutRE : H| is odd, and |AutRE : H| = |H ′ : R|.
Suppose that u ∈ H ′ r R. Then, |R(u) : R|

∣∣ |H ′ : R|, and so is odd. Therefore, an irreducible
polynomial of u over R has odd degree, which contradicts assumption (B). Thus, H ′ = R, and so
H = AutRE (since H ′′ = R′) and therefore H is a 2-group.

Then, since AutCE ≤ AutRE, we have that |AutCE| = 2m for some m ≥ 0. We prove that m = 0,
and hence E = C and thus F = C. Suppose m ≥ 1. Then, AutCE has a subgroup J of index 2.
Then, |J ′ : C| = 2. Then, for u ∈ J ′ r C, the irreducible polynomial in C[x] is of degree 2. But, by
assumption (A) and the quadratic formula, every polynomial of degree 2 in C[x] splits over C. This is
a contradiction and thus m = 0, so F = C.

So, the only finite extension of C is the trivial one, hence C is algebraically closed. �
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1.1.4 Section V.4 - The Galois Group of a Polynomial

Definition: Let f(x) ∈ K[x]. Then, the Galois group of f(x) is AutK F , where F is a splitting field of f(x)
over K. Note that Hungerford uses the term Galois group to refer to any such group. Other books sometimes
only refer to a Galois group only if it is such a group of a Galois extension.

Remark: A finite extension of a finite field is automatically separable. Let F ⊃ K with |F | = q. Consider
xq − x ∈ K[x]. Every element of F is a root of this polynomial. So, this polynomial has exactly q roots in
F , and these roots must be distinct, hence all irreducible factors of this polynomial have distinct roots, thus
it’s separable. So, every element of F is separable. Thus F is separable.

Theorem V.4.2: Let f ∈ K[x], with Galois group G.

(i) G is isomorphic to a subgroup of some symmetric group Sn.

(ii) If f is irreducible and separable of degree n, then G is isomorphic to a transitive subgroup of Sn, with
n such that n | |G|.

Recall: We have a separable polynomial f ∈ K[x] of degree n, with splitting field F . Let, F is Galois
over K, and F = K(u1, . . . , un) for ui the distinct roots of f in F . AutK F acts on {u1, . . . , un}, giving
an injective homomorphism AutK F ↪→ Sn. The action of AutK F on {u1, . . . , un} is transitive. So, we can
identity AutK F with a certain transitive subgroup of Sn.

Example: (Degree 2) Let K be a field, f ∈ K[x] a separable polynomial with degree 2, with Galois group
G. Then, G ∼= Z2. This is trivial in the same sense that the “quadratic formula” is easy and well-known to
everybody.

Definition: Suppose that charK 6= 2, f ∈ K[x] of degree n with n distinct roots u1, . . . , un, in a splitting
field. Define

∆ :=
∏
i<j

(ui − uj).

Then, D = ∆2 is called the discriminant of f .

Proposition V.4.5:

(1) D ∈ K,

(2) For σ ∈ AutK F ≤ Sn, we have that

σ(∆) =

{
−∆, if σ is odd

∆, if σ is even

Corollary V.4.6: If D is a square in K, then AutK F ≤ An.

Corollary V.4.7: (Degree 3) Let K be a field with char 6= 2, 3. Let f be an irreducible separable polynomial
of degree 3. The Galois group of f is either S3 or A3. It is A3 if and only if the discriminant is a square in
K.
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Proposition V.4.8: Let f(x) := x3 +bx2 +cx+d, let g(x) := f(x− b
3 ). Then, g(x) has the form x3 +px+q,

and the discriminant of f is −4p3 − 27q2.

Proof: (Sketch) ∆ = (u1 − u2)(u1 − u3)(u2 − u3). Do ∆2 to get a symmetric polynomial, write in
terms of the elementary symmetric polynomials (following the algorithm created by the proof that
every symmetric polynomial can be written in terms of the elementary symmetric polynomials). Then
we know that u1 +u2 +u3 is the coefficient of x2 so equals 0, and u1u2 +u1u3 +u2u3 is the coefficient
of x so equals p and u1u2u3 = −q. �

Example: Consider x3 − 3x + 1 ∈ Q[x]. Then, D = (−4)(−27) − 27 = 3(27) = 81 = 92. So, the Galois
group of this polynomial is A3.

Example: Consider f(x) = x3 + 3x2−x− 1 ∈ Q[x]. Let g(x) := f(x− b
3 ) = f(x− 1) = x3− 4x+ 2, which is

irreducible by Eisenstein. Then, D = 148, which isn’t a square, so the Galois group is S3. In the cubic case,
D > 0 if and only if f(x) has three real roots.

Example: (Degree 4) Consider the group S4 with normal subgroup V4 := {1, (12)(34), (13)(24), (14)(23)}.
How can we find an expression that is fixed by all of these things? Well, α := u1u2 + u3u4 is fixed by the
element (12)(34) and actually by all four elements of V4. Similarly β := u1u3 + u2u4 and γ := u1u4 + u2u3

are all fixed by all elements in V4.

AutK F ≤ S4

� �
V4 ∩AutK F ≤ V4

Lemma V.4.9: Under the Galois correspondence, K(α, β, γ) corresponds to V4∩AutK F . Hence K(α, β, γ)
is Galois over K and AutK K(α, β, γ) ∼= AutK(F/(AutK F ∩ V4)).

Proof: (Sketch) It’s clear that AutK F ∩V4 fixes α, β, γ. It remains to show that if σ 6∈ AutK F , then
σ moves α, β, or γ.

By the second isomorphism theorem:

AutK F/(AutK F ∩ V ) ∼= (AutK F · V )/V ≤ S4/V4, which has order 6.

Now you have to check manually all coset representatives of V4 inside of S4, and show that each moves
α, β, or γ. Then you make α, β, γ into some cubic with splitting field K(α, β, γ), you can analyze that
with the cubic method earlier. You get either a group of 2 or 4, and consider all transitive subgroups
of S4. �

Remark: Let char(K) 6= 2, 3, and f(x) ∈ K[x] irreducible, separable, and of degree 4. Let F be
splitting field, with u1, u2, u3, u4 the roots of f(x) in F . Let α = u1u2 +u3u4, let β = u1u3 +u2u4, and
let γ = u1u4 +u2u3. We have the resolvant cubic: (x−α)(x−β)(x− γ). Now, K(α, β, γ)←→ G∩V4,
for G = AutK F ≤ S4. We have the following diagram

F ←→ 1
| |

K(α, β, γ) ←→ G ∩ V4| �

K ←→ G

Now AutK(K(α, β, γ)) ∼= G/(G ∩ V4).
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Lemma V.4.10: The resolvant cubic belongs to K[x]. If f(x) = x4 + bx3 + cx2 + dx+ e, then the resolvant
cubic is

x3 − cx2 + (bd− 4e)x− (b2e+ 4ce− d).

Computing the Galois Group of Quartics:

G is a transitive subgroup of S4, so has order divisible by 4. The possibilities are:

(-) S4

(-) A4

(-) V4

(-) D8 ∈ Syl2(S4) (there are three of these)

(-) Z4, generated by a 4-cycle (there are three of these)

Proposition V.4.11: Let m = |K(α, β, γ) : K|. Then,

m = 6 ⇐⇒ G = S4,

m = 3 ⇐⇒ G = A4,

m = 1 ⇐⇒ G = V4,

m = 2 ⇐⇒ G = D4 or Z4.

In the last case G ∼= D4 if f is irreducible over K(α, β, γ) and G ∼= Z4 otherwise.

Proof: Note that m = |AutK(K(α, β, γ))| = |G/(G∩V4)|. If G = S4, then of course by index orders,
m = 6. Similarly, if G = A4 then m = 3, and if G = V4 then m = 1, and if G = D4 or Z4, then m = 2.

It remains to show the last statement. Let F be a splitting field for f over K(α, β, γ). Then,

f is irreducible in K(α, β, γ)⇐⇒ AutK(α,β,γ) F = G ∩ V acts transitively on the set of roots of F .

⇐⇒ G ∩ V = V , since no proper subgroup of V acts transitively.

So, f is irreducible in K(α, β, γ) if and only if V ⊆ G. �

Example: Let f(x) = x4 + 4x2 + 2 ∈ Q[x]. f is irreducible by Eisenstein’s Criterion. Now, we find the
resolvant cubic to be:

x3 − 4x2 − 8x+ 32 = (x− 4)(x2 − 8).

So, α = 4, β =
√

8, and γ =
√

8. Hence, Q(α, β, γ) = Q(
√

2). Since |Q(
√

2) : Q| = 2, we have m = 2. Hence
the Galois group is either D4 or Z4.

Consider f(x) as an element of Q(
√

2). Set z := x2. Then, f(z) = z2 + 4z+ 2, and by the quadratic formula,
z = −2±

√
2. So, f(x) = (x2 +(2+

√
2))(x2 +(2−

√
2)) ∈ Q(

√
2). Hence f is not irreducible, and so G = Z4.

Example: Let f(x) = x4 − 10x2 + 4 ∈ Q[x]. f is irreducible, but we do not check that here. The resolvant
cubic is:

x3 + 10x2 − 16x− 160 = (x+ 10)(x+ 4)(x− 4).

So, α, β, γ ∈ Q, thus m = 1 and so G ∼= V4.
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Example: Let f(x) = x4 − 2. f is irreducible by Eisenstein’s Criterion. The resolvant cubic is:

x3 + 8x = x(x+ 2
√

2i)(x− 2
√

2i).

Now, α = 0, β = −2
√

2i, and γ = 2
√

2i. So, Q(α, β, γ) = Q(
√

2i). Hence m = 2.

Now to determine if the Galois group is Z4 or D4. Let F = Q( 4
√

2, i) be the splitting field of F . Then, since[
F : Q

]
= 8 and

[
Q(
√

2i) : Q
]

= 2, we must have that
[
F : Q(

√
2i)
]

= 4. Since this extension has degree 4,
we have the D4 case. (In the Z4 case, it would be 2.)

Theorem V.4.12: If p is a prime and f(x) ∈ Q[x] is irreducible of degree p and has precisely two non-real
roots, then the Galois group of f is Sp.

Proof: Note that Sp = 〈(1 2), (1 2 · · · p)〉. See book for rest.

Example: Consider f(x) = x5 − 4x + 2 ∈ Q[x]. Sketch the graph to see that f has three real roots and
hence two complex roots. f is irreducible by Eisenstein. Hence the Galois group of f is S5.
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1.1.5 Section V.5 - Finite Fields

Recall: Let R be a commutative ring with 1. Define

f(x) := anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ R[x].

Define the (formal) derivative to be

f ′(x) := nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ 2a2x+ a1.

The product rule holds:

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

We now prove a lemma from earlier in the book:

Lemma III.6.10: Let E be an integral domain, D a subdomain (also an integral domain). Let f(x) ∈ D[x]
and c ∈ E. Then,

(i) c is a multiple root of f(x) if and only if f(c) = 0 and f ′(c) = 0.

(ii) If D is a field and f and f ′ are coprime, then f does not have multiple roots in E.

(iii) If D is a field and f is irreducible and E contains a root of f , then f has no multiple roots if and only
if f ′ 6= 0.

Proof of (i): If c is a multiple root of f(x), then

f(x) = (x− c)mg(x), for m > 1.

So,

f ′(x) = m(x− c)m−1g(x) + (x− c)mg′(x).

Hence (x− c) | f ′(x), so f ′(c) = 0.

Conversely, if c is not a multiple root of f(x), then the derivative would not have a factor of (x− c). �

Proof of (ii): Suppose D is a field and f, f ′ are coprime. Then, there exists A(x), B(x) ∈ D[x] such
that Af +Bf ′ = 1. If there were a multiple root c in any extension field of D, then

1 = (Af +Bf ′)(c) = A(c)f(c) +B(c)f ′(c) = A(c)(0) +B(c)(0) = 0,

which is a contradiction. �

Proof of (iii): If f is irreducible and f ′ 6= 0, then f and f ′ are coprime. So, f has no multiple roots
in E. Conversely, if f has a root b ∈ E and f has no multiple roots, then

f(x) = (x− b)g(x),

where (x− b) - g(x) and so g(b) 6= 0. Now,

f ′(x) = g(x) + (x− b)g′(x).

Hence f ′(b) = g(b) 6= 0. So f ′ 6= 0. �
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Remark: In a finite field, the characteristic is p for some non-zero prime p, and the prime subfield is Fp.
Now, the whole finite field will be a vector space over Fp and thus is isomorphic to the direct product of some
number of copies of Fp. Hence |F | = pn, where n =

[
F : Fp

]
.

Proposition V.5.6: F is a finite field with pn elements if and only if F is a splitting field of a polynomial
xp

n − x ∈ Fp[x].

Proof:
(=⇒): Let E be a splitting field of xp

n − x over F . So, E ⊇ F . We want to show that E = F . Note
that |F×| = pn−1. Hence, every non-zero u ∈ F satisfies up

n−1 = 1, by Lagrange. Hence, every (even
zero) element u ∈ F satisfies up

n

= u. So, every element of F is a root of xp
n − x. Hence E ⊆ F , and

thus E = F . �

(⇐=): Note that (xp
n −x)′ = −1 6= 0, so this polynomial has pn distinct roots in a splitting field. It is

not hard to verify that the set E of all roots of f in F is a subfield of F of order pn. Hence, it contains
the prime subfield Fp of F . Since F is a splitting field, it is generated over Fp by the roots of f (i.e.,
the elements of E). Thus, F = Fp(E) = E. �

Corollary: Every finite field is Galois over its prime subfield. (This is true because it is a splitting field of
a set of separable irreducible polynomials.

Corollary V.5.7: Any two finite fields with the same number of elements are isomorphic.

Corollary V.5.9:

(a) For any n, there exists a field of order pn.

(b) For any n, there exists an irreducible polynomial in Fp[x] of degree n.

Proof of (a): Take the splitting field of xp
n − x. �

Proof of (b): Let F be a field of order pn. Then, F× is cyclic. Let u be a generator of F×. Then
F = Fp(u). So, the irreducible polynomial of u in Fp[x] has degree n. �

Remark: Suppose |F | = pn. Consider the map ϕ : F → F defined by ϕ(u) = up.
Then, 1 7→ 1p = 1, uv 7→ (uv)p = upvp, and u+ v 7→ (u+ v)p = up + vp (because we have characteristic p).
Now, ϕ is a field monomorphism, and it’s surjective since F is finite, so ϕ ∈ Aut(F ).

Proposition V.5.10: Let |F | = pn. Then, AutFp
F = 〈ϕ〉 is cyclic of order n.

Proof: Since F is Galois over Fp of degree n, it suffices to show that ϕ has order n. Suppose that
ϕm = Id. Then, up

m

= u, for all u ∈ F . Hence, every element of F is a root of f(x) := xp
m − x.

Therefore, pm ≥ |F | = pn, so m ≥ n. On the other hand, we know that up
n − u = 0 for all u ∈ F . So,

ϕn = 1. Thus m = n. �

Remark: Given the following diagram, we must have that s | r:
F order pr

| r/s
K order ps

| s
Fp

Now if AutFp
(F ) = 〈ϕ〉, then AutK(F ) = 〈ϕs〉, by the Galois Correspondence. Additionally, AutFp

(K) =
〈ϕ+ 〈ϕs〉〉.
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1.1.6 Section V.6 - Separability

Definition: Let F be an extension of K. We say that u ∈ F is purely inseparable over K if its irreducible
polynomial f(x) over K factors over F as f(x) = (x− u)m.

Example: Consider K = Fp(x). In K[t], consider f(x) := tp − x. If u is a root of f(x) in some splitting
field, then f(x) = (t− u)p.

Theorem V.6.2: Let F be an extension of K. Then u ∈ F is both separable and purely inseparable over
K if and only if u ∈ K.

Lemma V.6.3: Let F be an extension of K, with charK = p > 0. If u ∈ F is algebraic over K, then there

exists k ≥ 0 such that up
k

is separable over K.

Proof: (by induction on the degree n of u over K) If n = 1, then u ∈ K, and so up
0

= u, and
we’re done. We can assume that u is inseparable (if it’s separable, we’re done). So, if f ∈ K[x] is the
minimal polynomial of u, then f ′ = 0. So, f(x) = g(xp), for some g ∈ K[x].

Hence up is a root of g(x), and so has lower degree than u. By induction, there exists m such that

(up)p
m

= up
m+1

is separable. �

Theorem V.6.4: Let F be an algebraic extension of K, with charK = p > 0. The following are equivalent:

(i) F is purely inseparable over K.

(ii) The irreducible polynomial of any u ∈ F is of the form xp
n − a ∈ K[x].

(iii) If u ∈ F , then up
n ∈ K for some n ≥ 0.

(iv) The only elements of F which are separable over K are the elements of K itself.

(v) F is generated over K by a set of purely inseparable elements.

Proof:
(i) =⇒ (ii):

Let u ∈ F . By (i), u is purely inseparable over K, with minimal polynomial f(x) = (x−u)m, for
m ≥ 1. Let m = pr ·k, where p - k. Then, f(x) = (x−u)p

r·k = ((x−u)p
r

)k = (xp
r−upr )k ∈ K[x].

Expanding using the binomial theorem, the coefficient of xp
r·(k−1) equals ±kupr ∈ K.

But, since k−1 ∈ K, we have that up
r ∈ K. Thus, xp

r − up
r ∈ K[x], and so k = 1 and

f(x) = xp
r − upr . �

(ii) =⇒ (iii):

Trivial, since if u satisfies xp
n − a, then up

n ∈ K. �

(i) =⇒ (iv):

Trivial, by the earlier Theorem. �

(i) =⇒ (v):

Trivial, since if F purely inseparable over K, then every element in F is purely inseparable, and
clearly F is generated by the set of all its own elements over K. �
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(iii) =⇒ (i):

If u ∈ F , then by assumption up
n ∈ K for some n ≥ 0. Now, u is a root of xp

n − up
n

=
(x− u)p

n ∈ K[x], and so u is purely inseparable over K. �

(iv) =⇒ (iii):

By assumption, the only elements that are separable over K are the elements of K. By the
earlier Lemma that if u ∈ F is algebraic then up

n

is separable over K, we have that up
n ∈ K.

�

(v) =⇒ (iii):

If u is purely inseparable over K, then the proof of (i) ⇒ (ii) shows that up
n ∈ K for some

n ≥ 0. If u ∈ F is arbitrary, use Theorem 1.3 and the Freshman’s Dream. �

Corollary V.6.5: If F is a finite purely inseparable extension of K, then
[
F : K

]
= pn for some n ≥ 0.

Lemma V.6.6: If F is an extension field of K, and X ⊆ F such that F = K(X), and every element of X
is separable over K, then F is a separable extension over K.

Proof: We proved an equivalent statement when working with Galois extensions. Given F and K,
we look at the splitting field containing all roots of all minimal polynomials of all elements in K, call
this E, and now, E ⊃ F ⊃ K, and E is Galois over F , so E is separable. Now, every subfield of E is
separable over K, so F is separable over K. �

Main Theorem on Inseparability: Let F be an algebraic extension field of K, let S be the set of all
elements of F which are separable over K, and P the set of all elements of F which are purely inseparable
over K. Then,

(i) S is a separable extension field of K.

(ii) F is purely inseparable over S.

(iii) P is a purely inseparable extension field of K.

(iv) P ∩ S = K.

(v) F is separable over P if and only F = SP .

(vi) If F is normal over K, then S is Galois over K, F is Galois over P and AutK S ∼= AutP F = AutK F .
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1.1.7 Section V.7 - Cyclic Extensions

Lemma V.7.5: (Linear Independence of Field Automorphisms) Let σ1, . . . , σn be distinct field automor-
phisms of F . Suppose there exists a1, . . . , an ∈ F such that for all u ∈ F ,

a1σ1(u) + · · ·+ anσn(u) = 0.

Then, ai = 0, for all i.

Proof: Suppose not. Among all possible relations of this type, choose a “shortest” one (i.e., with
smallest number of non-zero coefficients). Without loss of generality, a1σ1(u) + · · ·+akσk(u) = 0 (F),
for all u ∈ F , with ai 6= 0 for i ∈ [0 .. k]. Clearly, k ≥ 2. Since σ1 6= σ2, we can pick v ∈ F such that
σ1(v) 6= σ2(v). Now, we can apply (F) to the element uv, to get

a1σ1(u)σ1(v) + a2σ2(u)σ2(v) + · · ·+ akσk(u)σk(v) = 0.

Multiplying (F) by σ1(v), we get

a1σ1(u)σ1(v) + a2σ2(u)σ1(v) + · · ·+ akσk(u)σ1(v) = 0.

Subtracting the second equation from the first:

a2σ2(u)[σ2(v)− σ1(v)] + · · ·+ a3σ3(u)[σ3(v)− σ1(v)] + · · ·+ akσk(u)[σk(v)− σ1(v)] = 0.

By commutativity and associativity:

(a2[σ2(v)− σ1(v)])σ2(u) + · · ·+ (a3[σ3(v)− σ1(v)])σ3(u) + · · ·+ (ak[σk(v)− σ1(v)])σk(u) = 0

and we’ve arranged that σ2(v)− σ1(v) 6= 0. Hence, we now havt a “shorter” non-trivial relation that
equals zero. This is a contradiction. Hence ai = 0, for all i. �

Definition: Let F be a finite Galois extension of K of degree n. For u ∈ F , define the trace and norm by

TFK (u) = T (u) :=
∑

σ∈AutKF

σ(u),

NF
K(u) = N(u) :=

∏
σ∈AutKF

σ(u).

Note that for all u ∈ F , we have that TFK (u) ∈ K and NF
K(u) ∈ K. To see this, note that if you apply

any automorphism to TFK (u), it will permute the sum, and the sum stays the same, so TFK (u) is fixed by all
automorphisms, hence it’s in K. Same argument for NF

K(u). Also note that TFK is a K-linear map from F
to K.

Theorem V.7.6: Let F be a cyclic extension field of K of degree n, and let σ be a generator of AutK F
and let u ∈ F . Then,

(a) TFK (u) = 0 if and only if u = v − σ(v) for some v ∈ F .

(b) NF
K(u) = 1K if and only if u = vσ(v)−1 for some nonzero v ∈ F . (Hilbert’s Theorem 90)

Proof:
(⇐=, (a)):

The (⇐=) direction is clear, since T (v) = T (σv) and N(v) = N(σv). �
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(=⇒, (a)):

By linear independence of {1, σ, . . . , σn−1}, there exists z ∈ F such that z+σz+· · ·+σn−1z 6= 0,
i.e., T (z) 6= 0. Then, by K-linearity of T , there exists w ∈ F such that T (w) = 1.

Suppose T (u) = 0. Define

v = uw + (u+ σu)(σw) + (u+ σu+ σ2u)(σ2w) + · · ·+ (u+ σu+ · · ·+ σn−2u)(σn−2w).

Now,
σv = σuσw + (σu+ σ2u)(σ2w) + · · ·+ (σu+ σ2u+ · · ·+ σn−1u)(σn−1w).

Subtracting:

v − σv = uw + u(σw) + u(σ2w) + · · ·+ u(σn−1w) = uT (w) = u1K = u,

using the fact that 0 = T (u) = u+ σu+ · · ·+ σn−1u and so u = −(σu+ · · ·+ σn−1u). �

(=⇒, (b)):

Suppse N(u) = 1K , so u 6= 0. (Such a u exists since N(1) = 1.) By linear independence, there
exists y ∈ F such that v 6= 0, where

v = uy + (uσu)σy + (uσuσ2u)σ2y + · · ·+ (uσu · · ·σn−2u)σn−2y + (uσu · · ·σn−1u)σn−1y.

Since the last summand of v is N(u)σn−1y = 1Kσ
n−1y = σn−1y, we see that u−1v = σv, and

therefore y = vσ(v)−1 (which is okay since σ(v) 6= 0 since v 6= 0 and σ is injective). �

Remark: Let p := charK. Let n be the degree of F over K, with n = pkr and p - r. We split the field F
into separable and purely inseparable parts as last class, and have the following diagram.

F

E

r

M

pk

K

rpk

We can analyze one of the r-extensions by using the trace and the other r-extension using the norm.

Remark: Let F be a cyclic extension field of K of degree n. Proposition V.7.7 (see book) allows us
to consider two cases: (i) n := char(K) = p 6= 0, and (ii) either char(K) = 0 or [char(K) = p 6= 0 and
gcd(n, p) = 1]. The next proposition considers the first case.

Proposition V.7.8: Let K be a field of characteristic p. Then, F is a cyclic extension of degree p if and
only if F is a splitting field over K of an irreducible polynomial of the form xp − x− a ∈ K[x]. In this case,
F = K(u), where u is any root of xp − x− a.

Proof:
(=⇒):

Let σ be a generator of AutK F . Then, T (1F ) = p1K = 0. So, there exists v ∈ F such that
1 = v−σ(v). Let u = −v. Then, σ(u) = −σ(v) = 1− v = 1 +u. So σ(up) = σ(u)p = (1 +u)p =
1 + up. Hence, σ(up − u) = up − u, and so up − u ∈ K. Let a := up − u ∈ K. Then, u is a root
of xp − x− a ∈ K[x].

To show F is a splitting field of xp− x− a, it suffices to show that F contains all p roots. Since
σ(u) = 1 + u, we have that σ2(u) = u + 2, etc. So, σi(u) = u + i, for all i ∈ Fp, and all these
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elements are distinct. Thus, the set {u + i | i ∈ Fp} is a set of p distinct roots of xp − x − a.
Hence xp − x− a splits in F .

Moreover, since all the roots are conjugate under AutK F , it follows that xp−x−a is irreducible.
(Otherwise, if it were irreducible, automorphisms could only move factors among irreducible
factors.) �

(⇐=):

Conversely, suppose F is a splitting field for an irreducible polynomial xp − x − a. Let u be a
root. Then, (u+ i)p − (u+ i) = up + ip − u− i = up − u = a, since ip = i. So, {u+ i | i ∈ Fp}
is the set of p distinct roots of xp − x− a. Hence,

[
F : K

]
= p and this polynomial has distinct

roots in F , so F is Galois over K. Since the only group of order p is cyclic, we must have that
F is a cyclic extension of K. �.

Remark: To hande the second case, we need to introduce an additional hypothesis: We assume K contains
a primitive nth root of unity ζ, where p - n. Consider f(x) = xn − 1 ∈ K[x]. Then f ′(x) = nxn−1, and we
see that f(x) and f ′(x) are coprime. Thus f(x) must have n distinct roots, namely {1, ζ, ζ2, . . . , ζn−1}. The

set {u ∈ F | un = 1} is a multiplicative subgroup of F
×

of order n, and hence cyclic. So, a primitive nth

root of 1 is equivalent to a generator in this cyclic group. (Recall we assumed that K in fact does contain at
least one primitive nth root.)

Lemma V.7.10: Let n be a positive integer, and let K be a field with a primitive nth root of unity ζ. (This
implies by the above discussion that K has characteristic p with p - n.)

(i) If d | n, then ζn/d is a primitive dth root of unity.

(ii) If d | n and u is a nonzero root of xd − a ∈ K[x], then xd − a has d distinct roots, namely
{u, ζn/du, . . . , ζ(n/d)(d−1)u}. Also, K(u) is a splitting field for xd − a, and is Galois over K.

Theorem V.7.11: Let n be a positive integer and K a field containing a primitive nth root of unity ζ.
Then, the following conditions on an extension F of K are equivalent:

(i) F is cyclic of degree d | n.

(ii) F is a splitting field over K of a polynomial of the form xn − a ∈ K[x].

(iii) F is a splitting field over K of an irreducible polynomial of the form xd − b ∈ K[x], with d | n.

Proof:
(ii) =⇒ (i):

Let u ∈ F be a root of xn − a. Then, the other roots are {ζiu | i ∈ Fp} and so F is Galois over
K. Thus, F = K(u) and any σ ∈ AutK F is completely determined by σ(u).

Suppose σ, τ ∈ AutK F and σ(u) = ζiu and τ(u) = ζju. Then , στ(u) = σ(ζju) = ζjσ(u) =
ζjζiu = ζi+ju. Hence, the assignment σ 7→ i if and only if σ(u) = ζiu is a homomorphism from
AutK F to Zn, which is injective. Hence, AutK F ∼= some subgroup of Zn, i.e., AutK F ∼= Zd
for some d | n. �

(i) =⇒ (iii)

By hypothesis, AutK F = 〈σ〉, with σd = 1. Let η := ζn/d be a primitive dth root of unity in K.
Now, NF

K(η) = η|F :K| = ηd = 1. By Hilbert’s Theorem 90, η = wσ(w)−1, for some w ∈ F .
Let v = w−1. Then σ(v) = σ(w)−1 = ηw−1 = ηv. Mimic the proof when we had u + i earlier,
and we’re done. (Compute σ(vd) = (ηv)d = ηdvd = vd. So, vd =: b ∈ K, and v is a root of
xd − b ∈ K[x].) �
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1.1.8 Section V.8 - Cyclotomic Extensions

Lemma: (Follows from the division algorithm in Euclidean Domains) Let R be a commutative ring with
1, and let f, g ∈ R[x]. Assume that the leading coefficient of g is a unit in R. Then, there exists a unique
q, r ∈ R[x] such that f = gq+ r, with r = 0 or deg(r) < deg(g). (i.e., We can do the Euclidean Algorithm in
an arbitrary commutative ring when g has a unit as its leading coefficient.)

The Lemma applies to Z[x]. So, given f, g ∈ Z[x] such that g is monic, then there exists a unique q, r ∈ Z[x]
such that f = gq+ r, with r = 0 or deg(r) < deg(g). By uniqueness, q and r must be the same as if we used
the Euclidean algorithm over Q[x].

Corollary: If f, g ∈ Z[x] with g monic, and f = gh in Q[x], then we must have h ∈ Z[x].

Definition: Let K be a field. A cyclotomic extension of K of order n is a splitting field of xn − 1 ∈ K[x].

Remark: If n = prm with p - m, and char(K) = p, then the cyclotomic extensions of order m and order n
are the same. So, we assume henceforth that p - n.

Theorem V.8.1: Let n be a positive integer, and let char(K) = 0 or char(K) = p - n. Let F be a cyclotomic
extension of K of order n. Then,

(i) F = K(ζ), where ζ ∈ F is a primitive nth root of unity.

(ii) F is an abelian extension of degree d, for some d | ϕ(n). If n is prime, then F is cyclic.

(iii) AutK F is isomorphic to a subgroup (Z/nZ)×.

Hint: Prove (iii) before (ii), then use (iii) to prove (ii).

Definition: Let n be a positive integer. Let K be a field with characteristic 0 or characteristic p - n. Let F
be a cyclotomic extension of K of order N . The nth cyclotomic polynomial over K is the monic polynomial

gn(x) = (x−ζ1) · · · (x−ζr), where ζ1, . . . , ζr are the distinct primitive nth roots of unity in F . (So, r = ϕ(n).)

Proposition V.8.2:

(i) xn − 1 =
∏
d|n

gd(x).

(ii) The coefficients of gn(x) lie in the prime subfield P of K. If P = Q, then the coefficients are integers.

(iii) deg gn = ϕ(n).

Remark: Use the formula
∑
d|n

ϕ(d) = n.

Proof of (ii): (By induction on n, sketch.) The n = 1 case is trivial. Now assume true for all k < n
with gcd(k, p) = 1. We can write

gn(x) ·
∏
d|n
d6=n

gd(x) = xn − 1.

The right hand side has coefficients in P , and the right term of the left hand product has coefficients
in P by induction. Compare the Euclidean Algorithm in K[x] and P [x], and you will see that we must
have gn(x) ∈ P [x]. �
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Proposition V.8.3: Let F be a cyclotomic extension of order n of Q and gn(x) the nth cyclotomic
polynomial. Then,

(i) gn(x) is irreducible in Q[x].

(ii)
[
F : Q

]
= ϕ(n).

(iii) AutQ F ∼= (Z/nZ)×.

Proof of (i): By Gauss’ Lemma, it suffices to prove that gn(x) ∈ Z[x] is irreducible in Z[x]. Suppose
toward a contradiction that gn(x) does factor in Z[x]. Let h be an irreducible factor of gn in Z[x] with
deg h ≥ 1, and let ζ be a root of h in F and write gn(x) = h(x)f(x), for f(x) ∈ Z[x] monic. To show
that all roots of gn(x) are roots of h(x), hence that gn(x) is irreducible, it suffices to show that for any
prime p with gcd(p, n) = 1, ζp is a root of h(x). (The reason is because all roots of gn(x) are of the
form ζm for some m with (m,n) = 1.)

Suppose ζp is not a root of h. Then, ζp is a root of f . Hence, ζ is a root of the polynomial f(xp) ∈ Z[x].
Thus, h(x) | f(xp) in Q[x]. Suppose f(xp) = h(x)k(x). Since f(xp) ∈ Z[x] and h(x) is monic, we must
have that k(x) ∈ Z[x].

Reducing modulo p, we have that f(xp) = h(x)k(x). The operation of reducing modulo p is a ring
homomorphism from Z[x] to Fp[x]. By the freshman’s dream, f(xp) = f(x)p. So, h(x) | f(x)p, and
hence some irreducible factor of h(x) of positive degree divides f(x). Since gn(x) | xn − 1, we have
that xn−1 = hn(x)r(x) = f(x)h(x)r(x). So, in Fp[x], xn − 1 = f(x)h(x)r(x), but we just showed that
f(x) and h(x) have a common factor. Thus xn−1 has multiple roots, which is a contradiction because
gcd(n, p) = 1. �
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1.1.9 Section V.9 - Radical Extensions

Definition: An extension field F of K is a radical extension if F = K(u1, . . . , un), and some positive power
of ui lies in K(u1, . . . , ui−1), for all 1 ≤ i ≤ n.

Lemma V.9.3: If F is a radical extension of K and N is a normal closure of F over K, then N is a radical
extension over K.

Proof: (See book, pg. 304.)

Definition: Let K be a field, and let f ∈ K[x]. We say that the equation f(x) = 0 is separable by radicals
if there exists a radical extension F of K and a splitting field E of f(x) with K ⊂ E ⊂ F .

Theorem V.9.4: Let F be a radical extension field of K, and E an intermediate field. Then, AutK E is a
solvable group.

Proof: Let K0 be the fixed field of AutK E. Then, E is Galois over K0, with Galois group AutK0 E =
AutK E. So, without loss of generality, assume K = K0, i.e., E is Galois over K. Let N be the
normal closure of F . Since E is Galois over K, we have that E is stable under AutK N . Now, we
have a homomorphism ϕ : AutK N → AutK E by restriction, i.e., ϕ : σ 7→ σ

∣∣
E

. Also, since N is a
splitting field (normal) over K, every τ ∈ AutK E extends to N , i.e., ϕ is onto. Thus, AutK E is a
homomorphic image of AutK N . So it suffices to prove that AutK N is solvable.

We have by the Lemma above that N is a radical extension of K. It’s also a normal extension of K.
LetK1 be the fixed field of AutK N . Again, N is Galois overK1 with Galois group AutK1

N = AutK N ,
so without loss of generality we can let K = K1. Now, N is Galois, radical, and normal over K, and
it remains to show that if E is a Galois, radical extension of K, then AutK E is solvable. (So we now
change the name of N back to E, and we just prove this statement.)

Now, E is a Galois, radical extension of K, and we show that AutK E is solvable. So, E =
K(u1, . . . , um), with umi

i ∈ K(u1, . . . , u
i−1). Suppose charK = p, and write mi as prm′i, with p - m′i.

Then, umi
i = (u

m′i
i )p

t

, and hence u
m′i
i is purely inseparable over K(u1, . . . , ui−1). However, since we

know that E is Galois over K, all elements are separable over all intermediate fields. Hence u
m′i
i is

separable and purely inseparable, and hence is in K(u1, . . . , ui−1). So, without loss of generality, we
can assume mi = m′i, i.e., the characteristic of the field does not divide the mi. Let m := m1m2 · · ·mn,
and let ζ be a primitive mth root of unity (in some algebraic closure of E). Note that ζ exists since
p - m. We now have the diagram:

E - E(ζ)

K

6

- K(ζ)

6

E(ζ) is Galois over K and E is Galois over K, so AutK E ∼= (AutK E(ζ))/(AutE E(ζ)). Hence,
it suffices to prove that AutK E(ζ) is solvable, since quotients of solvable groups are solvable, so if
AutK E(ζ) is solvable, then so is AutK E. We know that K(ζ) must be an abelian extension of K,
and AutK K(ζ) ∼= (AutK E(ζ))/(AutK(ζ)E(ζ)), by the Fundamental Theorem of Galois Theory,
and so AutK(ζ)E(ζ) � AutK E(ζ). So, if AutK(ζ)E(ζ) is solvable, then so much be AutK E(ζ) (since
the quotient by it is abelian).

We are now reduced to the case where we can change notation and just have ζ ∈ K and E =
K(u1, . . . , un) ⊃ · · · ⊃ K(u1, u2) ⊃ K(u1) ⊃ K, with each one of these being a cyclic extension over
the other. Since these are Galois extensions, you look at their corresponding normal subgroups (by
the Fundamental Theorem to get a chain of normal subgroups with quotients that must be cyclic.
Hence, we’re done. �
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Corollary V.9.5: Let K be a field and f ∈ K[x]. If the equation f(x) = 0 is solvable by radicals, then the
Galois group of f is a solvable group.

Notation: If F is an extension of K, then we use F/K to denote the extension of F over K, and we use
Gal(F/K) to denote the Galois group of this extension.

Theorem V.9.6: Let L/K be a finite Galois extension such that G = Gal(L/K) be solvable and char(K) -[
L : K

]
. Then, there is a radical extension R/K such that R ⊃ L ⊃ K.

Proof: (by Strong Induction on
[
L : K

]
) The claim is obvious if

[
L : K

]
= 1, so assume that[

L : K
]

= n > 1, and the theorem holds for all extensions of degree < n. Since G 6= 1 and G is

solvable, there is H�G such that
[
G : H

]
= p is prime. Let ζp ∈ Kalg be a primitive pth root of unity.

Such a ζp exists because char(K) - |L : K|, and so char(K) 6= p.

Set M = LH (the fixed field of H in L, otherwise denoted H ′). Now we have the diagram

G



L

M

H

K

Zp

Now set K ′ := K(ζp), M
′ := M(ζp), and L′ := L(ζp). Since ζp is a root of f(x) = xp−1

x−1 , we have[
K ′ : K

]
≤ p− 1. Hence

[
K ′ : K

]
is prime to

[
L : K

]
.

L′

L M ′ = MK ′

H′

M

H
d

K ′

p

K

Zp

d

Since M ′ = MK ′, we have
[
M ′ : K

]
≤
[
M : K

][
K ′ : K

]
. We also have

[
M : K

]
|
[
M ′ : K

]
and[

K ′ : K
]
|
[
M ′ : K

]
. So,

[
M ′ : K

]
=
[
M : K

][
K ′ : K

]
= p

[
K ′ : K

]
. Therefore

[
M ′ : K

]
= p.

Since M/K is Galois, so is M ′/K ′. Hence Gal(M ′/K ′) ∼= Zp. Therefore, there exists a ∈ K ′ such
that M ′ = K ′(a1/p). “a1/p” denotes any root of the equation xp − a. (See Kummer Theory for
explanation.) Hence M ′ = K(ζp, a

1/p) is a radical extension of K.

Since L/M is Galois, so is L′/M ′. Set H ′ = Gal(L′/M ′). (Shown on the diagram above.) Define
ϕ : H ′ → H by ϕ(σ) = σ

∣∣
L

. Then, ϕ is a well defined group homomorphism. If σ ∈ Kerϕ then

σ
∣∣
L

= Id
∣∣
L

. Since σ ∈ H ′, we have that σ
∣∣
M ′

= IdM ′ . Hence σ induces the identity on the composite
field LM ′, and LM ′ = L′. Thus, σ is the identity on L′ and so it was the identity to begin with.
Hence Kerϕ is trivial, and so ϕ is injective, and thus H ′ is isomorphic to a subgroup of H, and we
know H ≤ G. Since the subgroup of a solvable group is solvable, and G is solvable, so is H ′. Using
Lagrange’s Theorem, we see that char(K) - |H ′|. So, H ′ satisfies all hypotheses of the theorem. To
use induction, we need to know that |H ′| < n.
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|H ′| =
[
L′ : M ′

]
<
[
L′ : K ′

]
≤
[
L : K

]
= n. Hence, by the induction hypothesis applied to L′/M ′, we

have a radical extension R/M ′ such that R ⊃ L′ ⊃ M ′. Since M ′/K is radical, we get that R/K is
radical, and R ⊃ L′ ⊃ L ⊃ K. So, we’re done. �

Corollary V.9.7: Let K be a field and let f(x) ∈ K[x] with deg f = n ≥ 1. Then, assume that char(K) - n!
(i.e., char(K) = 0 or char(K) > n.) Then, f(x) = 0 can be solved with radicals if and only if the Galois
group of f(x) is solvable.

Proof: By the hypotheses, either char(K) = 0 or char(K) > n, and so any irreducible factor of f(x)
is separable. Hence, the splitting field L of f(x) over K is Galois over K. We’ve already proved that
if f(x) = 0 is solvable by radicals, then G = Gal(L/K) is solvable.

Conversely, if G is solvable, we note that G acts faithfully on the roots of f(x) (i.e., there is a
homomorphism from G onto the roots of f(x) which is injective). Hence, G is isomorphic to a subgroup
of Sn. So, |G| =

[
L : K

]
| n! (and so by assumption char(K) -

[
L : K

]
. By the theorem above, we

get that there is a radical extension L of this splitting field and so that polynomial f(x) = 0 can be
solved by radicals. �

Example: Let char(K) 6= 2, 3, and let f(x) ∈ K[x], with 1 ≤ deg f ≤ 4. Then, f(x) = 0 can be solved by
radicals. This is because the Galois group of the splitting field of a polynomial with degree at most 4 must
be a subgroup of S4, which is solvable.

Example: Let f(x) = x5− 4x+ 2 ∈ Q[x], which is irreducible by Eisenstein. It follows from this and that 5
is prime that the Galois group has a 5-cycle and a 2-cycle (the complex conjugation between the two complex
roots), and any subgroup of S5 containing a 5-cycle and a 2-cycle is all of S5, which is not solvable, and so
f(x) = 0 cannot be solved with radicals.
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Special Topic: The General Equation of Degree n

Let K be a field, and let L/K be a field extension.

Definition: α1, α2, . . . , αn ∈ L are algebraically independent over K if for all g(x1, . . . , xn) ∈ K[x1, . . . , xn]
such that g 6= 0, we have g(α1, . . . , αn) 6= 0.

Equivalent Definition: α1, . . . , αn are algebraically independent over K if and only if αi is transcendental
over K(α1, . . . , αi−1) for all 1 ≤ i ≤ n.

Equivalent Definition: α1, . . . , αn are algebraically independent over K if and only if there is a K-
isomorphism ϕ : K(x1, . . . , xn)→ K(α1, . . . , αn) with ϕ(xi) = αi for 1 ≤ i ≤ n.

Definition: For a field K and variables t1, t2, . . . , tn, we denote K(t) := K(t1, . . . , tn) (mostly for
convenience). The general equation of degree n over K is

f(x) = xn − t1xn−1 + t2x
n−2 − · · ·+ (−1)n−1tn−1x+ (−1)ntn = 0.

(If we can solve this general equation by radicals for a given degree n, then we can solve any specific equation
with the same degree.)

Example: (Quadratic Formula) Let char(K) 6= 2, and n = 2, with f(x) = x2 − t1x+ t2 = 0. Then

x =
t1 ±

√
t21 − 4t2
2

.

Proposition V.9.8: Let n ≥ 5. Then, the general equation of degree n over K cannot be solved by radicals.

Proof: Let r1, r2, . . . , rn ∈ K(t)alg be the roots of f(x). Then,

f(x) =

n∏
i=1

(x− ri) = xn − s1(r)xn−1 + s2(r)xn−2 − · · ·+ (−1)n−1sn−1(r)x+ (−1)nsn(r).

We use sj(r) to be the jth elementary symmetric polynomial, evaluated at (r1, r2, . . . , rn). So,

sj(r) =
∑

i1<···<ij

ri1ri2 · · · rij .

We have that sj(r) = tj , for 1 ≤ j ≤ n. Now we will come at the problem from a slightly different
direction. We will start with having the r’s algebraically independent (we’ll call them u’s), and see
what this then implies about our t’s (we’ll call them w’s).

Let u1, . . . , un be variables and set K(u) := K(u1, . . . , un). For 1 ≤ j ≤ n, set wj := sj(u). Let

h(x) =

n∏
i=1

(x− ui) = xn − w1x
n−1 + · · ·+ (−1)n−1wn−1x+ (−1)nwn.

In this reformulation, we know that the variables ui are algebraically independent, but we don’t know
whether the coefficients wi are algebraically independent. This is like the opposite of the first part of
this proof.

K(u) is the splitting field of h(x) over K(w). (Also, K(r) is the splitting field of f(x) over K(t).) We
know that Gal(K(u)/K(w)) ∼= Sn. Our goal is now to show an isomorphism between the extensions
K(t) and K(w).
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Define
ϕ : K[t1, . . . , tn]→ K[w1, . . . , wn] defined by ϕ(g) := g(w1, . . . , wn).

By definition ϕ is surjective ring homomorphism. If g ∈ Kerϕ, then

0 = ϕ(g) = g(w1, . . . , wn) = g(s1(u), . . . , sn(u)).

Now, we evaluate at ui = ri for 1 ≤ i ≤ n, hence

0 = g(s1(r), . . . , sn(r)) = g(t1, . . . , tn).

So, g = 0. Hence ϕ is injective. So, ϕ is an isomorphism.

Let ϕ̃ : K(t) → K(w) be the isomorphism induced by ϕ. Since f ϕ̃(x) = h(x) (F), we have that
K(r) is the splitting field of f over K(t), and K(u) is the splitting field of h over K(w), there is an
isomorphism ϕ̂ : K(r)→ K(u) such thatϕ̂

∣∣
K(t)

= ϕ̃.

[(F) The notation f ϕ̃ denotes the polynomial you get by applying ϕ̃ to each coefficient in f .]

Hence
Gal(K(r)/K(t)) ∼= Gal(K(u)/K(w)) ∼= Sn.

Since for n ≥ 5, Sn isn’t solvable, so f(x) = 0 can’t be solved for radicals. �

Application: (Solving a cubic) We first need to assume that char(K) 6= 2, 3.

We show how to solve f(x) = x3 + px+ q = 0. We leave out the x2 term because if there’s an Lx2 term, you
can substitute (x− L)/3 for x to get rid of it, so we can use this simplification. Now,

P =

(
−q

2
+

(
p3

27
+
q2

4

)1/2
)1/3

,

Q =

(
−q

2
−
(
p3

27
+
q2

4

)1/2
)1/3

,

PQ = −p
3
.

The choices for P and Q may be somewhat ambiguous because by raising to a fractional power, we must
be picking a particular determination of the square or cube roots. But, the third line forces a choice that
removes the ambiguities.

Let ω be a primitive cube root of 1. Then, the roots of f(x) are:

P +Q, ωP + ω2Q, ω2P + ωQ.

Example: Let f(x) = x3 − 7x+ 6 ∈ Q[x]. So, p = −7 and q = 6. Then,

P =

(
−3 +

10

3
√

3
i

)1/3

Q =

(
−3− 10

3
√

3
i

)1/3

Then, our roots are

P +Q = 2

ωP + ω2Q = 1

ω2P + ωQ = −3.
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1.2 Chapter I - Groups

1.2.1 Section I.7 - Categories: Products, Coproducts, and Free Objects

Definition: A category is a class C of objects such that

(i) For each pair (A,B) of objects, we have a set Hom(A,B) of morphisms. An element f ∈ Hom(A,B) is
denoted f : A→ B.

(ii) For each triple (A,B,C) of objects, we have a map Hom(B,C) × Hom(A,B) → Hom(A,C) such that
(g, f) 7→ g ◦ f , and satisfying the following axioms:

(I) Associativity: If f : A→ B, g : B → C, h : C → D, then (h ◦ g) ◦ f = h ◦ (g ◦ f).

(II) Identity: For each object B ∈ C , there exists a morphism 1B : B → B such that for any f : A→ B
and G : B → C, we have that 1B ◦ f = f and g ◦ 1B = g.

Examples:

(1) C = the category of sets, morphisms are functions.

(2) C = the category of groups, morphisms are group homomorphisms.

(3) C = the category of topological spaces, morphisms are continuous maps.

(4) Let G be a group. Let C = the category with one object G. The morphisms in this category are the
homomorphisms from G to G.

(5) C = the category of partially ordered sets, morphisms are order-preserving maps.

(6) Let S be a partially ordered set. Let C = the category whose objects are elements of S. If a, b ∈ S,
then there is a unique morphism fa,b : a→ b if and only if a ≤ b, i.e.,

Hom(a, b) =

{
fa,b, if a ≤ b
∅, otherwise

(7) Let C be a category. Let D be a new category whose objects are the morphisms in C . A typical object
of D is a morphism f : A → B, where A,B are objects of C and f ∈ Hom(A,B). The morphisms of
D are defined to be the commutative diagrams

A
f- B

C

α
? g- D

β
?

Now, HomD(f, g) = {(α, β) | α ∈ HomC (A,C), β ∈ HomC (B,D)}. For composition of

Hom(g, h)×Hom(f, g)→ Hom(f, h)

consider the diagram

A
f- B

C

α
? g- D

β
?

E

γ
? h- F

δ
?

Then, (γ ◦ α, δ ◦ β) ∈ Hom(f, h) is the composition of (γ, δ) with (α, β).
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Some common (often conflicting) notations are:

(1) A (G) = the category of abelian groups.

(2) R-mod = the category of left R-modules (with R a ring).

(3) R-mod = the category of finitely generated left R-modules (with R a ring).

(4) Mod-R = the category of right R-modules (with R a ring).

Definition: Let C be a category, and let {Ai}i∈I be a family of objects of C . A product for this family is

an object P of C together with the morphisms P
πi−−−→ Ai, for i ∈ I, such that or any object B and family

of morphisms ϕ : B → Ai, with i ∈ I, there is a unique morphism B → P such that:

P

B
ϕi-

∃! ϕ -

Ai

πi
?

Lemma I.7.3: If P (as in the above definition) exists, then P is unique (up to isomorphism).

Proof: Let {P, πi} and {Q,µi} both be products for {Ai}i∈I . Then applying the definition of P as
the product with B = Q, we see that there exists a unique homomorphism ϕ : Q → B such that the
diagrams for all i commute:

B

Q
ϕi-

∃! ϕ -

Ai

πi
?

Applying the definition of Q as the product, with B = P , there exists a unique homomorphism
ψ : P → Q such that the diagrams for all i commute:

Q

P
ϕi-

∃! ϕ -

Ai

µi
?

Combining these two diagrams:
Q

P
ϕi-

∃! ϕ -

Ai

µi
?

Q

µi
6

∃! ψ

�

The map from Q to Q must be the trivial morphism 1Q, and so ψ ◦ ϕ = 1Q. Similarly ϕ ◦ ψ = 1Q.
Hence, P and Q are equivalent. �

Definition: Let Ai, i ∈ I be a family of objects in C . A coproduct is an object E together with maps

ji : Ai → E, for i ∈ I such that if F is an object of C with maps Ai
ϕi−→ F , there exists unique maps

θ : E → F such that the following diagram commutes for all i:

Ai
ji- E

F

∃! θ
?ϕi -
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Remark: For coproducts, we use the notation
∐
i∈I

Ai.

Example:

Products: In sets
∏
i∈I

Ai is the unrestricted direct product = {f : I → ∪Ai | f(i) ∈ Ai}, with

πi : (
∏
Ai)→ A, defined by πi(f) = f(i). Suppose we have a set X with maps

X
gi- Ai

∏
Ai

πi
6

α
-

α : X →
∏
Ai, with α(x) = h : j 7→ gi(x), and πi(α(x)) = πi(h) = h(j) = gi(x).

Coproduct in Sets: Consider Ai, with i ∈ I. Then∐
i∈I

Ai = the disjoint union
⊔
k∈I

Ak.

Let F be a set with maps:

Ai
ϕi- F

tAi

ji
? θ

-

Now we define that θ. Let x ∈ tAi, then there exists a unique i with x ∈ Ai. Define θ(x) := ϕi(x).
To check this, see that θ(ji(x)) = ϕi(x).

Abelian Groups:

Product = unrestricted direct product (proof same as for sets)
Coproduct = direct sum = restricted direct product (i.e., only a finite number of nonzero terms in
each element)

Groups:

Product = unrestricted direct product
Coproduct = free product (see below)

Remark: It has so far seemed like the product is much bigger than the coproduct. This may trace back to
the non-symmetry between the domain and the codomain of a function.

Definition: A concrete category is a category C , together with a σ that assigns to each object of C a set
σ(A) in such a way that

(i) Every morphism A → B of C is a function of the sets σ(A) → σ(B). (Different morphisms must give
you different functions. In a category, we can have a bunch of morphisms between the same two sets A
and B and thats okay. But, if we treat them as functions from σ(A) to σ(B), then this cannot happen.
So a concrete category must not have multiple morphisms A→ B.)

(ii) The identity morphism of A is the identity morphism of σ(A).

(iii) Composition of morphisms in C agrees with composition of functions on the sets σ(A), for any object
A of C .
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Definition: Let F be an object in a concrete category (C , σ). Let i : X → σ(F ) be a map of sets. We
say that F is free on X if for any object A in C and any map of sets f : X → σ(A), there exists a unique

morphism f̂ : F → A in C such that:

X
i- σ(F )

σ(A)

σ(f̂)
?f -

commutes.

Definition: An object I in a category C is an initial object if for each object A of C , there exists a unique
morphism I → A. An object T is a terminal object if for every object C in C , there exists a unique morphism
C → T .
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1.2.2 Section I.8 - Direct Products and Direct Sums

We can formulate products, coproducts, free objects, using initial and terminal objects by working in suitable
categories.

Remark: Let C be a category and I a set and {Ai}i∈I a family of objects. We consider a new category D ,

where the objects of D are families of morphisms {C ϕi−−−→ Ai}i∈I , where C is an object in C . Morphisms
on D are as follows: If {C,ϕi} and {D,ψi} are objects of D , a morphism is a C -morphism C → D such that
all diagrams of the following form commute:

C - D

Ai

ψi

�

ϕi -

So, a product in the category C is the same thing as a terminal object in D :

ΠAi
πi- Ai

C

ϕi

-
�

Definition: We construct the weak product (sometimes called direct sum): Define∏
i∈I

WAi = {f : I → tAi},

with f(i) = 0Ai for all but finitely many i. This is a coproduct in the category of abelian groups.

Proof: Exercise. Consider diagrams of the form:

Ai
ϕi- B

ΠW

6

νi
-
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1.2.3 Section I.9 - Free Groups, Free Products, and Generators & Relations

Definition: Now we construct free objects similar to before. Let (C , σ) be a concrete category. Let X be
a set. We consider a new category D whose objects are set maps f : X → σ(C), for an object C of C .
Morphism of this category are commutative triangles

X
f- σ(C)

σ(D)

h
?g -

where h = σ(ϕ) for ϕ ∈ hom(C,D).

Then, an object F of C is free on X if and only if F is an initial object in the category D .

Remark: The coproduct in the category of groups is called the free product.

Definition: Let Gi, for i ∈ I be a family of groups. Let X :=
⊔

(Gi), and let {1} be an extra 1-element set.
A word is a sequence (a1, a2, . . .), with ai ∈ X ∪ {1} such that there exists n so that ai = 1 for all i ≥ n.

Definition: A reduced word is a word that satisfies the following conditions:

(i) No ai ∈ X is the identity element in its group Gj .

(ii) For all i > 1, ai and ai+1 are not in the same group.

(iii) If ak = 1, then ai = 1 for all i ≥ k.

Every reduced word can be written uniquely as

a1 · · · an = (a1, . . . , an, 1, 1, . . .).

Let
∏
i∈I

∗Gi = the set of reduced words. We turn this set into a group by defining product to be concatenation

followed by reduction. You have to prove associativity and the other rules by considering all possible cases
of cancellation, similar to the case of free groups. The identity element of this group is 1 = (1, 1, . . .).

Proposition:
∏
i∈I

∗Gi is a coproduct with respect to the family {Gi} in the set of groups.

Notation: If I = {1, · · · , n}, then we write G1 ∗G2 ∗G3 ∗ · · · ∗Gn for the free product.
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1.3 Chapter IV - Modules

1.3.1 Section IV.1 - Modules, Homomorphisms, and Exact Sequences

Definition: Let R be a ring. A (left) R-module is an (additive) abelian group A together with a map
R×A→ A with (r, a) 7→ a, such that for all r, s ∈ R and a, b ∈ A:

(i) r(a+b) = ra + rb,

(ii) (r+s)a = ra + sa,

(iii) (rs)a = r(sa).

If R has a 1 and if 1a = a for all a ∈ A, then we say that A is a unitary or unital R-module.

Definition: Let A be an abelian group. We define the endomorphism ring as

End(A) = the abelian group homomorphisms from A to A.

On this ring (ϕ+ψ)(a) = ϕ(a) +ψ(a) and (ϕψ)(a) = ϕ(ψ(a)), and these operations do in fact make End(A)
into a ring with 1.

Exercise: With each R-module A, there is naturally associated a ring homomorphism R → End(A), and
conversely, given any ring homomorphism R→ End(A), we have a naturally defined R-module structure on
A. Also, A is a unital R-module if and only if the homomorphism R→ End(A) is a homomorphism of rings
with units.

Definition: A (left) unital module over a division ring is called a vector space.

Examples and Construction of Modules:

1 Every abelian group is a Z-module. We have Z × A → A with (r, a) 7→ ra = a+ a+ · · ·+ a︸ ︷︷ ︸
|r| times

(and the

negative of that if r is negative).

2 Every abelian group A is a left End(A)-module. We have End(A)×A→ A defined by (ϕ, a) 7→ ϕ(a).

3 If S is a ring and R is a subring, then S is a left R-module (denoted RS) by left multiplication. In
particular, S is a left S-module (denoted SS) called the left regular module.

Using the left regular module SS, we get a homomorphism S → End(S). As an exercise, check that
this homomorphism is injective (if S is a ring with 1).

4 If I is a left ideal of R, then I is a left R-module. In fact,
[
left ideals ≡ R-submodules of RR

]
.

5 Let R
ϕ−−→ S be a ring homomorphism. Then for any S-module M , we obtain an R-module ϕM by

R × M → M defined to be (r,m) 7→ ϕ(r)m, with an S-module structure. This called the pullback
along ϕ.
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Module Homomorphisms:

Definition: A module homomorphism for an R-module A to an R-module B is a homomorphism ϕ : A→ B
of abelian groups such that ϕ(ra) = rϕ(a), for all r ∈ R and a ∈ A.

Remark: Composition of R-module homomorphisms gives a R-module homomorphism.

Remark: R-modules, together with R-module homomorphism, form a category R-Mod.

Products:

Let Ai, for i ∈ I, be a family of (left) R-modules. Then, the cartesian product
∏
Ai has a natural

R-module structure. Let f : I →
⊔
Ai. For r ∈ R, set (rf)(i) = rf(i). Then, since

∏
Ai is a product

in the category of sets, it follows that it is also a product in R-Mod. This still needs to be checked,
but this is the explanation. We need to check that: for

∏
Ai

πi−−−→ Ai, the πi are all R-module maps,

and that given an object B with a map B
ϕi−−→ Ai, for i ∈ I, then since

∏
Ai is a product in sets,

there exists a unique set map ϕ from B to
∏
Ai such that all the diagrams commute. See the diagram

below: ∏
Ai

πi- Ai

B

ϕi

6
ϕ

�

Then we check that ϕ is an R-module homomorphism.

Coproducts:

In the category of sets, the coproduct is the disjoint union. In the category of groups, the coproduct is
the gigantic free product. In the category of abelian groups, the coproduct is the weak direct product
(aka, direct sum). Now, for the category of rings, the direct sum

∑
Ai (aka, the weak direct product∏

WAi), as abelian groups has a natural R-module structure, and the injections Aj
ji−−−→

∑
Ai are

R-module homomorphism. Moreover, given any R-module homomorphism Aj
ϕj−−−→ B, the unique

homomorphism (of abelian groups)
∑
Ai

ϕ−−→ B in the definition of the coproduct of abelian groups
is in fact an R-homomorphism. So, it follows that

∑
Ai is a coproduct in the category R-Mod.

Definition: If R is a ring (may not have 1), let A be a (left) R-module. Let a ∈ A. The cyclic submodule
of A generated by a is the intersection of all submodules containing a.

Proposition IV.1.5a:

(1) If R has a 1, then the cyclic submodule generated by a is cyclic: Ra = {ra | r ∈ R}.

(2) If R does not have a 1, then the cyclic submodule generated by a is: {ra+ na | r ∈ R,n ∈ Z}.

Definition: We say that A is cyclic if A is generated by a single element. If X ⊆ A, then the submodule
generated by X is the intersection of all submodules containing X.
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Proposition IV.1.5b:

(1) The submodule generated by X = {
∑
rixi +

∑
ntgt | ri ∈ R, xi ∈ X,nt ∈ Z, yt ∈ X}.

(2) If R has a 1, then it simplifies to {
∑
rixi | ri ∈ R, xi ∈ X}.

Theorem: If R is a ring without 1, then we can embed R into a ring S with 1 such that S ∼= R ⊕ Z as
abelian groups. (If charR = n, we can replace Z by Z/nZ.)

Proof: Let S = R⊕Z. Define addition: (r1, n1) + (r2, n2) = (r1 + r2, n1 +n2). Define multiplication:
(r1, n1)(r2, n2) = (r1r2 + n1r2 + n2r1, n1n2). It’s not too hard to check that these two operations
together with the identity (0, 1) make S a ring. �

Exact Sequences

Definition: If you have homomorphisms A
f−−→ B

g−−→ C, we say this sequence is exact at B if and only if

Im f = Ker g. A short exact sequence is a sequence of maps 0 −→ A
f−−→ B

g−−→ C
h−−→ 0 which is exact at

A,B,C. I.e., Ker f = 0, Im f = Ker g, Im g = Kerh = C. So, Im f ∼= A and B/ Im f = B/Ker g ∼= Im g = C.
Exact sequences have analogous definitions in other categories.

Lemma IV.1.17: Suppose we have the commutative diagram

0 - A
f- B

g- C - 0

0 - A′

α
? f ′- B′

β
? g′- C ′

γ
?

- 0

of R-module maps such that each row is exact. Then,

(i) α, γ are (injective) monomoprhisms =⇒ β is a monomorphism.

(ii) α, γ are (onto) epimorphisms =⇒ β is an epimorphism.

(iii) α, γ are isomorphism =⇒ β is an isomorphism.

Proof: Let x ∈ Kerβ. Then, β(x) = 0, and so g′β(x) = 0. Thus γg(x) = 0 because the diagram
commutes. So g(x) = 0 since γ is a monomorphism. Thus x = f(a) for some a ∈ A since the row is
exact. Hence 0 = β(x) = βf(a) = f ′α(a), since the diagram commutes. So a = 0 since f ′ and α are
monomorphism. Thus, x = f(a) = 0. So β is a monomorphism. The proofs for other parts are similar.
�

Definition: Two short exact sequences are said to be isomorphic if there is a commutative diagram:

0 - A - B - C - 0

0 - A′

f
?

- B′

g
?

- C ′

h
?

- 0

such that f, g, and h are isomorphisms. The same diagram going backward with the inverse maps is also
commutative and so has the same isomorphism. Thus this notion of isomorphism is an equivalence relation.
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Theorem IV.1.18: Let 0 → A
f−→ B

g−→ C → 0 be a short exact sequence of (left) R-modules. Then, the
following are equivalent:

(i) There exists an R-module map h : C → B such that gh = 1C .

(ii) There exists an R-module map k : B → A such that kf = 1A.

(iii) The short exact sequence is isomorphic to 0 → A
ia−→ A ⊕ C πi−→ C → 0 (with iA(a) := (a, 0) and

πC(a, c) := c for all a ∈ A, c ∈ C.

A short exact sequence that satisfies these conditions is called a split short exact sequence.

Proof:
(i) =⇒ (iii):

Let D = Imh. Claim B ∼= Im f ⊕D.

Let b ∈ B. Then, g(b− hg(b)) = g(b)− ghg(b) = g(b)− g(b) = 0.
So, b− hg(b) ∈ Ker g = Im f . Hence, B = Im f +D.

On the other hand, if b ∈ Im f ∩ D, then b ∈ Ker g ∩ Imh, so b = h(c) for some c. Then,
0 = g(b) = gh(c) = 0. Thus c = 0 and so b = 0. Hence, Im f ∩ D = {0}. Now we have the
diagram

0 - A - B - C - 0

f(A)⊕ hC

6

0 - A

=

i - A⊕ C

∼=
π- C

=

- 0

with α : A⊕ C → B defined by α(a, c) := (f(a), h(c)). We’ve shown that α is an isomorphism,
and from definitions we see that the diagram commutes.

(iii) =⇒ (i):

0 - A - B
� h
- C - 0

0 - A

β ∼=
6

- A⊕ C

α ∼=
6

iC-�
π

C

γ ∼=
6

- 0

Define h := α ◦ iC ◦ γ−1. Then

gh(c) = (gαiCγ
−1)(c)

= (γπiCγ
−1)(c)

= (γ(1C)γ−1)(c)

= c.
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(ii) =⇒ (iii):

Consider the short exact sequence

0 - A
f-
�
k

B
g- C - 0

with kf = 1A.

Let D := KerK. Claim B = Im f ⊕ D. Let b ∈ B. Then k(b − fk(b)) = k(b) − kfk(b) =
k(b)− k(b) = 0. Hence b− fk(b) ∈ D, and so b ∈ Im f +D.

Let b ∈ Im f ∩ Ker k. Then, b = f(a) for some a. So, 0 = k(a) = kf(a) = a, hence a = 0 and
thus b = 0. Therefore, Im f ∩Ker k = {0}. Thus, B = Im f ⊕Ker k.

Now consider the diagram

0 - A - B - C - 0

f(A)⊕Ker(k)

∼=

0 - A

=

i - A⊕ C

k g|Ker(k)
? π- C

=

- 0
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1.3.2 Section IV.2 - Free Modules and Vector Spaces

Definition: Let R be a ring, and let A be an R-module. A subset X of A is linearly independent provided
that for distinct x1, · · · , xn ∈ X, and (not necessarily distinct) elements r1, · · · , rn ∈ R, we have that

[r1x1 + · · ·+ rnxn = 0] =⇒ [∀i : ri = 0] .

Definition: We say that a subset Y ⊆ A spans A if A is generated by Y .

Definition: A linearly independent set that also spans A is called a basis of A.

Theorem IV.2.1: Let R be a ring with 1. Let F be a unital R-module. Then, the following are equivalent:

(i) F has a nonempty basis.

(ii) F is the internal direct sum of a family of cyclic R-modules, each ∼= RR.

(iii) F is isomorphic to a direct sum of copies of RR.

(iv) There exists a nonempty set X and a function i : X → F satisying the Universal Mapping Property of
a free object in the category of (left) R-modules.

Proof:
(iii) ⇐= (iv):

Suppose F ∼=
∑
i∈X

Ri (this is the direct sum, i.e., the coproduct), where Ri ∼= RR. Let ji : Ri → F

be the inclusion map. Let xi ∈ Ri be a generator of Ri. Let α : X → F send i 7→ ji(xi). Let
A be any R-module, and suppose we are given ai, i ∈ I, elements of A. Then, for each i, there
exists a unique homomorphism ϕi : Ri → A defined by ϕi : xi 7→ ai. Then, by the universal
property of coproducts, there exists a unique homomorphism of R-modules ϕ : F → A such
that

F
ϕ- A

Ri

ji
6

ϕi

-

Let f : X → A be any set map. Set ai = f(i), for all i ∈ X. Then,

F
ϕ- A

X

α
6

f

-

with ϕ(j(xi)) = ϕ(α(i)) = f(i). Hence F is free on X. �
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1.3.3 Section IV.3 - Projective and Injective Modules

Projective and Injective Modules:
Assume R has a 1. We consider (left) unital R-modules.

Definition: An R-module P is projective if every diagram

P

A
f- B

g
?

- 0

with an exact row can be completed to a commutative diagram by a map h (represented by a dotted arrow):

P

A
f-

∃h

�
B

g
?

- 0

We make no assertions about the uniqueness of h, just the existence.

Theorem IV.3.4: For a left R-module P , the following are equivalent:

(1) P is projective.

(2) Every short exact sequence

0 - A - B - P - 0

splits.

(3) There exists a free module F and a module K such that F ∼= K ⊕ P .

Proof:
(1) =⇒ (2):

Consider the short exact sequence:

0 - A - B
f- P - 0

By the definition of projectivity, there exists a map h : P → B such that f ◦h = IdP . Then, we
have the diagram:

P

0 - A - B -

∃h

�
P

Id

wwwww
- 0

So, the sequence splits. �

(2) =⇒ (3):

There exists F free and a surjective homomorphism f : F → P . So, we have the short exact
sequence

0 - K - F - P - 0

where K = Ker f . By hypothesis, this splits, do F ∼= K ⊕ P . �
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(3) =⇒ (1):

Let F ∼= K ⊕ P , with i : P → F and π : F → P . Set h′ = h ◦ i. We have the diagram:

F

P

π

?
i
6

A
f
-

∃h

� h′

�
B

g′

?
- 0

We have that

f ◦ h′ = f ◦ h ◦ i = (g ◦ π) ◦ i = g ◦ 1P = f. �

Example: Consider

Z/6Z ∼= Z/2Z⊕ Z/3Z.

Let R = Z/6Z. Then, Z/6Z is a free R -module, so Z/2Z and Z/3Z are projective (but not free) R-modules.

Proposition IV.3.5: A direct sum of R-modules
∑
i∈I

Pi is projective if and only if each Pi is projective.

Proof:
(=⇒) :

Suppose
∑
j∈I

Pj is projective. Let

i : Pk →
∑

Pj

π :
∑

Pj → Pk

be the canonical maps.

Letting h′ = h ◦ i, we have the following diagram:

∑
Pj

P

π

?
i6

A
f
-

h

� h′

�
B

g

?
- 0

Thus P is projective. �
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(⇐=) :

Now, assume each Pj is projective. By the definition of
∑

Pj as a coproduct, there exists

ϕ :
∑

Pj → A such that every triangle commutes. So we have the following diagram:

Pk

∑
Pj

ik?

A
f
-

∃ϕk

� ϕ
�

B

g
?

- 0

We want to show that f ◦ ϕ = g.

Since the ik(Pk) generate
∑

Pj , it suffices to show that f ◦ϕ ◦ ik = g ◦ ik. But ϕ ◦ ik = ϕk and

f ◦ ϕk = g ◦ ik by commutativity. �

Injective Modules:

Definition: A left R-module is injective if every diagram

I

0 - A

6

- B

can be completed by a map (given by the dotted arrow) to a commutative diagram.

I

0 - A

6

- B

h
�

Proposition IV.3.7:: A direct product
∏
j∈I

Ji is injective if and only if each Ji is injective.

Proof: Exercise.

Lemma IV.3.8: Let R be a ring with 1. A unitary R-module J is injective if and only if for any left ideal
L of R, any R-module map L→ J can be extended to an R-module map from R→ J , as in the diagram:

J

0 - L

6

- R

Proof:
(=⇒):

If J is injective, then the diagram above can be completed. �
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(⇐=):

Consider the diagram
J

0 - A

f
6

g- B

We consider pairs (C,ϕ) where g(A) ⊆ C ⊆ B and ϕ ◦ g = f :

J

C

ϕ
�

0 - A

f
6

g - B

⊆

Call the set of all such pairs ζ. Then ζ 6= ∅ since (g(A), f ◦ g−1) ∈ ζ (since g is injective).
Partially order this set by map extension.

By Zorn’s Lemma, there exists a maximal element (H,h) ∈ ζ.

J

0 - A

f
6

g- H ⊆ B

h
�

We claim that H = B. Suppose not. Let b ∈ B r H. We’ll extend the map h to 〈H,G〉 to
contradict the maximality of H.

Let L = {r ∈ R | rb ∈ H}. L is a left ideal. Define L→ J by r 7→ h(rG). Needs to be checked
that this an R-module map.

By hypothesis, this extends to an R-module map k : R→ J :

J

0 - L

6

- R

k

�

Since R has a 1, we can let c ∈ k(1R).

Define h : 〈H,G〉 → J by h(a + rb) = h(a) + rc. If this is an R-module map, then we have
extended h. However, we don’t know that it’s a well-defined R-module map, so this needs to be
checked, by showing: If a1 + r1b = a2 + r2b, then h(a1) + r1c = h(a2) + r2c.

Suppose a1 + r1b = a2 + r2b. Then, a1 − a2 = (r2 − r1)b ∈ H, hence r2 − r1 ∈ L. So,

h(a1)−h(a2) = h(a1−a2) = h((r2−r1)b) = k(r2−r1) = k(r2)−k(r1) = r2k(1)−r1k(1) = r2c−r1c.

Hence, h(a1) + r1(c) = h(a2) + r2(c). Thus the map is well-defined.

Check that h is in fact an R-module map. Then, h is an R-module map extending h, which is
a contradiction to the maximality. �
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Definition: Recall that unital Z-modules are equivalent to abelian groups. We say that an abelian group
D is divisible if given any y ∈ D and 0 6= n ∈ Z, there exists x ∈ D such that nx = y.

Lemma IV.3.9: An abelian group is an injective Z-module if and only if it is divisible.

Proof:
(=⇒):

Consider the diagram:

0 - nZ ⊂ - Z

A

f
?�

with f : nZ→ A and n 7→ a. Suppose A is injective. Then, one can extend f to h : Z→ A and
let y = h(1). Then, ny = nh(1) = h(n) = f(n) = a, and so A is divisible.

(⇐=):

Suppose A is divisible. Then, for any diagram:

0 - nZ ⊂ - Z

A

f
? h
�

with f(n) = a and n, a arbitrary with n ∈ Z r {0} and a ∈ A, the diagram can be completed.
But, all left ideals of Z are of the form nZ for some n, and all maps f : nZ→ A map n to some
a ∈ A. So, by Lemma IV.3.8, A is injective. �

Lemma IV.3.10: Every abelian group can be embedded into an injective (divisible) module.

Lemma IV.3.11: If J is a divisible abelian group and R is a ring with identity, then HomZ(R, J) is an
injective left R-module.

Proof: Let R be a ring with 1 and let J be a divisible Z-module. Define for r ∈ R and f ∈ HomZ(R, J)
that (rf)(x) := f(xr) for all x ∈ R.

Now we need to check:

(1) rf ∈ HomZ(R, J):

(rf)(x · y) = f((x · y)r) = f(xr + yr) = f(xr) + f(yr) = (rf)(x) + (rf)(y).

(2) Module structure: for f, g ∈ HomZ(R, J) and r, s ∈ R

(-) r(f + g) = rf + rg, and 1f = f .

(-) (rs)f(x) = f(x(rs)) = f((xr)s) = ((sf)r)(x) = (r(sf))(x).
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Proposition IV.3.12: Every unitary left R-module can be embedded into an injective R-module.

Proof: Let A be a left unitary R-module. We can embed A into an injective abelian group J as

R
g- A ⊂

f- J

Now, consider the map

HomZ(R,A)
f - HomZ(R, J)

g - f ◦ g
Note that HomZ(R,A) is an R-module map and that there is a canonical isomorphism between A and
HomR(R,A) and that HomR(R,A) ⊆ HomZ(R,A). It remains to check that f is an R-module map.
�
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1.3.4 Section IV.4 - Hom and Duality

In this section, we consider only unital rings. In the case of a nonunital ring, you can embed that ring into
a unital ring for which the modules are the same.

Definition: If A and B are left R-modules, then

HomR(A,B) := {R-module maps from A to B}.

HomR(A,B) has the structure of an abelian group: (ϕ+ ψ)(a) = ϕ(a) + ψ(a).

Induced Maps: Consider the diagram:

A
g- B

f- C

Then, we can find a map:

HomR(A,B)
f̃ - HomR(A,C)

g - f ◦ g

and a map:

HomR(B,C)
g̃ - HomR(A,C)

h - h ◦ g
.

These two induced maps are abelian group homomorphisms.

Theorem IV.4.2: (left exactness of Hom, covariant version) Let R be a ring. Then

0 - A
ϕ- B

ψ- C

is an exact sequence of R-modules if and only if for every R-module D:

0 - HomR(D,A)
ϕ- HomR(D,B)

ψ- Homr(D,C)

is exact.

Proof:
(=⇒):

First we show that ϕ is injective. Let

D
f- A

ϕ- B

and define

HomR(D,A)
ϕ- HomR(D,B)

f - ϕ ◦ f

Suppose ϕ(f) = 0. Then, ϕ ◦ f = 0. Since ϕ is injective, we have f = 0. Hence ϕ is injective.

Now we show Im(ϕ) ⊆ Ker(ψ). Suppose g ∈ Im(ϕ). Then g = ϕ ◦ f for some f ∈ HomR(D,A).
Then, ψ(g) = ψ ◦ g = ψ ◦ ϕ ◦ f = 0 (since ψ ◦ ϕ = 0).
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Now we show that Ker(ψ) ⊆ Im(ϕ). Let g ∈ Ker(ψ). Then ψ ◦ g = 0. So Im(g) ⊆ Ker(ψ) =
Im(ϕ). But, Im(ϕ) ∼= A (by injectivity), so let k ∈ HomR(D,A) be defined by ϕ−1 ◦ g (see
diagram)

B

A
ϕ−1

∼= Im(ϕ)

⊆

D

g6
k

�

Then, ϕ(k) = ϕ ◦ k. Now, ϕ(k)(d) = ϕ(ϕ−1(g(d))) = g(d), for all d ∈ D. So, ϕ(k) = g. �

(⇐=):

Conversely, assume

0 - HomR(D,A)
ϕ- HomR(D,B)

ψ- HomR(D,C)

is exact for all R-modules D.

First we show ϕ is injective. Let D = RR. Let f ∈ HomR(R,A) be the unique R-module map
sending 1 to a. Let a ∈ Ker(ϕ). Then, ϕ(f)(1) = ϕ(f(1)) = ϕ(a) = 0. Hence, f ∈ Ker(ϕ) and
so f = 0. Hence a = 0.

Now we show Im(ϕ) ⊆ Ker(ψ). Use D = RR. Let b ∈ Im(ϕ). Let f ∈ HomR(R,B) be the
unique R-module map sending 1 to b. Then, b = ϕ(a) for some a ∈ A. So, f(1) = ϕ(a). Let
g ∈ HomR(R,A) be the unique R-module map sending 1 to a. Then, f(1) = ϕ(a) = ϕ(g(1)).
Since maps in HomR(R,B) are determined by the image of 1, we see that f = ϕ ◦ g = ϕ(g). By
exactness of the induced sequence at HomR(D,B), we have that f ∈ Kerψ. Therefore ψ◦f = 0.
Hence, ψ(f(1)) = 0, and so b = f(1) ∈ Ker(ψ).

Now we show Ker(ψ) ⊆ Im(ϕ). Again let D = RR. Let b ∈ Ker(ψ). Let f ∈ Hom(R,B)
be the unique R-module map sending 1 to b. Then, 0 = ψ(b) = ψ(f(1)). So ψ ◦ f = 0. So,
f ∈ Ker(ψ) ⊆ Im(ϕ). So, there exists g ∈ HomR(R,A) such that ϕ(g) = f , i.e., f = ϕ ◦ g. �

Proposition IV.4.3: (left exactness of Hom, contravariant version) Let R be a ring. Then, the sequence

A
ϕ- B

ψ- C - 0

of R-modules is exact if and only if for any R-module D

0 - HomR(C,D)
ψ- HomR(B,D)

ϕ- HomR(A,D)

is exact.

Proof: Exercise.
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Proposition IV.4.4: The following are equivalent:

(1) 0 - A
ϕ- B

ψ- C - 0 is a split exact sequence of R-modules.

(2) 0 - HomR(D,A)
ϕ- HomR(D,B)

ψ- HomR(D,C) - 0 is a split exact sequence of abelian
groups for every R-module D.

(3) 0 - HomR(C,D)
ψ- HomR(B,D)

ϕ- HomR(A,D) - 0 is a split exact sequence of abelian
groups for every R-module D.

Proof:
(1) =⇒ (3) :

It suffices to check that ϕ is surjective, by left exactness of Hom. Let f ∈ HomR(A,D). We
want to show that there exists g ∈ HomR(B,D) such that ϕ(g) = f , i.e., g ◦ ϕ = f . By
hypothesis, there exists k : B → A such that K ◦ ϕ = IdA. Let g = f ◦ k : B → D. Then
g ◦ϕ = f ◦ k ◦ϕ = f ◦ IdA = f . This shows that the sequence in (3) is exact. It remains to show
that it splits. This is left as an exercise to whoever reads these notes.

Other directions are similar.

Theorem IV.4.5: The following conditions on an R-module P are equivalent:

(1) P is projective.

(2) If ψ : B → C is any surjective R-module map, then ψ : HomR(P,B)→ HomR(P,C) is surjective.

(3) If 0 - A
ϕ- B

ψ- C - 0 is a short exact sequence of R-modules, then

0 - HomR(P,A)
ϕ- HomR(P,B)

ψ- HomR(P,C) - 0 is exact.

Proof:
(1) =⇒ (2):

We have the diagram:
P

B
ψ-

∃g
�

C

f
?

- 0

with f ∈ HomR(P,C), g ∈ HomR(P,B) and f = ψ ◦ g.

(1) =⇒ (3):

Suppose we have a short exact sequence

0 - A
ϕ- B

ψ- C - 0

Then,

0 - HomR(P,A)
ϕ- HomR(P,B)

ψ- HomR(P,C) - 0

is exact by left exactness, and ψ is surjective by projectivity.
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(3) =⇒ (1):

Suppose

0 - HomR(P,A) - HomR(P,B) - HomR(P,C) - 0

is exact for any short exact sequence

0 - A - B - C - 0

Let

P

B
ψ-

g

�
C

f
?

- 0

be given. The function g on the dashed line is defined below. Let A = Kerψ. Then, we have a
short exact sequence

P

0 - A
i- B

ψ-

g

�
C

f
?

- 0

By surjectivity of ψ, there exists g ∈ HomR(P,B) such that ψ ◦ g = f . Then since this holds
for all

R - C - 0

P

6

we have that P is projective.

Other direction similar to the above three.

Theorem IV.4.6: The following conditions are equivalent on an R-module J :

(1) J is injective.

(2) If σ : A→ B is any injective map of R-modules, then σ : HomR(B, J)→ HomR(A, J) is surjective.

(3) If

0 - A
σ- B

ζ- C - 0

is a short exact sequence of R-modules, then

0 - HomR(C, J) - HomR(B, J) - HomR(A, J) - 0

is exact.
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Theorem IV.4.7: Let A,B, {Ai}i∈I , {Bj}j∈J be R-modules. Then, we have isomorphisms of abelian groups:

(i)
HomR

(∑
i∈I

Ai, B

)
=
∏
i∈I

HomR(Ai, B)

(ii)

HomR

A, ∏
j∈J

Bj

 =
∏
j∈J

HomR(A,Bj)

Proof of (i): Consider the diagram:

Ai ⊂
ii-
∑
i∈I

Ai
f- B

So, we have a map

πi : HomR

(∑
i∈I

Ai, B

)
→ HomR(Ai, B)

defined by f 7→ f ◦ ii. Now suppose we have an abelian group C with maps fi : C → HomR(Ai, B),

for i ∈ I. Define f : C → HomR

(∑
i∈I

Ai, B

)
as follows: for c ∈ C, let f(c) be the map

[f(c)]

(∑
i∈I

ai

)
:=
∑

[fi(c)](ai).

We need to check that for all c ∈ C, the map f(c) is a homomorphism. We also need to check that f
is a homomorphism. Lastly, we need to check the πi ◦ f = fi. These are easy to check. �

Bimodules

Definition: Let R,S be rings. An (R,S)-bimodule is an abelian group M such that

(1) M is a left R-module,

(2) M is a right S-module,

(3) For all r ∈ R, s ∈ S, m ∈M , we have that r(ms) = (rm)s.

To indicate that M is an (R,S)-bimodule, we write RMS .

Examples:

(1) A ring acting on itself (i.e. RRR) is an (R,R)-bimodule. The two-sided ideals of R are the (R,R)-
submodules.

(2) If R is commutative, every left module can be made into a bimodule by defining

m · r := rm.

(3) Every left R-module is an (R,Z)-module.
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Theorem IV.4.8: Consider RA, RA
′, RBS , RCS , and RS.

(1) HomR(A,B) is a right S-module, with action (fs)(a) = f(a)s.

(2) If ϕ : A→ A′ is an R-module map, then ϕ : HomR(A′, B)→ HomR(A,B) defined by ϕ : f 7→ f ◦ ϕ is a
right S-module map.

(3) HomR(C,A) is a left S-module map, with action (sf)(c) = cf(s) = f(cs).

(4) If D
ψ−→ D′ is an R-module map, then HomR(C,D)

ψ−→ HomR(C,D′) defined by f 7→ ψ ◦ f is a left
S-module homomorphism.

Checking (3):

(s′(sf))(c) = (sf)(cs′) = f((cs′)s) = f(c(s′s)) = f(c(ss′)) = (ss′)f(c) = ((ss′)f)(c). Hence
s′(sf) = (s′s)f .

Checking (4):

ψ(sf)(c) = ψ ◦ (sf)(c) = ψ(f(cs)) = (ψf)(cs) = (s(ψf))(c). Hence ψ(sf) = sψ(f).

Theorem IV.4.9: Let A be a left unitary R-module, and R a ring with 1. Then,

HomR(R,A) ∼= A

as R-modules, by the isomorphism [fa : 1R 7→ a]← [ a., and f 7→ f(1).

Proof: Exercise.

Duality:

Definition: Let A be a left R-module, so we have RA and RRR. Then, A∗ := HomR(A,R) is a right
R-module called the dual of A.

Theorem IV.4.10: Let A,B,C be left R-modules.

(1) If ϕ : A→ C is an R-module map, then ϕ : HomR(C,R)→ HomR(A,R) is an right R-module map.

(2) (A⊕ C)∗ ∼= A∗ ⊕ C∗.

(3) If R is a division ring and 0 - A
σ- B

ξ- C - 0 is a short exact sequence of left R-

modules, then 0 - A∗
ξ- B∗

σ- A∗ - 0 is a short exact sequence of right R-modules.

Theorem IV.4.11: Let F be a free left module with basis X over a ring R with 1. For x ∈ X, set fx : F → R
be the homomorphism such that for y ∈ X:

fx(y) = δxy =

{
1, if y = x
0, if y 6= x

Then,

(1) {fx | x ∈ X} is a linearly independent set in F ∗.

(2) If X is finite, then F ∗ is a free right module with basis {fx | x ∈ X}.

Proof: Exercise.



1.3. CHAPTER IV - MODULES 63

Theorem IV.4.12: There is a left R-module homomorphism:

θ : A→ A∗∗

defined by θ(a)(f) = f(a), for all a 3 A and f ∈ A∗.

If R has a 1 and A is free then θ is injective.

If R has a 1 and A is free with a finite basis, then θ is an isomorphism.
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1.3.5 Section IV.5 - Tensor Products

If AR and RB, we will define an abelian group A⊗R B.

Definition: Let C be an abelian group. A map f : A×B → C is called an R-middle-linear map if

(1) f is Z-linear:

f(a+ a′, b) = f(a, b) + f(a′, b),

f(a, b+ b′) = f(a, b) + f(a, b′).

(2) f(ar, b) = f(a, rb), for all a ∈ A, b ∈ B, r ∈ R.

For fixed AR and RB, we consider the category M (A,B) whose objects are the middle-linear maps A×B → C,
where C is an abelian group. The morphisms in this category are commutative diagrams:

A×B
f- C

h�

D

g
?

where h is the morphism, so that

(A×B f−−→ C)
h−−−→ (A×B g−−→ D).

Definition: A universal object of M (A,B) is called a tensor product A⊗RB. By the definition of a universal
object, if this tensor product exists it must be unique.

Remark: Note that this is a (slight) abuse of notation, since the objects are realy maps A×B → A⊗R B,
for which there is a canonical mapping (a, b) 7→ a⊗R b.

Universal Property of A⊗R B:

There exists a middle-linear map A × B → A ⊗R B such that for any abelian group C and any
middle-linear map f from A×B to C, there exists a unique f̃ : A⊗R B → C.

A×B
f- C

A⊗R B

j
? f̃

-

Proof: By the remark above, we automatically have uniqueness if we can prove existence. Let F (A,B)
be the free Z-module generated by A×B. Let K be the subgroup of F (A,B) generated by the elements:

(a+ a′, b)− (a, b)− (a′, b), for all a, a′ ∈ A and b ∈ B,

(a, b+ b′)− (a, b)− (a, b′), for all a ∈ A and b, b′ ∈ B,

(ar, b)− (a, rb), for all a ∈ A and b ∈ B and r ∈ R.

Let A⊗R B = F (A,B)/K.

Let m : A×B → A⊗R B defined by (a, b) 7→ a⊗R b := the image of (a, b) in F (A,B)/K.
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It remains to check that:

(1) m is a middle-linear map:

We need to verify that f(a+a′, b) = f(a, b)+f(a′, b) and that f(a, b+b′) = f(a, b)+f(a, b′)
and that f(ar, b) = f(a, rb). But, these are all imeediate from the definition of K as being
generated by those particular elements.

(2) m : A×B → A⊗R B is an initial object of M (A,B).

Let f : A × B → C be a middle-linear map. We have to show that there exists a unique
group homomorphism f̃ : A ⊗R B → C such that f̃(a ⊗R b) = f(a, b), for all a ∈ A and
b ∈ B. Consider the diagram:

F (A,B)

A×B

⊆

C

f̃

?f -

By the universal property of F (A,B), there exists f̂ : F (A,B) → C such that f̂(a, b) =
f(a, b) for all a ∈ A and b ∈ B. Now,

f̂ ((a+ a′, b)− (a, b)− (a′, b))) = f̂(a+ a′, b)− f̂(a, b)− f̂(a′, b)

= f(a+ a′, b)− f(a, b)− f(a′, b)

= 0,

since f is additive in A.

Similarly, you can check that

f̂ ((a, b+ b′)− (a, b)− (a, b′))) = 0,

and

f̂ ((ar, b)− (a, rb)) = 0.

Hence, K ⊆ Ker f̂ . So, f̂ induces a homomorphism f̂ : F (A,B)/K → C such that

f̃(a, b) = f̂(a, b) = f(a, b). Since the images of (a, b) for a ∈ A and b ∈ B generate A⊗RB,

we have that f̃ is the unique homomorphism with this property.

Hence, we have shown the existance of A⊗R B. �

Example: Consider (Z/2Z)⊗Z (Z/3Z). Since a = 3a in this group, we have that

a⊗Z b = a · 3⊗Z b

= a⊗Z 3 · b
= a⊗Z 0

= a⊗Z 0 · 0
= a · 0⊗Z 0

= 0⊗Z 0.

Hence this group is trivial.



66 CHAPTER 1. COURSE NOTES

Example: Let A be a torsion abelian group. Consider A⊗Z Q. Let a ∈ A with na = 0. Then,

a⊗Z r = a⊗Z n ·
r

n

= a · n⊗Z
r

n

= 0⊗Z
r

n
= 0⊗Z 0.

Hence, A is trivial.

Example: Consider R⊗Q R. This is very big.

Remark: Note that not every element of A⊗RB can be written as a⊗R b. The tensor product is generated
by those elements. So, to write an arbitrary element, it will be a finite sum of those elements.

Corollary IV.5.3: Consider the modules AR, A′R, RB, RB
′. Let f : A→ A′ and g : B → B′. Then, there

exists a unique homomorphism of abelian groups:

(f ⊗R g) : A⊗R B → A′ ⊗R B′.

Proof: Consider the map A × B → A′ ⊗R B′ defined by (a, b) 7→ f(a) ⊗R g(b). We check that this

map is middle-linear. (Note the diagram: A×B −→ A′ ×B′ m−−−→ A′ ⊗R B′.)

(1)
(a+ a′, b) 7→ f(a+ a′)⊗R g(b)

= (f(a) + f(a′))⊗R g(b)

= f(a)⊗R g(b) + f(a′)⊗R g(b)

= f(a, b) + f(a′, b).

(2)
(a, b+ b′) 7→ f(a)⊗R g(b+ b′)

= f(a)⊗R (g(b) + g(b′))

= f(a)⊗R g(b) + f(a)⊗R g(b′)

= f(a, b) + f(a, b′).

(3)
(ar, b) 7→ f(ar)⊗R g(b)

= f(a)r ⊗R g(b)

= f(a)⊗R rg(b)

= f(a)⊗R g(rb)

= f(a, rb).

�
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Proposition IV.5.4: (right exactness of ⊗) Let

A
f- B

g- C - 0

be an exact sequence of left R-modules. Let S be a right R-module. Then,

D ⊗R A
1D ⊗ f- D ⊗R B

1D ⊗ g- D ⊗R C - 0

is exact.

Proof: First we show that 1D ⊗ g is surjective. Well, we know that g is surjective, and D ⊗R C is
generated by elements d ⊗ c. Given such an element, there exists b ∈ B such that g(b) = c. Then,
(1D ⊗ g)(d⊗ b) = d⊗ c. Hence, 1D ⊗ g is surjective.

Now we show in two steps that Im(1D ⊗ f) = Ker(1D ⊗ g). First we show that ⊆ inclusion. We know
that D ⊗ A is generated by elements of the form d ⊗ a for d ∈ D and a ∈ A. Well, Im(1 ⊗ f) is
generated by elements of the form (1D⊗f)(d⊗a) = d⊗f(a). Now (1⊗g)(d⊗f(a)) = d⊗g(f(a)) = 0,
since Im(f) ⊆ Ker(g). Thus Im(1D ⊗ f) ⊆ Ker(1⊗ g).

Now we show the reverse inclusion. Let x ∈ Ker(1⊗ g) ⊆ D ⊗B. We can write

x =
∑
i

di ⊗ bi, for di ∈ D and bi ∈ B.

Hence,

0 = (1⊗ g)(x) =
∑
i

di ⊗ g(bi) ∈ D ⊗ C.

Recall that by assumption, Im(f) = Ker(g).

Let π : D ⊗B −→ (D ⊗B)/ Im(1⊗ f) be the canonical map. There is a homomorphism

(D ⊗B)/ Im(1⊗ f)
α−−→ D ⊗ C

since Im(1⊗ f) ≤ Ker(1⊗ g).

Now, define D×C −→ (D⊗B)/ Im(1⊗ f) by (d, c) 7→ π(d⊗ b), where b is any element with g(b) = c.

We need to show that this is a well-defined middle linear map. Suppose g(b) = g(b′), then b = b′+f(a)
for some a ∈ A by exactness of the sequence.

Observe that d⊗ b = d⊗ (b′ + f(a)) = (d⊗ b′) + (d⊗ f(a)). The last term is in Im(1⊗ f), so we have
the same element of (D ⊗B)/ Im(1⊗ f) and hence the map is well defined. �

Tensor Products in Linear Algebra:

Let R = F be a field. Then, all R-modules are vector spaces, and are all (R,R)-bimodules. Here, middle
linear maps are equivalent to bilinear maps. So, if V,W are two vector spaces, then V ⊗F W is a vector space
which is universal with respect to bilinear maps V ×W → U for some vector space U . So,{

Bilinear maps V ×W → U
}
≡

{
Linear maps from V ⊗F W → U

}
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Theorem IV.5.7: If R is a ring with 1, and AR and RB are modules, then

A⊗R R ∼= A, as right R-modules, and
R⊗R B ∼= B, as left R-modules.

This is similar to the idea that HomR(R,A) ∼= A.

To prove this, use the map A×R→ A defined by (a, r) 7→ ar and the map A→ A⊗RR defined by a 7→ a⊗R1.

Theorem IV.5.8: (Associativity of
⊗

) Let R,S be rings (with 1). Let AR, RBS and SC be modules. Then,

(A⊗R B)⊗S C ∼= A⊗R (B ⊗S C) .

(Not only are they isomorphic, they are naturally isomorphic, but we don’t prove that here.)

Proof: It will not be feasible to try to explicity define a direct map because it is difficult to “write
down” and element of either side. Instead, we will use the Universal Property of

⊗
and write down

an intermediate map.

We know that A⊗R B is generated by elements of the form a⊗R b, for a ∈ A and b ∈ B.

Fix c ∈ C. Define mc : A×B → A⊗R (B⊗S C) by mc(a, b) = a⊗R (b⊗S c). Now, mc is an R-middle
linear map. So, mc gives us a homomorphism A⊗RB → A⊗R(B⊗SC) defined by a⊗Rb 7→ a⊗R(b⊗Sc).
Define mc as such for all c ∈ C.

Now we define a map

(A⊗R B)× C −→ A⊗R (B ⊗S C)

(u, c) 7−→ mc(u)

First we check that this map is a well-defined S-middle-linear map. Then we get a homomorphism
(A⊗R B)⊗S C −→ A⊗R (B ⊗S C). We see that this sends an element of the form (a⊗R b)⊗S c 7−→
a⊗R (b⊗S c).

Next we define a homomorphism in the other direction, using functions ma defined analogously, to get
a homomorphism in the other direction. We check that the composition of these two homomorphisms
in either direction gives us the identity, and hence they are inverse maps and thus bijections. Therefore,
each is an isomorphism. �

Remark: If we have TAR and RBS , then A⊗R B is a (T, S)-bimodule. I.e., T (A⊗R B)S .

If R,S rings, then consider the map R
f−−→ S. If we have a module SM , we can make M into an R-module

by r ·m := f(r)m, which is called the pullback.

We can also get S-modules from R-modules. If we start with AR and RSs, with the left R-module structure
on S given by f , then A⊗R S is a right S-module. This is called the scalar extension of A along f .

With a map Z f−−→ Z/pZ and M and abelian group, we can show that M ⊗Z (Z/pZ) = M/pM .

Example:

(Z/mZ)⊗Z (Z/nZ) ∼= Z/dZ, where d = gcd(m,n).

To prove, use the Universal Property of
⊗

. Consider a map (Z/mZ)×(Z/nZ)→ Z/dZ, defined by (a, b) 7→ ab,
where a ≡ a mod d and b ≡ b mod d. This is obviously middle-linear (in a Z-module, bilinear just means
additive in each variable, which is true here). Now suppose f : (Z/mZ) × (Z/nZ) → C is a middle-linear
map (i.e., biadditive). Now:

(1) f((0, b)) = f((a, 0)) = 0, for all a ∈ Z/mZ and b ∈ Z/nZ.
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(2) f is completely determined by f((1, 1)). Clearly, f((a, b)) = f((â · 1, 1 · b̂)) = âb̂ · f((1, 1)), where â

mod m = a and b̂ mod m = b.

(3) mf((1, 1)) = f((m, 1)) = f((0, 1)) = 0 and nf((1, 1)) = f((1, n)) = f((1, 0)) = 0. So, df((1, 1)) = 0. So,
there exists a homomorphism g : Z/dZ→ C defined by 1 7→ f((1, 1)).

Now we have the diagram:

(1, 1) - 1

Z/mZ× Z/nZ - Z/dZ

C

g

�f -

f((1, 1))

�

-

Hence Z/dZ has the defining property of Z/mZ⊗Z Z/nZ.

Example: Q⊗Q Q ∼= Q by a theorem that R⊗R A ∼= A.

More surprisingly Q⊗Z Q ∼= Q. To see this informally, observe that

p

q
⊗ r

s
=
pr

q
⊗ 1

s
=
prs

qs
⊗ 1

s
=
pr

qs
⊗ s

s
=
pr

qs
⊗ 1.

Theorem IV.5.9: Let R be a ring, let A and {Ai}i∈I be right R-modules, and let B and {Bj}j∈J be left
R-modules. Then, (∑

i∈I
Ai

)
⊗R B ∼=

∑
i∈I

(Ai ⊗R B)

and

A⊗R

∑
j∈J

Bj

 ∼= ∑
j∈J

(A⊗R Bj) .

Proof: To prove, you must use the Universal Property of Coproducts. With the first one, define a
map from the left-hand side to right-hand side using the universal properties, and do the same thing
in the other direction, and show that the two maps are inverse maps, hence isomorphisms. To define
the first map, we need a middle-linear map from the

∑
Ai × B to

∑
(Ai ⊗ B). To do this, we start

with maps for each Ai into
∑

(Ai ⊗ B) and work up from there. For the reverse map, we start with
maps from Ai ⊗B to the left-hand side and then work up from there.

Theorem IV.5.10: (Adjoint Associativity) Let R ans S be rings. Consider AR, RBS , and CS . Then there
is an isomorphism of abelian groups

α : HomS(A⊗R B,C) ∼= HomR(A,HomS(B,C))

such that if f ∈ HomS(A⊗R B,C), then [(αf)(a)](b) = f(a⊗ b).

In particular, applied to the case where R = S = F for a field F and letting C = F , we have that

(A⊗B)∗ ∼= HomR(A,B∗).

Proof: We need to show that (αf)(a) ∈ HomS(B,C). Then we show that (αf) ∈ HomR(A,HomS(B,C)).
Then we show that α is a homomorphism.
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First, (we show only the module property, we skip the abelian group (additivity) property)

(αf)(a)(bs) = f(a⊗ bs)
= f(a⊗ b)s
= [(αf)(a)(b)]s.

Hence (αf)(a) ∈ HomS(B,C).

Next,

(αf)(ar)(b) = f(ar ⊗R b)
= f(a⊗R rb)
= (αf)(a)(rb)

= [[(αf)(a)]r](b).

Hence (αf)(ar) = [(αf)(a)]r.

Now let β : HomR(A,HomS(B,C)) → HomS(A ⊗R B,C). For g ∈ HomR(A,HomS(B,C)), we want
to define (βg) ∈ HomS(A⊗B,C).

Define mg : A × B → C by (a, b) 7→ g(a)(b). This is a middle linear map, and so it defines µg :
A⊗R B → C. Set β(g) = µg ∈ HomS(A⊗R B,C).

We have defined
β : HomR(A,HomS(B,C))→ HomS(A⊗R B,C)

We have shown that β is a homomorphism. Finally, we need to check that α and β are inverses.

(α(µg)(a)(b) = µg(a⊗ b)
= g(a)(b).

Hence α(µg) = g, i.e., α ◦ β = Id. Similarly, we can show the other direction. Therefore α is an
isomorphism. �

Theorem IV.5.11: Let R be a ring with 1. If A is a unital right R-module and F is a free left module with
basis Y , then every element u of A⊗R F can be written uniquely in the form

u =
∑
i=1

(ai ⊗ yi),

where each yi ∈ Y are distinct.

Proof: For y ∈ Y , we have Ry ∼= R as left R-modules, and F =
∑
y∈Y

Ry. So,

A⊗R F ∼= A⊗R

∑
y∈Y

Ry

 ∼= ∑
y∈Y

(A⊗R Ry).

Since Ry ∼= R as left R-modules, we have

A⊗R y ∼= A⊗R ∼= A.

Hence, ∑
y∈Y

(A⊗R Ry) ∼=
∑
y∈Y

A,

where A is a copy for each y ∈ Y . �
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Corollary IV.5.12: Suppose R has a 1. If AR is a free unital right module with basis X, and RB is a free
left module with basis Y , then A⊗R B is a free (right) R module with basis W = {x⊗ y | x ∈ X, y ∈ Y } of
cardinality |X||Y |. Note that since A and B are free modules, they are really both left and right modules,
and the tensor product can be considered as both a left and right module.

Corollary IV.5.13: Let S be a ring with 1 and R a subring with 1S ∈ R. If F is a free left R-module then
S ⊗R F is a free left S-module with basis {a⊗R x | x ∈ X}.
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1.3.6 Section IV.7 - Algebras

Definition: Let K be a commutative ring with 1. A K-algebra is a ring A such that:

(1) (A,+) is a unital left K-module.

(2) k(ab) = (ka)b = a(kb), for all k ∈ K and a, b ∈ A.

Note 1: In some textbooks, an algebra is defined (sometimes implicitly) to require a 1, but not here.
Note 2: Some people define way more general structures that only satisfy the first condition, and they call
these “algebras”. To distinguish, the algebras defined above are sometimes called “associative algebras”.

Example: Every ring is a Z-algebra.

Example: If K is commutative with 1, then K[x1, . . . , xn], K[[x]], etc are all K-algebras.

Example: If V is a vector space over F , then EndF (V ) is an F -algebra.

Example: If A is a ring with 1 and K is a subring of Z(A) containing 1A, then A is a K-algebra. In
particular, every commutative ring with 1 is an algebra over itself.

Theorem IV.7.2: Let K be a commutative ring with 1, and A a left unital K-module. Then, A is a
K-algebra if and only if there exists a K-module homomorphism

π : A⊗K A→ A

such that we have the commutative diagram:

a⊗ b⊗ c - (ab)⊗ c

A⊗K A⊗K A
π ⊗ 1A- A⊗K A

A⊗K A

1⊗ π
? π - A

π
?

a⊗ (bc)
?

- a(bc)
?

Moreover, A has a 1 if and only if there exists a K-module homomorphism I : K → A such that the following
diagram commutes:

K ⊗K A
ξ- A �

θ
A⊗K

A⊗K A

I ⊗ 1A
? π- A

1A
?
�π A⊗K A

1A ⊗ I
?

Note that ξ and θ are the isomorphism of Theorem 5.7.
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Theorem IV.7.4: If A and B are K-algebras, then A⊗K B is a K-algebra with multiplication:

(A⊗K B)⊗K (A⊗K B)→ A⊗K B.

We also have an isomorphism:
α : B ⊗A −→ A⊗B,

α : b⊗ a 7−→ a⊗ b.

Proof: Let πA be the product map on A and let πB be the product map on B. We’d like to be
able to send (a⊗ b)⊗ (a′ ⊗ b′) to aa′ ⊗ bb′, but we need to do this in terms of the product maps. By
associativity, we can redefine the multiplication map as

A⊗ (B ⊗A)⊗B → A⊗B

by some map θ.

Under the map 1⊗α⊗ 1, we can map A⊗ (B⊗A)⊗B to A⊗ (A⊗B)⊗B. Lastly, we can reassociate
via γ to (A ⊗ A) ⊗ (B ⊗ B). Lastly, we use the product maps πA and πB to send A ⊗ A → A and
B ⊗B → B. Hence, the multiplication map is:

πb ◦ πa ◦ γ ◦ (1⊗ α⊗ 1) ◦ θ.

Examples:

(1) Mn(F )⊗F A ∼= Mn(A). Special case: Mn(F )⊗F Mm(F ) ∼= Mmn(F ).

(2) Hamilton Quaternions: H := {a + bi + cj + dk | a, b, c, d ∈ R}. The center of H is the set where
b = c = d = 0, i.e., Z(H) = R. Now, H⊗R C ∼= Mn(C). Also, H⊗R H ∼= M4(R).
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1.4 Chapter III - Rings

1.4.1 Section III.4 - Rings of Quotients and Localization

Definition: Let R be a commutative ring (not necessarily with 1). A nonempty set S ⊆ R is multiplicative
if for all s1, s2 ∈ S we have s1s2 ∈ S, i.e., S is closed under multiplication.

Theorem III.4.2: Consider the relation on R× S given by

(r, s) ∼ (r′, s′) if and only if ∃s′′ ∈ S : s′′(rs′ − r′s) = 0.

This is an equivalence relation. Furthermore, if R has no zero divisors and 0 6∈ S, then (r, s) ∼ (r′, s′) if and
only if rs′ = r′s = 0.

Let S−1R denote the set of equivalence classes and write
r

s
for the class of (r, s).

(i)
r

s
=
r′

s′
if and only if there exists s′′ such that s′′(r′s− rs′) = 0.

(ii)
tr

ts
=
r

s
for all t ∈ S.

(iii) If 0 ∈ S, then S−1R has just one class.

Theorem III.4.3:

(i) S−1R is a ring with addition and multiplication defined as follows.

r

s
+
r′

s′
:=

rs′ + r′s

ss′
.

r

s
· r
′

s′
:=

rr′

ss′
.

(ii) If R is a nonzero ring with no zero divisors, and 0 6∈ S, then S−1R is an integral domain.

(iii) If R is a nonzero ring with no zero divisors, and S = Rr {0}, then S−1R is a field.

Proof that the ring addition is well defined in S−1R:

Suppose
r

s
=
r1

s1
and

r′

s′
=
r′1
s′1

. We want to check that
rs′ + r′s

ss′
=
r1s
′
1 + r′1s1

s1s′1
.

By the first equality, there exists t ∈ S such that t(rs1 − r1s) = 0 and by the second equality, there
exists t′ ∈ S such that t′(r′s′1 − r′1s′) = 0.

Multiplying the first equation by t′s′1s
′, we have

t′s′1s
′trs1 − t′s′1s′tr1s = 0.

Multiplying the second equation by ts1s, we have

ts1st
′r′s′1 − ts1st

′r′1s
′ = 0.

Now, we add the two equations together:

tt′s′1s1(rs′ + sr′) = tt′ss′(r1s
′
1 + r′1s1).
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Hence

tt′((s1s
′)(rs′ + sr′)− (ss′)(r1s

′
1 + r′1s1)) = 0.

This tells us that the ring addition is well defined. �

Definition: S−1R is called the localization of R with respect to S , or the ring of quotients of R with respect to S.

If R is an integral domain and S = R r {0}, then S−1R is called the field of fractions of R. If the set of
non-zero-divisors is not empty, then taking S to be this set, we call S−1R the full ring of quotients of R.

Theorem III.4.4: Let S be a multiplicative set in R.

(i) The map ϕs : R→ S−1R defined by r 7→ rs

s
, (for any s ∈ S) is a (well-defined) homomorphism of rings.

(ii) If 0 6∈ S and S has no zero divisors, then ϕs is a monomorphism.

(iii) If R has a 1 and S consists of units, then ϕs is an isomorphism.

Some sketches of parts of proof:
Let r ∈ Kerϕs. Then,

rs

s
=

0s

s

and so there exists t ∈ S such that

t(rs2 − 0s2) = 0

Thus, if ts2 6= 0, we have that r = 0.

Recall: Let R be a commutative ring. Let S be a multiplicative set. Let ϕs : R → S−1R be defined by

r 7→ rs

s
. This is a canonical map because it’s independent of the choice of s.

Theorem: (Universal Mapping Property of ϕs)

ϕs has the following Universal Mapping Property:

If ψ : R → R1 is any ring homomorphism such that ψ(s) is a unit for all s ∈ S, then there exists a

unique homomorphism ψ̃ : S−1R→ R1 such that the diagram below commutes:

R
ϕs- S−1R

R1

ψ
? ψ̃
�

Proof: Define ψ̃
(
r
s

)
:= ψ(r)ψ(s)−1, and check that this map is well defined as follows:

Suppose r
s = r1

s1
. Then, there exists t ∈ S such that t(s1r − r1s) = 0. Then,

ψ(t)(ψ(s1)ψ(r)− ψ(r1)ψ(s) = 0.

But, ψ(t) is a unit. So, we have that ψ(s1)ψ(r) = ψ(r1)ψ(s). Since ψ(s) and ψ(s1) are units, we get
that ψ(r)ψ(s)−1 = ψ(r1)ψ(s1)−1, and so r

s = r1
s1

.

Need to check that it is a homomorphism. This is routine. �
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Remark: A special case from this is a theorem we used last year and earlier this year: If you have a
homomorphism from an integral domain into a field, you can extend it to a homomorphism from the quotient
field of the integral domain to the field.

Next we consider how the ideals of R are related to the ideals of S−1R.

If I is an ideal of R, then let S−1I = { rs | r ∈ I, s ∈ S}. Then, S−1I is an ideal of S−1R. To see
this, pick a

s ∈ S−1I, with a ∈ I and s ∈ S. Let r
s′ ∈ S−1R. Then, ra ∈ I, so ra

s′s ∈ S−1I. Similarly,
a
s −

b
s′ = s′a−sb

ss′ ∈ S
−1I, and so it’s closed under subtraction. Therefore, it’s an ideal.

If J is an ideal of S−1R, then let ϕ−1
s (J) denote the full preimage in R of J . This is an ideal of R.

Theorem III.4.7: If I and J are ideals of R, then:

(a) S−1(I + J) = S−1I + S−1J

(b) S−1(IJ) = (S−1I)(S−1J)

(c) S−1(I ∩ J) = (S−1I) ∩ (S−1J)

Proof of (a): Let a ∈ I and b ∈ J . Let a+b
s ∈ S

−1(I + J). But, a+b
s = a

s + b
s . Thus, S−1(I + J) ⊆

S−1I + S−1J . Now consider a
s ∈ S

−1I and b
s′ ∈ S

−1J . Note that a
s + b

s′ = as′+bs
ss′ ∈ S

−1(I + J). �

Theorem III.4.8: Let I be an ideal of R. Then, S−1I = S−1R if and only if S ∩ I 6= ∅.

Lemma III.4.9:

(i) I ⊆ ϕ−1
s (S−1I)

(ii) If I = ϕ−1
s (J) to some ideal J of S−1R, then S−1I = J . Hence ever ideal of S−1R is of the form S−1I

for some ideal I of R.

(iii) If P is a prime ideal of R and S ∩ P = ∅, then S−1P is a prime ideal of S−1R and ϕ−1
s (S−1P ) = P .

Proof: The proof of (i) is trivial.

For (ii): let a ∈ I and s ∈ S. Then, ϕs(a) ∈ J . So as
s ∈ J . Then, a

s = as
s ·

s
s2 ∈ J . Hence, S−1I ⊆ J .

Now let r
s ∈ J . Then, rs

s ∈ J , and rs
s = ϕs(r). Therefore, r ∈ ϕ−1

s (J) and r
s ∈ S

−1(ϕ−1
s (J)), and this

proves (ii).

For (iii): Since S ∩ P = ∅, then S−1P is a proper ideal. Let a
s ,

b
s′ ∈ S

−1R and suppose ab
ss′ ∈ S

−1P .

So, there exists p ∈ P such that ab
ss′ = p

t . Then, there exists t′ such that t′(abt − pss′) = 0. Hence,
abtt′ = pss′t′ ∈ P . So, abtt′ ∈ P . Since t, t′ ∈ S, they cannot be in the prime ideal. Hence either
a ∈ P or b ∈ P , and so either a

s or b
s′ is in S−1P . It remains to show that ϕ−1

s (S−1P ) = P .

Suppose that r ∈ R, and ϕs(r) ∈ S−1(P ). Then, rs
s = p

t for some s, t ∈ S and p ∈ P . Thus, there
exists t′ ∈ S such that (rst − ps)t′ = 0, and so rstt′ = pst′ ∈ P . Since s, t, t′ ∈ S, they’re not in P .
So, r ∈ P . �

Theorem III.4.11: There is a one-to-one correspondence:

{
prime ideals P of R such that P ∩ S = ∅

} P 7−→ S−1P -�
ϕ−1
S (J)←− [ J

{
prime ideals of S−1R.

}
Proof: The only thing we haven’t shown yet is that for J a prime ideal of S−1R, the ideal ϕ−1

S (J)
is prime. Let a, b ∈ R with ab ∈ ϕ−1

S (J). Then, ϕS(a)ϕS(b) = ϕS(ab) ∈ J and J is prime. So, either
ϕS(a) ∈ J or ϕS(b) ∈ J . Hence, either a ∈ ϕ−1

S (J) or b ∈ ϕ−1
S (J). �
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Special Case: Let P be a prime ideal of R and let S = RrP . Then, S is a multiplicative set. Here, tthe ring
S−1R is denoted by RP and called the localization of R at the prime ideal P . By the theorem, the prime
ideals of RP are in one-to-one correspondence with the prime ideals of R contained in P . Hence PP is the
unique maximal ideal of RP .

Definition: A local ring is a commutative ring with identity which has a unique maximal ideal.

Theorem III.4.14: Let R be a commutative ring with identity. The following are equivalent:

(i) R is a local ring.

(ii) All nonunits of R are contained in some proper ideal M .

(iii) The nonunits of R form an ideal.

Example: Let R = Z and p primes. Then, Z(p) = {r/s ∈ Q | p - s}.

Example: Consider the ring K[x1, . . . , xn] with maximal ideal M = (x1, . . . , xn). Then,

K[x1, . . . , xn]M = {f(x1, . . . , xn)/g(x1, . . . , xn) ∈ K(x1, . . . , xn) | g(0, . . . , 0) 6= 0}.
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1.5 Chapter VIII - Commutative Rings and Modules

1.5.1 Section VIII.1 - Chain Conditions

Definition: A module satisfies the ascending chain condition (abbreviated ACC ) if for every chain

A1 ⊂ A2 ⊂ · · ·

of submodules there exists n such that Ai = An for all i ≥ n, i.e. the chain stabilizes. Note that we are
checking only countable chains. These modules are called Noetherian modules.

Definition: A module satisfies the descending chain condition (abbreviated DCC ) if for every chain

B1 ⊃ B2 ⊃ · · ·

of submodules there exists n such that Bi = Bm for all i ≥ m. These modules are called Artinian modules.

Remark: Though these conditions appear symmetrical, they are not. In fact, the descending chain condition
is in some ways much more restrictive than the ascending chain condition. For example, the module Z satisfies
ACC but not DCC.

Definition: If R is a ring, then R is called left Noetherian/Artinian if and only if R as a left module over
itself is Noetherian/Artinian. Similarly for right Noetherian/Artinian.

Definition: A module satisfies the maximum (resp. minimum) condition if every nonempty set of
submodules has a maximal (resp. minimal) element, with respect to inclusion.

Theorem VIII.1.4: Let A be a module. Then A satisfies ACC if and only if A satisfies the maximum
condition. Additionally, A satisfies DCC if and only if A satisfies the minimal condition.

Proof: Let S be a nonempty set of submodule of A, and suppose ACC holds for A. Let A1 ∈ S .
If A1 is maximal then we’re done. Otherwise, there exists A2 ∈ S with A1 $ A2. If A2 is maximal
then we’re done. Otherwise, there exists A3 ∈ S such that A1 $ A2 $ A3. Repeat this process. If we
don’t find a maximal element then we have an infinite ascending chain, which violates ACC. So the
maximum condition holds.

Now let A satisfy the maximum condition. Consider the chain

A1 ⊆ A2 ⊆ A3 ⊆ · · ·

of submodules. Then, by the maximum condition, the set {Ai | i ∈ N} has a maximal element, and so
the chain stabilizes. Thus ACC holds.

The proof for the equivalence of DCC and the minimum condition is similar. �
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Theorem VIII.1.5: Consider the short exact sequence of modules

0 - A - B - C - 0.

Then, B satisfies ACC (resp. DCC) if and only if A and C satisfy ACC (resp. DCC).

Proof: See Hungerford.

Corollary VIII.1.7: If A1, . . . , An are modules, then

n⊕
i=1

Ai satisfies ACC/DCC if and only if each Ai does.

This follows from induction using the previous theorem.

Theorem VIII.1.8: If R is a left (resp. right) Noetherian (resp. Artinian) ring with 1, then every finitely
generated left (resp. right) R-module A satisfies ACC (resp. DCC).

Theorem VIII.1.9: A satisfies ACC if and only if every submodule of A is finitely generated. In particular,
a commutative ring R is Noetherian if and only if every ideal is finitely generated. (Recall that a finitely
generated ring can have non-finitely-generated ideals.) There is no analogous statement for DCC.

Proof:
(=⇒):

Let A satisfy ACC. Fix a submodule C of A. Consider the set of all finitely generated submodules
of C. By the maximal condition (which is equivalent to ACC), there is a maximal finitely
generated submodule B of A, i.e. any submodule of C that properly contains B is not finitely
generated. Let c ∈ C. Then, the submodule generated by B and c is finitely generated. So,
by maximality c ∈ B, and hence B = C so C is finitely generated. Since C was arbitrary, all
submodules of A are finitely generated. �

(⇐=):

Let every submodule of A be finitely generated. Let A1 ⊆ A2 ⊆ · · · be a chain of submodules of
A. Then,

⋃
Ai is a submodule A and hence also finitely generated by some elements a1, . . . , an.

For each ai, there exists some ji with ai ∈ Aji . Then, there exists k := max{ji} such that
ai ∈ Ak for all i, and so

⋃
Ai = Ak. Thus, A` = Ak for all ` ≥ k, i.e. the chain stabilizes. Since

the chain was arbitrary, A satisfies ACC. �

The second statement is an application of the first, in the case where R is an R-module over itself.
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Normal Series (modern terminology: filtration)

Definition: Let A be a module. A normal series is a sequence

0 ⊆ An ⊆ An−1 ⊆ · · · ⊆ A1 ⊆ A0 = A.

The quotients Ai/Ai+1 are called the factors. The length is the number of proper inclusions (i.e., the number
of nontrivial factors). From a given normal series we obtain a refinement by adding in terms to the series.
This refinement is a proper refinement if it increases the length.

Definition: We say that two normal series are equivalent if there is a one-to-one correspondence between
the nontrivial factors such that corresponding factors are isomorphic modules.

Definition: A composition series for A is a normal series in which each factor Ai/Ai+1 is a nonzero module
with no nonzero proper submodules.

Theorem VIII.1.10: Any two normal series of a module A have refinements that are equivalent. Any two
composition series are equivalent.

Theorem VIII.1.11: A module A has a composition series if and only if A satisfies both ACC and DCC.

Proof:
(=⇒):

Let A have a composition series, with some finite length n. If ACC or DCC fails, then we can
make a proper refinement of length n + 1. Since any two normal series have refinements that
are isomorphic, and any refinement of a composition series is not proper, this is a contradiction
(the refinements of the composition series of length n all have length n, and the refinements of
the normal series of length n + 1 all have length ≥ n + 1, so the two refinements can never be
equivalent). Thus, both ACC and DCC hold. �

(⇐=):

See Hungerford.

Example: Let D be a division ring. Then, show that Mn(D) satisfies both ACC and DCC (on left ideals).
Define

ei :=



0
. . .

1
. . .

0


with a 1 in the (i, i) entry. See book for rest.
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1.5.2 Section VIII.2 - Prime and Primary Ideals

In this section, unless stated otherwise, all rings are commutative and have an identity.

Definition: An ideal P of a ring is prime if ab ∈ P implies either a ∈ P or b ∈ P .

Definition: An ideal Q of a ring is primary if ab ∈ Q and a 6∈ Q then there exists k ∈ N such that bk ∈ Q.

Example: In Z, prime ideals are the ideals (p) where p is prime or zero. The ideal (pn) for n ≥ 2 is a
primary ideal which is not a prime ideal. The ideal (2332) is neither prime nor primary.

Remark: If R is a Principal Ideal Domain (hence a Unique Factorization Domain), then the primary ideals
are ideals (πn) for n ∈ N and π prime. We can state the Unique Factorization Property in terms of the
primary ideals: Let a = πe11 · · ·πerr for πi non-associate primes. Then, we can write

(a) = (πe11 ) · · · (πerr ) = (πe11 ) ∩ · · · ∩ (πerr ).

Definition: The set of prime ideals of a commutative ring A is called the spectrum of A, denoted spec(A).
We say a set S ⊆ spec(A) is closed if and only if there exists an ideal I such that

S = V (I) := {p ∈ spec(A) | p ⊇ I}.

We get a topology on A, called the Zariski topology.

Theorem VIII.2.2: Let S be a multiplicative subset of R and I an ideal such that S ∩ I = ∅. Then, there
exists an ideal P ⊇ I which is maximal relative to being disjoint from S. Moreover P is prime.

Theorem VIII.2.3: Let K be a subring of a commutative ring R and suppose P1, . . . , Pn are prime ideals
of R such that K ⊂ P1 ∪ P2 ∪ · · · ∪ Pn. Then, there exists i such that K ⊆ Pi.

Proof: We can assume that n ≥ 2 and for all i, K 6⊆
n⋃
j=1
j 6=i

Pj .

Then, for each i, there exists ai such that ai ∈ K r
n⋃
j=1
j 6=i

Pj . So, ai ∈ Pi.

Now, K 3 a1 +(a2 · · · an) ∈
n⋃
i=1

Pi. If a1 +(a2 · · · an) ∈ P1, then a2 · · · an ∈ P1, and hence some aj ∈ P1

for j ≥ 2, which is a contradiction. Thus, a1 +(a2 · · · an) ∈ Pj for some j ≥ 2, but this implies a1 ∈ Pj ,
also a contradiction. �

Proposition VIII.2.4: Let R be a commutative ring with identity and P an ideal which is maximal in the
set of all ideals of R which are not finitely generated. Then P is prime.

Proof: Suppose toward a contradiction that nonzero a, b ∈ R, ab ∈ P , but a 6∈ P and b 6∈ P . We
consider the ideals P + (a) and P + (b), which are ideals properly containing P , and so are finitely
generated by the maximality of P .

We can write P + (a) = {p1 + r1a, . . . , pn + rna} for pi ∈ P and ri ∈ R. Also, P + (b) = {p′1 +
r′1b, . . . , p

′
m + r′mb}, for p′i ∈ P and r′i ∈ R.
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Now let J := {r ∈ R | ra ∈ P}. J Is an ideal, and

(p′i + r′ib)(a) = p′ia︸︷︷︸
∈P

+ r′iba︸︷︷︸
∈P

so (p′i + r′ib) ∈ J , thus P + (b) ⊆ J . By the maximality of P , J is finitely generated.

Suppose J = (j1, . . . , jk). Let x ∈ P . Then, x ∈ P + (a), and so we can write

x =

n∑
i=1

si(pi + ria) for some si ∈ R.

Now, (∑
siri

)
a = x−

∑
sipi ∈ P

and so
n∑
i=1

siri ∈ J.

Thus we can write
n∑
i=1

siri =

k∑
`=1

t`j`.

Hence,

x =
∑

sipi +
∑

t`j`a,

i.e.,
x ∈ (p1, . . . , pn, j1a, . . . , jka).

Since x was arbitrary and p1, . . . , pn, j1a, . . . , jka are independent of x, this shows that

P = (p1, . . . , pn, j1a, . . . , jka),

which is a contradiction. �

Definition: Let I be an ideal in a commutative ring R. The radical of I, denoted rad(I) is the intersection
of all prime ideals containing I. If I = (0), then is radical is called the nilradical.

Theorem VIII.2.6: Let I be an ideal. Then rad(I) = {x ∈ R | ∃n ∈ N : xn ∈ I}.

Proof: First we show ⊇. Suppose xn ∈
⋂
P⊇I

P . Then, xn ∈ P for all prime ideals P . Since each P is

prime, x ∈ P for all prime ideals P . Thus, x is in the intersection of all prime ideals.

Next we show ⊆. Suppose x ∈
⋂
P⊇I

P and suppose for a contradiction that xn 6∈ I for all n¿ Then,

S = {xn | n ∈ N} is a multiplicative set such that S ∩ I = ∅. By a theorem above (pg. 5?), we have
that there exists a prime ideal P ′ such that P ′ ∩S = ∅, which is a contradiction since x is in all prime
ideals. �

Theorem VIII.2.7: If I1, . . . , In are ideals of R, then

(i) rad(rad(I)) = rad(I),

(ii) rad(I1I2 · · · In) = rad (
⋂

(Ij)) =
⋂

(rad(Ij)),

(iii) rad(Im) = rad(I).
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Remark: Observe that powers of prime ideals are primary ideals, but primary ideals may not be powers of
prime ideals. Additionally, powers of prime ideals may not be primary.

Example: Let R = F [x, y] for a field F . Let P := (x, y). Then P is a prime ideal. Now, P 2 = (x2, xy, y2).
Consider the ideal between them Q := (x2, y), so that P % Q % P 2. We claim that Q is a primary ideal but
not the power of a prime ideal. If Q = P r1 , then Q ⊆ P1. Hence the only possibility for P1 is P , but this is
not possible.

Example: Consider C[x, y, z]/(xy−z2) and the prime ideal P = (x, z) (which is prime because R/P ∼= C[y],
which is an integral domain). Now, P 2 = (x2, xz, z2) = (x2, xz, xy). Note that z2 = xy because we are in the
quotient by the polynomial xy−z2. Now, xy ∈ P 2, but x 6∈ P 2 and yn 6∈ P 2 for all n. Thus, P 2 is not primary.

Theorem VIII.2.9: If Q is primary, then rad(Q) is prime.

Proof: Suppose that ab ∈ rad(Q) and a 6∈ rad(Q). Then, there exists n such that anbn ∈ Q but
an 6∈ Q. Hence there exists m such that bnm ∈ Q since Q is primary. Therefore, b ∈ rad(Q), and so
rad(Q) is a prime ideal. �

Definition: Let P be a prime ideal. We say that an ideal Q is P -primary if Q is primary and rad(Q) = P .
We also say that the prime ideal P is associated with the primary ideal Q.

Theorem VIII.2.10: Let Q and P be ideals. Then, P is prime and Q is P -primary if and only if:

(i) Q $ P $ rad(Q),

(ii) If ab ∈ Q and a 6∈ Q, then b ∈ P .

Proof: Suppose that (i) and (ii) hold. Suppose ab ∈ Q and a 6∈ Q. Then by (ii), b ∈ P and so by (i),
b ∈ rad(Q). So, there exists n such that bn ∈ Q. Thus, Q is primary.

It remains to show that rad(Q) ( P . Let b ∈ rad(Q) and let n be the smallest number such that
bn ∈ Q. If n = 1, then b ∈ Q ⊆ P . If n > 1, then bn−1b ∈ Q and bn−1 6∈ Q, so by (ii), b ∈ P . Hence,
rad(Q) ⊆ P . �

Theorem VIII.2.11: If Qi for i = 1, . . . , n are P -primary, where P is a prime ideal, then
⋂

(Qi) is P -
primary.

Proof: Let Q =
⋂

(Qi). Then, rad(Q) =
⋂

(rad(Qi)) =
⋂

(P ) = P by a theorem from earlier. Now
let ab ∈ Q and a 6∈ Q. We need to show that b ∈ P . Now, ab ∈ Qi for all i, and so ab ∈ P . Thus,
b ∈ P . Hence Q is P -primary by the above theorem. �
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1.5.3 Section VIII.3 - Primary Decomposition

Let I be an ideal. We say that I has a primary decomposition if we can write I = Q1 ∩Q2 ∩ · · · ∩Qr as the
intersection of finitely many primary ideals Qi.

Definition: If for some i we have Qi ⊇
⋂
j 6=i

Qj , then
⋂
j

Qj =
⋂
j 6=i

Qj , we say that Qi is redundant. We’ll say

that a primary decomposition is irredundant (or reduced) if

(a) No Qi is redundant.

(b) The rad(Qi) are distinct.

We assume that R is a commutative ring with 1 and B is an R-module.

Definition: A proper submodule A of B is primary if

r ∈ R, b 6∈ A, rb ∈ A =⇒ ∃n, rnB ⊆ A.

This defines primary submodules in a way that makes primary ideals a special case.

Theorem VIII.3.2: Suppose that A is a primary submodule of B. Then, the set QA := {r ∈ R | rB ⊆ A}
is a primary ideal.

Proof: By definition, we have A 6= B, and so 1 6∈ QA. Thus, QA 6= R.

Suppose rs ∈ QA with s 6∈ QA. Then, sB ⊆ A, and so there exists b ∈ B with sb 6∈ A, but r(sb) ∈ A.
Hence there exists n such that rnB ⊆ A, i.e., rn ∈ QA. Thus, QA is primary. �

Definition: Let R, B, A, QA be as above. Let P = rad(QA) = {r ∈ R | ∃n, rnB ⊆ A}, a prime ideal.
Then we say that A is P -primary.

Definition: Let R, B as above. Let C be a submodule of B. Then, C has a primary decomposition if and
only if C = A1 ∩ · · · ∩An, where the Ai are primary submodules.

Definition: We say that Pi is an isolated prime if and only if it is minimal with respect to inclusion on the
set {Pi}ni=1. The others are called embedded primes.

Theorem VIII.3.5: Let R, B, and C be as above. Suppose that

C = A1 ∩ · · · ∩Ak = A′1 ∩ · · · ∩A′s

are two reduced primary decompositions. Then, r = s and (after reordering) Pi = P ′i . If Pi is isolated, then
Ai = A′i.

Proof: Consider the set {P1, . . . , Pk, P
′
1, . . . , P

′
s}. Assume that P1 is maximal among these.

We now show that Pi = P ′j for some j. Suppose toward a contradiction that this is not the case. Then,
by the maximality of P1,we have that P1 6⊆ P ′j for all j. By the contrapositive of Theorem 2.3, we
have that

P1 6⊆ (P2 ∪ · · · ∪ Pk ∪ P ′1 ∪ · · · ∪ P ′s) .

So, there exists r ∈ P1 such that r 6∈ Pi for all i ≥ 2 and r 6∈ P ′j for 1 ≤ j ≤ s.

Now, A1 is P1-primary, so there exists n such that rnB ⊆ A. Using this n, let C∗ = {x ∈ B | rnx ∈ C}.
If k = 1, then C = A1 and so C∗ = B. We now claim that for k ≥ 1, C∗ = C and that for k > 1,
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C∗ = A2∩· · ·∩Ak. These two facts will then be a contradiction because we assumed that the primary
decompositions were reduced.

First, for k ≥ 1, it’s clear that A2 ∩ · · · ∩Ak ⊆ C∗: taking any element on the left and multiplying by
rn, the result is in C, and so the element is in C∗. Additionally, A′1 ∩ · · · ∩A′s = C ⊆ C∗.

Next we show that C∗ ⊆ A2 ∩ · · · ∩ Ak. Suppose that x 6∈ Ai for i ≥ 2. Then, rnx 6∈ Ai since if
rnx ∈ Ai, then because Ai is primary, we would have that some power (rn)m = rnm would map B
into A, which would mean rn ∈ Pi since Ai is Pi-primary, and hence r ∈ Pi since Pi is prime, which
is false.

So, rnx 6∈ C, and thus x 6∈ C∗. Therefore, C∗ ⊆ A2 ∩ · · · ∩ Ak. Similarly, C∗ ⊆ A′1 ∩ · · · ∩ A′s = C.
Hence C∗ = C for k ≥ 1 and C∗ = A2 ∩ · · · ∩ Ak if k > 1. If k = 1 then we have B = C which is a
contradiction. If k > 1, then C = A2 ∩ · · · ∩ Ak contradicts the assumption that the decompositions
were reduced. Hence, we have proved the claim that, without loss of generality, P1 = P ′1.

We now proceed by induction on k. We first claim that if k = 1, then s = 1. Suppose s > 1. Then,
A′1 ∩ · · · ∩A′s = A1. Consider the corresponding prime ideals {P ′1, P ′2, . . . , P ′s, P1}. if r ∈ P1 then there
exists m with rmB ⊆ A1 = A′1 ∩ · · · ∩ A′s ⊆ A′1. So, rmB ⊆ A′1 and so r ∈ P1’, which means that
r ∈ P ′j for all j. Thus P1 is not maximal in that set, and we can pick without loss of generality that
P ′1 is maximal. The previous argument shows that P ′1 = P1 ⊆ P ′2. This is a contradiction, and so if
k = 1 then s = 1.

Now assume that k > 1 and that the theorem holds for all submodules with a reduced primary
decomposition of less than k terms. Let r ∈ P1. So, there exists n such that rnB ⊆ A1. Define
C∗ := {x ∈ B | rnx ∈ C}. It’s clear that A2∩A3∩· · ·∩Ak ⊆ C∗. Next we claim that C∗ ⊆ A2∩· · ·∩AK .

Suppose that x 6∈ Aj , with j ≥ 2. Then, rnx 6∈ Aj , because if rnx ∈ Aj then since A1 is primary, then
there exists m such that (rn)mB ⊆ Aj and so r ∈ Pj , which is a contradiction. Since x 6∈ Aj , we have
that rnx 6∈ C and so x 6∈ C∗. Therefore, C∗ = A2 ∩ · · · ∩Ak. Similarly, C∗ = A′2 ∩ · · · ∩A′s. Hence

C∗ = A2 ∩ · · · ∩Ak = A′2 ∩ · · · ∩A′s

is a reduced primary decomposition of C∗. By the induction hypothesis, we have that k = s and that
Pi = P ′i with the correct reordering. This completes the first part of the proof.

It remains to show that if Pi is isolated, then Ai = A′i. Suppose Pi is isolated. Without loss of
generality, renumber so that i = 1. Since P1 is isolated, for each i 6= 1, there exists ti ∈ Pi r P1.
Define t := t2 · · · tk. Then, t ∈ Pi for i 6= 1 and t 6∈ P1. Since ti ∈ Pi, there exists ni such that
tniB ⊆ Ai. By a similar argument, for each i 6= 1, there exists mi such that tmiB ⊆ A′i. Let
n := max{n2, . . . , nk,m2, . . . ,mk}. Then, tnB ⊆ Ai for all i ≥ 2 and tnB ⊆ A′i for all i ≥ 2.

Let D = {x ∈ B | tnx ∈ C}. We claim that D = A1 = A′1. If x ∈ A1, then consider tnx. Since A1 is a
module, tnx ∈ A1. But by the above argument, tnx ∈ Ai for i ≥ 2, and so tnx ∈ A1 ∩ · · · ∩ Ak = C.
Thus, A1 ⊆ D.

If x ∈ D, then tnx ∈ C ⊂ A1. However, t 6∈ P1. Suppose x 6∈ A1. Then, since tnx ∈ A1 and A1 is
primary, there exists some power ` such that (tn)`B ⊆ Ai, whence t ∈ P1, which is a contradiction.
Therefore, x ∈ A1, and so D ⊆ A1. Thus we conclude that D = A1. By an identical argument,
D = A′1, and so A1 = A′1, which completes the proof. �

Theorem VIII.3.6: Suppose R is a commutative ring with 1 and B is an R-module satisfying ACC on
submodules. Then, every submodule A( 6= B) has a reduced primary decomposition. In particular, if R is a
Noetherian commutative ring with 1, then all finitely generated modules and all proper ideals have reduced
primary decompositions.

Proof: Suppose toward a contradiction that there exists an R-module B such that the set S of
proper submodules which do not have a primary decomposition is nonempty. By ACC, the set S has
a maximal element C. In particular, C is not primary. So, there exists r ∈ R and b ∈ B such that
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b 6∈ C, rb ∈ C, and rnB 6⊆ C for all n ∈ N. Fix r and b. Define Bm := {x ∈ B | rmx ∈ C}. Clearly,
B1 ⊆ B2 ⊆ B3 ⊆ · · · , which is an ascending chain of modules. By ACC, there exists k such that
Bk = B` for all ` ≥ k. It’s clear that Bk $ B. FIx this k.

Let D := {x | x = rky + c, for some y ∈ B and c ∈ C}. Now, C ⊆ Bk ∩D. We now prove the reverse
inclusion. Let x ∈ Bk ∩D. Then we can write x = rky + c for some y ∈ B and c ∈ C. Since x ∈ Bk,
we can write rkx = r2ky + rkc and so y ∈ B2k = Bk. Thus, rky ∈ C, and hence x ∈ C. Therefore,
C = Bk ∩D.

It remains to prove that Bk and D are proper submodules of B which contain C properly, i.e.,

C $ Bk $ B,

C $ D $ B.

We have already shown the upper-right inclusion is proper.

Recall that we have r ∈ R and b ∈ B with rb ∈ C and b 6∈ C such that rnB $ C for all n ∈ N. Hence,
this b ∈ Bk r C, which proves the upper-left inclusion is proper.

If D ⊆ C, then rkB ⊆ C, which is a contradiction. This proves that the lower-left inclusion is proper.

Lastly, if D = B, then we can write b = rky + c with our b above. Then,

rb = rk+1y + rc.

Well, rb ∈ C and rc ∈ C, so this implies that rk+1y ∈ C. Thus, y ∈ Bk+1 = Bk and so rky ∈ C, and
so b ∈ C, which is a contradiction. This proves that the lower-right inclusion is proper.

By the maximality of C, we have that Bk and D have primary decompositions. Since C = Bk ∩ D,
we have that C has a primary decomposition, which is a contradiction. �
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1.5.4 Section VIII.4 - Noetherian Rings and Modules

We are now equipped to prove some classical theorems.

Theorem VIII.4.1: (I. S. Cohen) Let R be a commutative ring with 1. Then, R is Noetherian if and only
if every prime ideal is finitely generated.

Proof: Since every ideal is finitely generated in a Noetherian ring, one direction is obvious.
Conversely, suppose that every prime ideal is finitely generated. Let S := {ideals of R which are
not finitely generated}. Suppose toward a contradiction that S 6= ∅. By Proposition 2.4, a maximal
element of the set S will be prime, which is a contradiction. Such a maximal element must exist by
Zorn’s Lemma on the set S. Hence, S = ∅, so all ideals of R are finitely generated, and thus R is
Noetherian. �

Definition: If B is an R-module, then the annihilator of B is the ideal I := {r ∈ R | ∀b ∈ B, rb = 0}.

Lemma VIII.4.2: Let B be a finitely generated R-module and let I be the annihilator of B in R. Then, B
satisfies ACC (resp. DCC) if and only if R/I is a Noetherian (resp. Artinian) ring.

Proof: There is a natural way that B is an R/I module by (r + I)b = rb. If R/I is Noetherian, then
B is a finitely generated module over a Noetherian ring, and so satisfies ACC. Note that R-submodules
of B are the same as R/I-submodules of B. So, ACC on R/I-submodules of B is equivalent to ACC
on R-submodules of B. Similarly for DCC.

Conversely, suppose B satisfies ACC. Write B = Rb1 + · · · + Rbn for bi ∈ B. Let Ij denote the

annihilator of Rbj . Then, I =

n⋂
i=1

Ij .

We have a monomorphism

R/I −→ R/I1 × · · · ×R/In

of R-modules. Also, as R-modules

R/Ij ∼= Rbj

by the mapping (r+Ij) 7→ (rbj+Ij). Thus, R/I satisfies ACC, and hence R/I is Noetherian. Similarly
for DCC. �

Lemma VIII.4.3: Let P be a prime ideal in a commutative ring with 1. If C is a P -primary submodule of
a Noetherian R-module A, then there exists m ∈ N such that PmA ⊆ C.

Proof: Let I be the annihilator of A in R and set R := R/I. For r ∈ R, write r for r + I ∈ R. Now,

P = {x ∈ R | ∃n xnA ⊆ C}.

So, I ⊆ P , and thus P := P/I is an ideal of R. By the Third Isomorphism Theorem, R/P ∼= R/P ,
and since R/P is an integral domain, so is R/P . Therefore, P is a prime ideal of R.

Note that rnA ⊆ C if and only if rnA ⊆ C, for all r ∈ R and n ∈ N.

Now we check that C is a primary R-module. Suppose r+ I = r ∈ R and a ∈ ArC such that ra ∈ C.
Then, ra ∈ C and so there exists n such that rnA ⊆ C, i.e., rnA ⊆ C. Thus, C is primary. It is clear
that C is in fact P -primary.

We have that R is Noetherian and that C is a P -primary submodule of A¿ Since R is Noetherian,
we have that P is finitely generated as an ideal. Let p1, . . . , ps be these generators. By definition of
P -primary, there exists ni such that pi

niA ⊆ C. If m = n1+· · ·+ns, then P
m
A ⊆ C, i.e., PmA ⊆ C. �
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Theorem VIII.4.4: (Krull Intersection Theorem) Let R be a commutative ring with 1, I an ideal of R and

A a Noetherian R-module. If B :=
⋂
n≥1

InA, then IB = B.

Proof: In the trivial case, IB = A. But, we also have IB ⊆ B ⊆ A. Hence B = A = IB.

Now, assume IB 6= A. Consider a (reduced) primary decomposition of IB:

IB = A1 ∩ · · · ∩As

where Ai is aPi-primary submodule of A. We want to show B = A1 ∩ · · ·As. The ⊇ containment is
trivial, and so all we need to show is that B ⊆ Ai for all i. Now fix a particular i.

Suppose that I ⊆ Pi. Then, by the above Lemma, there exists mi such that Pmi
i ⊆ Ai. Now,

B =
⋂

(InA) ⊆ ImiA ⊆ Pmi
i A ⊆ Ai

and we’re done.

Otherwise, suppose that I ⊆ Pi. Let r ∈ I rPi. Suppose that B 6⊆ Ai. Then, there exists b ∈ BrAi.
Now, rb ∈ IB ⊆ Ai. Therefore, there exists m such that rmA ⊆ Ai. Hence, r ∈ Pi, which is a
contradiction. �

Lemma VIII.4.5: (Nakayama) Let J be an ideal in a commutative ring with 1. Then, the following are
equivalent:

(i) J is contained in every maximal ideal.

(ii) 1− j is a unit for every j ∈ J .

(iii) If A is a finitely generated R-module such that JA = A, then A = 0.

(iv) If B is a submodule of a finitely generated R-module A such that JA+B = A, then A = B.

Proof of (i) =⇒ (ii)

Let j ∈ J . If 1 − j is not a unit, then there exists a maximal ideal M with 1 − j ∈ M . Since
j ∈M , we have that 1 ∈M , which is a contradiction. �

Proof of (ii) =⇒ (iii)

Let A be a finitely generated module such that JA = A. Let a1, . . . , an be a generating set of
smallest possible size. Now, JA = {j1a1 + · · · + jnan | ji ∈ J}, and so since JA = A, we can
write and rearrange:

a1 = j1a1 + j2a2 + · · ·+ jnan

(1− j)a1 = j2a2 + · · ·+ jnan.

Recall that by hypothesis, 1 − j is a unit. Hence a1 is in the R-submodule generated by
a2, · · · , an, which contradicts the fact that we picked the generating set of minimal size. Hence,
the generating set must have size 0, i.e., A = 0. �

Proof of (iii) =⇒ (iv)

Let B be a submodule of a finitely generated R-module A such that JA + B = A. Note that
A/B is finitely generated, and J(A/B) = (JA + B)/B = A/B. Hence by (iii), we have that
A/B = 0, i.e., A = B. �
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Proof of (iv) =⇒ (i)

Let M be a maximal ideal. Let A := R and B := M . We want to prove that J ⊆M . Suppose
toward a contradiction that it’s not. Then, J + M = R, i.e., JR + M = R. By applying (iv),
we have that M = R, which is a contradiction. Hence J is contained in every maximal ideal. �

Remark: The Nakayama Lemma is frequently applied on a local ring (a ring with a unique maximal
ideal), with J being the unique maximal ideal.

Proposition VIII.4.6: Let J be an ideal of a commutative ring with identity. Then, J is contained in every

maximal ideal if and only if for every Noetherian R-module A, we have
⋂
n≥1

JnA = 0.

Proof:
(=⇒):

Set B :=
⋂
n≥1

JnA. By the Krull Intersection Theorem, we have that JB = B.

Now, by the Nakayama Lemma, we conclude B = 0. �

(⇐=):

If R = 0, the theorem is trivial. So, assume R 6= 0. Let M be a maximal ideal of R. Let
A := R/M 6= 0. Note that R/M is simple and so A is Noetherian. By hypothesis, we have

that
⋂
n≥1

JnA = 0. Since JA ⊆ A, we have that either JA = A or JA = 0. If JA = A, then

JnA = A, i.e., A =
⋂
n≥1

JnA = 0, which is a contradiction. Hence JA = 0, i.e., JR ⊆ M , i.e.,

J ⊆M . Since M was arbitrary, J is in every maximal ideal. �

Corollary VIII.4.7: Let R be a Noetherian local ring with maximal ideal M . Then,
⋂
n≥1

Mn = 0.

Proof: Set J := M and A := R in the previous proposition. �

Remark: The above corollary is what is usually called the Krull Intersection Theorem by most
commutative algebraists. Hungerford rearranges the naming to make it easier to refer to what we call
the Krull Intersection Theorem.

Remark: Here is an example of the significance of Corollary 4.7: Let R be a commutative ring and I an
ideal. We can define a topology on R by taking the powers of I as a basis of open neighborhoods of 0, i.e.,
a subset U ⊆ R is open if and only if for all x ∈ U , there exists n such that x+ Un ⊆ U . This is called the
I-adic topology.

Example: Let F be a field. Let R := F [x] and let I := (x). Then

a ∈ b+ (xn) if and only if xn | a− b.

We are defining a point to be close to zero if that point is divisible by a high power of x. We can turn
this toplogy into a metric space by defining the distance between two points to be small if their difference is
divisble by a high power of x. The completion of this topology is F [[x]].
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Example: Let R := Z and I := (p) for a prime p. This gives the p-adic topology. The completion of this
topology is Zp, the p-adic integers.

Proposition VIII.4.8: Let R be a local ring with maximal ideal M . Then every finitely generated projective
R-module is free.

Proof: Let P be a finitely generated projective module. Consider

F � P

with F is free, so that we can pick a basis {x1, . . . , xn} for F of minimal size. Then, π(x1), . . . , π(xn)
generate P . Denote K := Ker(π). We now show that K ⊆MF .

If K 6⊆MF , then there exists k ∈ K such that k 6∈MF . Write

k = r1x1 + · · ·+ rnxn

and without loss of generality, let r1 6∈M . Now,

x1 − r−1
1 k = −r−1

1 r2x2 − · · · − r−1
1 rnxn.

Thus,
π(x1) = −r−1

1 r2π(x2)− · · · − r−1
1 rnπ(xn)

So, P is generated by π(x2), . . . , π(xn), contradicting the minimality of the generating set. So,
K ⊆MF . Now, consider the short exact sequence

0 - K - F - P - 0

we have that K ⊕ P ∼= F by the isomorphism (k, 0) 7→ K. So, F = K ⊕ P ′, where P ′ maps
isomorphically to P under π

∣∣
P ′

. Hence F ⊆MF + P ′.

Let u ∈ F . Write u =
∑

(mivi) + pi for mi ∈M , vi ∈ F , and pi ∈ P ′. In F/P ′, we have that

u+ P ′ =
∑

(mivi) + P ′,

and so
F/P ′ = M(F/P ′).

By the Nakayama Lemma, F/P ′ = 0 and F = P ′. Therefore, F ∼= P . �

Theorem VIII.4.9: (Hilbert Basis Theorem) Let R be a commutative Noetherian ring with identity. Then
R[x] is Noetherian.

Proof: We show that every ideal of R[x] is finitely generated (as an ideal). Let J be an ideal of R[x].
For each n ≥ 0, let

In := {0} ∪ {r ∈ R | r is a leading coefficient of a polynomial f ∈ J of degree n}.

Observe that In is an ideal because J is an ideal. If r ∈ In, then r is the leading coefficient of some
f ∈ J of degree n. Then, r is also the leading coefficient of xf ∈ J of degree n+ 1. Hence r ∈ In+1.

Therefore, we have an ascending chain of ideals in R:

I0 ⊆ I1 ⊆ I2 ⊆ · · · .

By ACC, since R is Noetherian, there exists t such that In = It for all t > n. Also, each In is finitely
generated.

Suppose In = (rn,1, rn,2, . . . , rn,in) for n = 0, 1, . . . , t.
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For each rn,j with 0 ≤ n ≤ t and 1 ≤ j ≤ in, choose fn,j ∈ J of degree n having rn,j as leading
coefficient. We claim that

J =
(
X
)
, X := {fn,j | 0 ≤ n ≤ t, 1 ≤ j ≤ in}.

Firstly, it’s clear that (X) ⊆ J . Let g ∈ J be of degree k. We show by induction on K that g ∈ (X).

Suppose k = 0. Then, g ∈ I0 ⊆ X, since f0,j = r0,j .

Assume k > 0 and that all polynomials in J of degree < k lie in (X). Let r be the leading coefficient
of g. Note that r 6= 0 since deg(g) > 0.

Case 1: k ≤ t. Then, r ∈ Ik, so we can write r = s1rk,1 + · · ·+ sikrk,ik . Then, s1fk,1 + · · ·+ sikfk,ik
has leading coefficient r and degree k. Hence,

deg(g − s1fk,1 + · · ·+ sikfk,ik)) < k

and induction applies.

Case 2: k > t. Then, r ∈ Ik = It. We can write r = s1rt,1 + · · ·+ sitrt,it , where rt,1 are the leading
coefficients of polynomials ft,j of degree t in J . Now, s1ft,1 + · · · + sitft,it has degree t and leading
coefficient r. Hence,

deg(g − xk−t(s1ft,1 + · · ·+ sitft,it)) < k

and induction applies. �

Corollary: If R is a commutative Noetherian ring with identity, then R[x1, x2, . . . , xn] is Noetherian.

Proposition VIII.4.10: Let R be a commutative Noetherian ring with identity. Then R[[x]] is Noetherian.

Proof: We show that every prime ideal is finitely geneated, and then use the theorem of I. S. Cohen
which says that if all the prime ideals of a ring are finitely generated, then the ring is Noetherian.

Let P be a prime ideal of R[[x]]. Consider the surjective ring homomorphism R[[x]] → R defined by∑
aix

i 7→ a0. Let P ∗ be the image of P in R. Then, P ∗ is an ideal of R, and so is finitely generated.
Suppose P ∗ = (r1, . . . , rn). Let fi ∈ P be chosen such that fi has constant term ri for i = 1, . . . , n.

Case 1: x ∈ P . In this case, we claim ri ∈ P and that P = (x, r1, . . . , rn). Well, since x ∈ P , we

can write fk = rk +

∞∑
i=1

aix
i and since fk ∈ P and

∞∑
i=1

aix
i ∈ P , we have that ri ∈ P . Now, let

g ∈ P . Then, g − (constant term of g) ∈ (x), and the constant term of g is in (r1, . . . , rn). Therefore,
g ∈ (x, r1, . . . , rn), and so P = (x1, r1, . . . , rn).

Case 2: x 6∈ P . We claim that P is generated by f1, . . . , fn. Let h =

∞∑
i=0

cix
i ∈ P . Write c0 =

t1r1 + · · ·+ tnrn. Now, h−
n∑
i=1

tifi = xh∗ for some h∗ ∈ R[[x]]. The left-hand side is in P , and x 6∈ P ,

so since P is prime, h∗ ∈ P . Hence for each h ∈ P , we can find t1, . . . , tn ∈ R and h∗ ∈ P such

that h =

n∑
i=1

tifi + xh∗. (This uses the Axiom of Choice.) Let λ : P → P be defined by λ(h) = h∗.

Let g ∈ P . Then, by the Recursion Theorem, there exists ϕ : N → P such that ϕ(0) = g,
ϕ(k + 1) = λ(ϕ(k)) = ϕ(k)∗ for all k. Let tk,i ∈ R be the coefficients in

hk =

n∑
i=1

tk,ifi + xhk+1.
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Let gi :=
∑∞
k=0 tk,ix

k for 0 ≤ i ≤ n. Now

g1f1 + · · ·+ gnfn =

n∑
i=1

( ∞∑
k=0

(tk,ix
k)

)
fi

=

∞∑
k=0

(
n∑
i=1

(tk,ifi)

)
xk

=

∞∑
k=0

(
(hk − xhk+1)xk

)
.

So, the sum on the left-hand side of gifi equals the power series on the right-hand side, which is a
telescoping sum. There, for each m ≥ 0, the coefficient of xm in g1f1 + · · ·+gnfn equals the coefficient
of xm on the right-hand side, which equals the coefficient of xm in h0 − xm+1hm+1, which equals
g− xm+1hm+1, which equals the coefficient of xm in g. Hence g = g1f1 + · · ·+ gnfn, which proves our
claim of generators. Hence P is finitely generated.

So, all prime ideals are finitely generated, i.e., R[[x]] is Noetherian. �
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1.5.5 Section VIII.5 - Ring Extensions

In this section, all rings are commutative.

Definition: If S is a ring with identity and R is a subring containing the identity, then we say that S is a
ring extension of R.

Definition: Let S be an extension ring of R and let s ∈ S. If there is a monic polynomial f(x) ∈ R[x] such
that s is a root of f(x), then s is said to be integral over R. If every element of S is integral over R, then we
say that S is an integral extension of R.

Remark: Let R ⊂ S and consider the homomorphism evs : R[x] → S defined by evs(r) = r for all r ∈ R
and evs(x) = s. This is the “evaluation at s” map. Now, s is a root of f(x) if and only if f(x) ∈ Ker(evs).

Theorem IX.5.3: Let S be an extension of R and let s ∈ S. Then, the following are equivalent:

(i) s is integral over R.

(ii) R[s] (which is the subring of S generated by R,S) is a finitely generated R-module.

(iii) There exists a subring T of S containing 1 and R[s] which is a finitely generated R-module.

(iv) There exists an R[s]-submodule B of S which is finitely generated as an R-module and whose annihilator
in R[s] is zero.

Remark: The progression of statements [(i) ⇒ (ii)], [(ii) ⇒ (iii)], [(iii) ⇒ (iv)] appears to be a
weakening, and these statements are easy to prove. The real work will be in proving [(iv)⇒ (i)], which
shows that this is not really a weakening at all.

Proof: Assume (i). Then, there exists ai ∈ R such that

sn + an−1s
n−1 + · · ·+ a1s+ a0 = 0.

So for sk with k ≥ n we can write sk in terms of the si with i < n. So the module R[s] is generated
as an R-module by the set {1, s, . . . , sn−1}. Hence (ii) holds.

Assume (ii). If R[s] is a finitely generated R-module, then we can set T := R[s] and since R[s] contains
the identity, (iii) holds.

Assume (iii). Let T be as in (iii). Then

AnnR[s](T ) = {x ∈ R[s] | ∀t ∈ T, xt = 0}.

But, 1 ∈ T , and clearly x1 = 0 implies x = 0. Therefore AnnR[s](T ) = {0}. Hence (iv) holds.

Assume (iv). Let B be generated over R by b1, . . . , bn. Since B is an R[s]-module, we have sbi ∈ B
for all i = 1, 2, . . . , n. So, we can write

sb1 = r1,1b1 + r1,2b2 + · · ·+ r1,nbn

sb2 = r2,1b1 + r2,2b2 + · · ·+ r2,nbn

...
...

sbn = rn,1b1 + rn,2b2 + · · ·+ rn,nbn

Let M denote the matrix (ri,j)
n
i,j=1. Then, M − sIn is an n× n matrix with coefficients in R[s]. The

equations can be written

(M − sIn)

 b1
...
bn

 =

 0
...
0

 . (†)
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Remark: Let A be an n× n matrix. Let Aij denote the matrix you get when you remove the
ith row and the jth column. Set A∗ to be the matrix whose i, j entry is (−1)i+jAji. Then, we
have the formula A∗ · A = (det(A))In. This is from other algebra courses, and is sometimes
called Cramer’s Rule. From this, we have that if A · b = c, then A∗A · v = A∗ · c and hence
(det(A))In · b = A∗ · c.

So, from (†), we have that if d := det(M − sIn) ∈ R[s], then we have

d ·

 b1
...
bn

 =

 0
...
0


i.e., dbi = 0 for all i = 1, 2, . . . , n. Hence d ∈ AnnR[s](B) = {0}, i.e., d = 0. But ±d is a monic
polynomial of degree n in s with coefficients in R. Hence, s is integral over R. �

Corollary: If S is a ring extension of R and S is finitely generated as an R-modoule, then S is an integral
extension of R.

Theorem: If S is an extension of R and s1, . . . , sn ∈ S are integral over R, then R[s1, . . . , sn] is a finitely
generated R-module and an integral extension of R.

Proof: (Sketch) Consider

R ⊂ R[s1] ⊂ R[s1, s2] ⊂ · · · ⊂ R[s1, . . . , sn].

And note that each extension is integral and we can set up appropriate generators.

Theorem IX.5.6: If T is an integral extension of S and S is an integral extension of R, then T is an integral
extension of R.

Remark: Recall that if R is Noetherian, then R[x] is Noetherian. Hence R[x1, . . . , xn] is Noetherian. (This
is the Hilbert Basis Theorem.) So if A is an R-algebra which is finitely generated as an R-algebra, then
A ∼= R[x1, . . . , xn]/I for some ideal I, and hence A is Noetherian. In particular, if A is finitely generated as
an R-module, then A is Noetherian.

So, if B is a subring of A, and A is finitely generated as a module over B, and if B is Noetherian, then A is
Noetherian. The converse of this theorem is true and is called the Eakin-Nagata Theorem. The proof of
this converse is not in the book, but there is an easy version of it due to E. Formanek.

Integral Extensions

Theorem: Let S be an extension ring of R and let R̂ be the set of all elements of S that are integral over
R. Then, R̂ is a ring containing every subring of S which is integral over R.

Proof: Let s, t ∈ R̂. Then, s, t ∈ R[s, t] and so s − t ∈ R[s, t] and st ∈ R[s, t]. Since s, t are integral
over R, we have that R[s, t] is an integral extension of R. Therefore, s− t and st are integral over R.

This shows that R̂ is a ring. �

Definition: R̂ is called the integral closure of R in S. We say that an integral domain R is integrally closed
if R equals the integral closure of R in its field of fractions.

Example: Z is integrally closed (in the rational field Q).
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Example: Z is not integrally closed in C, because i satisfies x2 + 1 ∈ Z[x], so i is integral over Z.

Exercise: Every Unique Factorization Domain is integrally closed.

Theorem: Let T be a multiplicative subset of an integral domain R such that 0 6∈ T . If R is integrally
closed, then T−1R is integrally closed.

Remark: Letting Q(X) denote the field of fractions of an arbitrary ring X, we can think of the ring
T−1R as lying between R and Q(R), i.e.,

R ⊂ T−1R ⊂ Q(R).

Additionally, it’s clear that Q(T−1R) = Q(R).

Proof: Let u ∈ Q(R) be integral over T−1R. Then, we can write

un +

(
rn−1

sn−1

)
un−1 + · · ·+

(
r1

s1

)
u+

(
r0

s0

)
= 0

for ri ∈ R and si ∈ T . Let s := s0 · · · sn−1, and multiply the above equation by sn to get

(su)n + r′n−1(su)n−1 + · · ·+ r′1(su) + r′0 = 0

where r′i ∈ R. So, su is integral over R and hence su ∈ R because R is integrally closed. Thus,
u ∈ T−1R, since s ∈ T . �

Theorem: (Lying-Over Theorem) Let S be an integral extension of R and let P be a prime ideal of R.
Then, there exists a prime ideal Q of S such that Q ∩R = P .

Proof: Since P is prime, RrP is a multiplicative set of R, and hence also of S. By a standard lemma
(Theorem 2.2), there exists a prime ideal Q of S which is maximal among all ideals I of S such that
I ∩ (Rr P ) = ∅.

Then, Q ∩R is a prime ideal of R and Q ∩R ⊆ P . It remains to prove that Q ∩R = P .

Suppose not. Then there exists u ∈ P r (Q ∩ R). Then, u 6∈ Q and so Q + (u) % Q, hence by the
maximality of Q, we have that (Q+ (u))∩ (RrP ) 6= ∅. Let c ∈ (Q+ (u))∩ (RrP ). Write c as q+ su
for q ∈ Q and s ∈ S. Since s is integral over R we can write

sn + rn−1s
n−1 + · · ·+ r1s+ r0 = 0.

Multiply by un to get

(us)n + (rn−1u)(us)n−1 + · · ·+ r1u
n−1(us) + r0u

n = 0.

Now us = c− q, hence by the binomial theorem, we have that

v = cn + (rn−1u)cn−1 + · · ·+ r1u
n−1c+ r0u

n ∈ Q.

Since v ∈ R, so v ∈ R ∩ Q ⊂ P , but u ∈ P hence cn ∈ P . This is a contradiction, since c ∈ R r P .
Thus, Q ∩R = P . �
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Corollary VIII.5.10: (Going-Up Theorem) Let S be an integral extension of R and let P1 ⊂ P be prime
ideals of R. If Q1 is a prime ideal of S lying over P1, then there exists a prime ideal Q of S such that Q1 ⊂ Q
and Q lies over P .

Proof: RrP is a multiplicative set of S, and since Q1∩R = P1 ⊂ P , we have that Q1∩ (RrP ) = ∅.
So, Q1 is an ideal of S distinct from Rr P . So, there exists a prime ideal of S ⊂ Q which is maximal
in the set of ideals containing Q1 and dijoint from Rr P .

Clearly, Q ∩R ⊆ P , so it remians to show that Q ∩R = P . Suppose u ∈ P r (Q ∩R). Then, Q+ (u)
properly contains Q and so by the maximality it intersects R r P . Let c = q + su be an element of
the intersection. Since S is integral over R, we have that

sn + rn−1s
n−1 + · · ·+ r1s+ r0 = 0 ∈ Q.

Now,
(su)n + rn−1u(su)n−1 + · · ·+ nun−1(su) + r0u

n = 0 ∈ Q,

i.e.,
cn + rn−1uc

n−1 + · · ·+ r1u
n−1c+ r0u

n ∈ Q.

Therefore, cn 6∈ Q and so c ∈ Q ∩R ⊂ P , which is a contradiction. �

Theorem VIII.5.11: Let S be integral over R and P be a prime ideal of R. If Q and Q′ are prime ideals
of S lying over P , and Q ⊂ Q′, then Q = Q′.

Proof: We show that if Q is a prime ideal of S and Q∩R = O, then Q is maximal in the set of ideals
I in S such that I ∩ (Rr P ) = ∅.

Suppose Q is not maximal in S. Then, there exists I such that Q $ I, Then, I ∩ R ⊆ P . Choose
u ∈ I rQ. Then, u is integral over R¡ and hence

{f(x) ∈ R[x] | f(u) ∈ Q, f monic,deg(f) = 1} 6= ∅.

Pick an element f(x) from this set of smallest degree. Write f(x) as

f(x) =
∑

rix
i.

Then,
un + rn−1u

n−1 + · · ·+ r1u1 + r0 ∈ Q ⊂ I.

Hence, r− ∈ I ∩R ⊂ P ⊂ Q, and now

u(un−1 + rn−1u
n−2 + · · ·+ r1︸ ︷︷ ︸

6∈Q, by minimality of deg(f)

) ∈ Q.

Hence, u ∈ Q, which is a contradiction �

Theorem VIII.5.12: Let S be an integral extension of R. Let Q be a prime ideal of S lying over a prime
ideal P of R. Then, Q is maximal in S if and only if P is maximal in R.

Proof: Suppose Q is maximal and P1 is a maximal ideal of R containing P . Then, by the Going-Up
Theorem, there exists Q1 containing Q such that Q1 ∩ R = P1. But, Q is maximal, and so Q = Q1

and P = P1, i.e., P is maximal.

Now suppose P is maximal. Let Q1 be a maximal ideal of S containing Q. Then, Q1 ∩ R is a prime
ideal of R containing P . By the maximality of P , we have that Q1 ∩ R = P . Thus, Q ⊂ Q1 and Q
and Q1 both lie over P , hence Q = Q1, i.e., Q is maximal. �
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1.5.6 Section VIII.6 - Dedekind Domains

Definition: A Dedekind Domain is an integral domain with every proper ideal a product of prime ideals.

Definition: Let R be an integral domain with field of fractions K. An R-submodule I of K is called a
fractional ideal if there exists a ∈ R such that aI ⊆ R.

Example: With the hypotheses above, any finitely generated submodule of K is a fractional ideal.

Remark: If I is a fractional ideal such that aI ⊆ R, then aI is an ideal of R and I ∼= aI as R-modules.

Remark: If I, J are fractional ideals, then we define

IJ :=

{
n∑
i=1

aibi | n ∈ N, ai ∈ I, bi ∈ J

}
.

Definition: We say that a fractional ideal I is invertible if there exists a fractional ideal J such that IJ = R.

Remark: The fractional ideals form a monoid and the invertible fractional ideals form a group.

Notation: If I is any fractional ideal, then we define

I−1 := {a ∈ K | aI ⊆ R} .

Remark: If I is invertible, then I−1 is the inverse of I in the group of invertible fractional ideals. If J is
the inverse of I, then JI = R so J ⊆ I−1. Conversely since I−1 and J are R-submodules of K, we have that

I−1 = RI−1 = (JI)I−1 = J(II−1) ⊂ JR = RJ ⊂ J.

Hence J = I−1 and so the inverse of I is actually I−1 when it exists.

Remark: Every principal ideal is invertible, because (a) = (a−1).

Lemma VIII.6.4: Let I, I1, . . . , In be ideals of an integral domain R. Then,

(i) I1I2 · · · In is invertible if and only if each Ij is invertible.

(ii) If P1 · · ·Pm = I = Q1 · · ·Qn where Pi and Qj are prime and each Pi is invertible, then m = n and after
renumbering we have Pi = Qi.

Proof of (i): Suppose I1I2 · · · In is invertible. Then, there exists J such that

R = (I1I2 · · · In)J = I1(I2 · · · InJ).

Hence I1 is invertible, and continue the process for each Ij .

Conversely if each Ij is invertible then for each j was have IjI
−1
j = R, and so

(I1 · · · In)(I−1
1 · · · I−1

n ) = R.

Thus, I1I2 · · · In is invertible. �
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Proof of (ii): (By induction on m) In the case m = 1, we have that P1 = I = Q1 · · ·Qn, and so
P1 ⊆ Qj for all j. Since P1 is prime, there exists h such that Qj ⊆ P1. Hence P1 = Q1, and thus
P1 = P1Q2 · · ·Qn. Since P1 is invertible, we have that Q2 · · ·Qn = R, which is a contradiction. So,
n = 1.

Now suppose m > 1. Choose P1 to be minimal among the Pi. Then,

Q1 · · ·Qn = P1 · · ·Pm ⊂ P1.

Since P1 is prime, there exists j with Qj ⊂ P1. (To see this, consider AB ⊆ P with B 6⊆ P . Pick
b ∈ B with b 6∈ P . Then for all a ∈ A, we have that ab ∈ AB ⊆ P but b 6∈ P and so a ∈ P . Hence
A ⊆ P .) Say without loss of generality that Q1 ⊆ P1. We similarly have that

P1 · · ·Pm = Q1 · · ·Qn ⊂ Q1.

So there exists Pj such that Pj ⊆ Q1 ⊆ P1, but by the minimality of P1 we must have that j = 1 and
Q1 = P1. Since P1 = Q1 is invertible, we can cancel them (see Remark (ii), pg. 402) to get that

Q2 · · ·Qn = P2 · · ·Pm

and apply the induction hypothesis to get m = n and after reordering Pi = Qi for all i. �

Theorem VIII.6.5: If R is a Dedekind Domain, then every nonzero prime ideal is invertible and maximal.

Proof: First we show that invertible prime ideals are maximal. Let P be an invertible prime ideal.
We show that for a ∈ Rr P we have that P +Ra = R. Suppose not. Then, P +Ra is proper and so

P +Ra = P1 · · ·Pm

for Pi prime ideals. Also
P +Ra2 ⊆ P +Ra $ R

is proper, and hence we can write
P +Ra2 = Q1 · · ·Qn

for Qi prime ideals. We will now work in the integral domain R/P . Let bar notation denote passage
from R to R/P by the canonical reduction map.

We now have that

(a) = P1 · · ·Pm,
(a)2 = (a2) = Q1 · · ·Qn.

Since principal ideals are invertible we have that both (a) and (a2) are invertible, and therefore by
Lemma VIII.6.5 so are the Pi and Qi.

Now note that (a)2 = P1
2 · · ·Pm

2
, and hence n = 2m and after renumbering, Pi = Q2i−1 = Q2i for

i = 1, . . . ,m (i.e., P1 · · ·Pn = Q1Q1 · · ·QmQm). We can remove the bars to conclude similarly that
Pi = Q2i−1 = Q2i. Therefore

P ⊆ P +Ra2 = (P +Ra)2 ⊆ P 2 +Ra.

So, if we choose b ∈ P , we can write b = c + ra with c ∈ P 2 and r ∈ R. Then, ra ∈ P and therefore
r ∈ P since a 6∈ P and P is prime. Now, we have the inclusions (added to the right of the above
inclusions)

P ⊆ P +Ra2 = (P +Ra)2 ⊆ P 2 +Ra ⊆ P 2 + Pa ⊆ P

and so we have equality throughout. So P = P 2 + Pa = P (P + Ra). Therefore, R = P + Ra which
is a contradiction since we assumed that P +Ra was proper. So, we have shown that every invertible
prime ideal is maximal.
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Now let P be any prime ideal and let c ∈ P be nonzero. Then, P ⊇ (c) = P1 · · ·Pm where the Pi are
prime, (c) is invertible. Thus the Pi are invertible. Therefore, Pk ⊆ P for some k. By the maximality
of Pk we have Pk = P and hence P is maximal and invertible. �

Lemma VIII.6.7: Every invertible fractional ideal of an integral domain R (with fractional field K) is
finitely generated.

Proof: Let I be an invertibel fractional ideal. Recall that I−1 := {a ∈ K | aI ⊆ R} and invertibility
means I−1I = R. In other words, there exists ai ∈ I−1 and bi ∈ I such that

∑
aibi = 1 for

i = 1, 2, . . . , n.

Let c ∈ I. Then

c = c1 = c

n∑
i=1

aibi =

n∑
i=1

(cai)︸ ︷︷ ︸
∈R

bi.

So, any element of I can be written as an R-linear combination of the bi, i.e., b1, . . . , bn generate I. �

Corollary: Dedekind Domains are Noetherian.

Lemma VIII.6.6: If I is a fractional ideal of an integral domain R with fractional field K and
f ∈ HomR(I,R), then for all a, b ∈ I we have that af(b) = bf(a).

Proof: Let a = r/s and b = v/t for r, s, v, t ∈ R. Now, sab = rb ∈ I and tab = va ∈ I. Observe that

sf(tab) = f(stab)

= tf(sab).

We now compute that

af(b) =
sa

s
f(b) =

1

s
f(sab) =

1

t
f(tab) =

tb

t
f(a) = bf(a). �

Theorem VIII.6.8: Let R be an integral domain and I a fractional ideal. Then I is invertible if and only
if I is a projective R-module.

Proof:
(=⇒):

Suppose I is invertible. Then I is finitely generated by some b1, b2, . . . , bn. Since I is invertible,
we can find ai such that 1 =

∑
aibi. Consider the free module with basis e1, . . . , en⊕

Rei
ϕ-- P

ei - bi

We’ll show that ϕ splits; then, I ∼= the direct summand of a free module, hence I is projective.
Define

I
ξ-

⊕
Rei

c - c
∑

aiei

Observe that ξ is an R-module homomorphism. Now,

ϕ ◦ ξ(c) = ϕ(c
∑

aiei)

= c
∑

aibi

= c.



100 CHAPTER 1. COURSE NOTES

Hence ϕ ◦ ξ = Id. Thus ϕ splits. �

(⇐=):

Conversely, assume that I is projective. Let X := {bj | j ∈ j} be a set of generators of I. Fix
an element b0 ∈ X. Since I is projective, the function ϕ in the diagram below splits, i.e., there
exists ψ : I → ⊕Rei such that ϕ ◦ ψ = Id:

⊕
Rei

ϕ --
[ei 7→ bi]�

ψ

I

Rej
∼= R

πj
?

Let θj := πj ◦ ψ : I → Rej
∼= R, mapping rej 7→ r. Let cj ∈ R be defined as θj(b0). Note that

θj ∈ HomR(I,R). Let c ∈ I. Then,

ccj = cθj(b0) = b0θj(c).

Hence

c(cj/b0) =
b0θj(c)

b0
= θj(c) ∈ R.

Therefore,
cj
b0
∈ I for all j.

For any c ∈ I, we can write for |J1| finite:

ψ(c) =
∑
j∈J1

θj(c)ej .

Now,

c = ϕψ(c)

= ϕ

∑
j∈J1

θj(c)ej


=
∑
j∈J1

c
cj
b0
bj

= c

∑
j∈J1

cjbj
n0

 .

Hence ∑
j∈J1

cj
b0︸︷︷︸
∈I−1

bj︸︷︷︸
∈I

= 1

and so I is invertible. �

Definition: A discrete valuation ring (or, DVR) is a principal ideal domain which has exactly one nonzero
prime ideal.

Example: The ring Z(p) :=
{
a
b ∈ Q | p - b

}
is a discrete valuation ring.
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Example: The ring K[x](x) =
{
f(x)
g(x) ∈ K(x) | x - g(x)

}
is a discrete valuation ring.

Lemma VIII.6.9: If R is a Noetherian integrally closed integral domain with a unique nonzero prime ideal
P , then R is a discrete valuation ring.

Proof: We want to show that every ideal is principal.

(i) Let K = frac(R). For every fractional ideal I, the set I = {a ∈ K | aI ⊆ I} is equal to R.

Note that I is a subalgebra of K containing R. To see that I = R, observe that I is also a
fractional ideal and is an R-subgroup of K. Additionally, I is finitely generated and so it
is an integral extension of R, which is integrally closed, so I = R. To see that I is finitely
generated, let J be any fractional ideal. Then there exists b ∈ R such that bJ ⊆ R. Clearly
the map J → bJ defined by x 7→ bx is an R-module isomorphism. Since R is Noetherian,
bJ is finitely generated (as it is an ideal of R) and hence so is J .

(ii) R $ P−1.

Let S be the set of ideals of R such that R $ I−1. Let a ∈ P be nonzero. Then 1/a 6∈ R,
but 1/a ∈ (a)−1. So, (a) ∈ S, i.e., S 6= ∅. Since R is Noetherian, we can use the maximality
condition to find a maximal element M of S. We now show that M is prime, i.e., M = P .
Suppose a, b ∈ R with ab ∈ M and a 6∈ M . Let c ∈ M−1 r R. Then, bc(aR + M) ⊆ R.
Therefore, bc ∈ (aR + M)−1. By the maximality of M , we have that aR + M 6∈ S and
hence bc ∈ R. Therefore, c(bR+M) ⊆ R and so c ∈ (br+M)−1 but c 6∈ R by assumption.
Therefore bR+M ∈ S. By maximality of M this implies b ∈M which proves that M is a
prime idea and so M = P . Therefore P ∈ S which proves this fact.

(iii) P is invertible.

If PP−1 $ R, then PP−1 ⊆ P (since it’s an ideal so can’t be bigger than P since P is
unique prime) and so P−1 ⊆ P . Then,

R $ P−1︸ ︷︷ ︸
by (ii)

⊆ P = R︸ ︷︷ ︸
by (i)

which is a contradiction. So, PP−1 = R and P is invertible.

(iv)
⋂
n≥1

Pn = {0}.

Suppose ∩Pn 6= 0. Then ∩Pn is a fractional ideal. Also, P−1 ⊆ ∩Pn. Then,

R $ P−1︸ ︷︷ ︸
by (ii)

⊆ ∩Pn = R︸ ︷︷ ︸
by (i)

which is a contradiction. So, ∩Pn = 0

(v) P is principal.

Since ∩Pn = {0} there existsa ∈ PrP 2. Then, aP−1 is a nonzero ideal of R and aP−1 6⊆ P
since otherwise

a ∈ aRaP−1P ⊆ P 2.

So aP−1 = R. Thus (a) = P .
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Now we use these five facts. Let I be a nonzero proper ideal. Then, I ⊆ P . By (iv), there exists m
such that I ⊆ Pm but I 6⊆ Pm+1. Suppose by (v) that P = (a). Let b ∈ I rPm+1. Then, b = amu for
some u ∈ R, since Pm = (am). We now claim that u is a unit. If not, then (u) $ P and so a | u. Hence,
am+1 | b which is a contradiction since b 6∈ Pm+1. So, Pm = (am) = (b) ⊆ I. Thus, I = Pm = (am). �

Proposition: Let R be an integral domain and view RP (P prime) as a subring of frac(R) =: K. Let M

be the set of all maximal ideals of R. Then,
⋂

M∈M

RM = R.

Proof: Let u ∈ K and set D(u) = {a ∈ R | au ∈ R}. Note that )D(u is an ideal of R, and D(u) = R
if and only if 1 ∈ D if and only if u ∈ R.

Let M be a maximal ideal. An element v ∈ K belongs to RM if and only if there exists t ∈ R rM
such that tu ∈ R if and only if D(v) ∩ (RrM) 6= ∅ if and only if D(v) 6⊆M .

Thus, v ∈
⋂

M∈M

RM if and only if D(v) 6⊆M for any maximal ideal M if and only if D(v) = R if and

only if v ∈ R. �

Theorem VIII.6.10: If R is an integral domain, then the following are equivalent.

(i) R is a Dedekind Domain.

(ii) Every proper ideal in R is uniquely a product of a finite number of prime ideals.

(iii) Every nonzero ideal in R is invertible.

(iv) Every fractional ideal of R is invertible.

(v) The set of all fractional ideals of R is a group under multiplication.

(vi) Every ideal in R is projective.

(vii) Every fractional ideal of R is projective.

(viii) R is Noetherian, integrally closed, and every nonzero prime ideal is maximal.

(ix) R is Noetherian and for every nonzero prime ideal P of R, the localization of RP of R at P is a discrete
valuation ring.

Proof: We have already proved the following equivalences: (iv) ⇔ (v) (Theorem VIII.6.3), (i) ⇒
(ii) and (ii) ⇒ (iii) (Lemma VIII.6.4 and Theorem VIII.6.5), (iii) ⇔ (vi) and (vii) ⇔ (iv) (Theorem
VIII.6.8), (vi) ⇒ (vii) (remark regarding isomorphism prior to Theorem VIII.6.3).

It remains to prove (iv) ⇒ (viii), (viii) ⇒ (ix), (ix) ⇒ (i).

(iv) =⇒ (viii):

Assume R is an integral domain and every fractional ideal is invertible. So, for every ideal I,
we can find an ideal I−1 such that II−1 = R, i.e.,

∑
aibi = 1 for ai ∈ I−1, bi ∈ R. So, there

exists c ∈ R such that
∑

(cai)bi ∈ (b1, b2, . . . , bn). This shows that R is finitely generated, and
hence Noetherian. (See Lemma VIII.6.7).

Now let K := frac(R). Let u ∈ K be integral over R. Then, R[u] is finitely generated as an
R-module by integrality of u, hence is a fractional ideal, and so is invertible by assumption.
Observe that R[u]R[u] = R[u]. Therefore,

R[u] = RR[u] = (R[u]−1R[u])︸ ︷︷ ︸
R

R[u] = R[u]−1(R[u]R[u]) = R[u]−1R[u] = R.

Hence R is integrally closed.
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Let P be a nonzero prime ideal. Then, there exists a maximal ideal M with P ⊆ M .
Now, M is invertible and M−1P is a fractional ideal. Note that M−1P ⊆ M−1M = R,
and so M−1P is an ideal. Then, M(M−1P ) = P . Since P is prime, we have M ⊆ P or
M−1P ⊆ P . Now, if M ⊆ P , then P = M is maximal. Otherwise, M−1P ⊆ P , and then
R ⊆ M−1 = M−1R = (M−1P )P−1 ⊆ PP−1 = R, and so we have equality throughout. Thus,
R = M−1 and so R = MM−1 = MR = M , which is a contradiction. Therefore, we have that
P is maximal. �

(viii) =⇒ (ix):

If R is integrally closed, then RP is integrally closed by Theorem VIII.5.8. The ideals of RP
are of the form IP = {i/s | i ∈ I, s ∈ R r P}, where I is an ideal of R. (Note that if I 6⊆ P ,
then IP = RP .) Since R is Noetherian, every ideal I of R is finitely genenerated. Hence every
ideal IP of RP is finitely generated and so RP is Noetherian.

By Theorem III.4.11, every prime ideal of RP is of the form IP where I is a prime ideal of
R contained in P . By the assumption that every nonzero prime ideal is maximal, so the set
of nonzero prime ideals of R containing P consists only of P . Hence PP is the unique nonzero
prime ideal of RP . Now, by Lemma VIII.6.9, RP is a discrete valuation ring. �

(ix) =⇒ (i):

First we show that every nonzero ideal is invertible. Let I be a nonzero ideal of R. Then,
I−1 = {a ∈ K | aI ⊆ R}. We know that II−1 ⊆ R and II−1 is a fractional ideal, and so II−1

is an ideal of R.

Suppose toward a contradiction that II−1 6= R. Then, there exists a maximal ideal M such
that II−1 ⊆ M . Now we consider localizations. Let IM ⊆ RM . Note that IM is principal by
the hypothesis of (ix). So, IM =

(
a
s

)
for some a ∈ I and s ∈ R rM . R is Noetherian, so

I = (b1, . . . , bm) is finitely generated.

Note that bi
1 ∈ IM and so for each i,

bi
1

=
ri
si
· a
s

for some ri ∈ R and si ∈ RrM .

So, ssibi = ria ∈ I. Let t = ss1 · · · sm. Then, for all i

tbi = ss1 · · · smbi = s1 · · · si−1si+1 · · · smriai.

So for all i,
t

a
bi = s1 · · · si−1si+1 · · · smri ∈ R.

Hence t
a ∈ I

−1 and so t = t
aa ∈ I

−1I ⊆M , which is a contradiction. Therefore, we have shown
that every nonzero ideal is invertible.

Now we discuss a construction we will use shortly. For any proper ideal I, let MI be a maximal
ideal containing I. Then,

IM−1
I ⊆MIM

−1
I = R,

and so IM−1
I is an ideal of R. We claim that I $ IM−1

I . Assume toward a contradiction that
I = IM−1

I . Then, R = M−1
I and so R = MI , which a contradiction. So, indeed I $ IM−1

I .

Let J be an arbitrary nonzero proper ideal of R. Set J0 = J , J1 = J0M
−1
J0
, J2 = J1M

−1
J1

, etc.
Now,

J = J0 $ J1 $ J2 $ J3 $ · · · $ Jk−1 $ Jk = Jk+1

where this theorem stabilizes since R is Noetherian. Pick k so that it is minimal. Now,
Jk−1M

−1
Jk−1

= R, and so Jk−1 = MJk−1
. Hence, Jk−2M

−1
Jk−1

= Jk−1 = R, and so Jk−2 =
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MJk−2
MJk−1

. Continuing this process, we have that J = J0 = MJ0MJ1 · · ·MJk−1
. This is a

factorization of J into maximal (hence prime) ideals. So R is Dedekind. �

Theorem: (from exercises) Let R be a Dedekind domain with quotient field K. Let L be a finite field
extension of K and let S be the integral closure of R in L. Then, S is a Dedekind domain.
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1.6 Chapter VI - The Structure of Fields

1.6.1 Section VI.1 - Transcendence Bases

Definition: Let F be a field extension of K and S a subset of F . We say that S is algebraically dependent
over K if for some n ≥ 1, there exists a nonzero polynomial f ∈ K[x1, . . . , xn] such that f(s1, . . . , sn) = 0
for distinct elements s1, . . . , sn ∈ S. We say that S is algebraically independent if S is not algebraically
dependent.

Example: If F = K(x1, . . . , xn), then the n variables x1, . . . , xn are algebraically independent.

Theorem VI.1.2: Let F be an extension of K and {s1, . . . , sn} a subset of F which is algebraically
independent over K. Then,

K(s1, . . . , sn) ∼= K(x1, . . . , xn).

Proof: By the Universal Mapping Property for Polynomial Rings, there exists a unique
homomorphism

ϕ :K[x1, . . . , xn] - K(s1, . . . , sn)

xi - si.
.

By algebraic independence, ϕ is injective. Since ϕ is injective, it extends to a unique homomorphism

ϕ̂ : K(x1, . . . , xn)→ K(s1, . . . , sn).

Observe that ϕ̂ is surjective since K(s1, . . . , sn) is generated over K by the si = ϕ̂(xi). �

Definition: A transcendence base of F over K is a subset S ⊂ F which is algebraically independent over
K and which is maximal (with respect to set inclusion) among all algebraically independent subsets.

Example: Let F = K(x) and consider f/g ∈ F , where f, g ∈ K[x] and g 6= 0. We claim that the set
{x, f/g} is algebraically dependent over K. Consider the polynomial h(y1, y2) := g(y1)y2 − f(y1). Now

h(x, f/g) = g(x)
f(x)

g(x)
− f(x) = 0

and so these two are algebraically dependent. Hence, {x} is a transcendence base for K(x) over K.

Theorem VI.1.5: Let F be an extension of K and S ⊂ F a subset algebraically independent over K and
u ∈ F rK(S). Then, S ∪ {u} is algebraically independent if and only if u is transcendental over K(S).

Proof: Suppose there exists n and s1, . . . , sn ∈ S, and f(x1, . . . , xn, xn+1) ∈ K[x1, . . . , xn, xn+1] such
that f(s1, . . . , sn, u) = 0. Then, define

g(xn+1) := f(s1, . . . , sn, xn+1) ∈ K(S)[xn+1].

It’s clear as claimed that g is a polynomial in one variable with coefficients in K(S), and that g(u) = 0.
Since u is transcendental over K(S), we have that g is the zero polynomial. Let

g(xn+1) =
∑

hi(s1, . . . , sn)xin+1.

From this, it’s clear that hi(s1, . . . , sn) = 0 for all i and thus hi(xi, . . . , xn) = 0 for all i. Thus,

f(x1, . . . , xn, xn+1) =
∑

hi(x1, . . . , xn)xin+1 = 0

and so f is the zero polynomial. Hence, S ∪ {u} is algebraically independent.
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Conversely, assume S ∪ {u} is algebraically independent. Suppose h(u) = 0 for some h ∈ K(S)[x].
Then, we can write h as

h(s1, . . . , sn) =

m∑
i=0

fi(s1, . . . , sn)

fi(s1, . . . , sn)
xi.

If we clear the denominators, then we get that

H ∈ K[S][x]

such that H(u) = 0, where the coefficients of H are polynomials in the elememts s1, . . . , sn. Then,
we have a relation of algebraic dependence of S ∪ {u}, which is a contradiction. Therefore, u is
transcendental over K(S). �

Corollary VI.1.6: Let F be an extension of K and S ⊂ F algebraically independent over K. Then, S is a
transcendence basis for F over K if and only if F is algebraic over K(S).

Definition: We say that F is purely transcendental over K if and only if F = K(S) for some algebraically
independent set S.

Corollary VI.1.7: If F is an extension of K and for some X ⊆ F we have that F is algebraic over K(X),
then X contains a transcendental basis of F over K.

Theorem VI.1.8: Let F be an extension of K. If S is a finite transcendence basis of F over K, then every
transcendence basis of F over K has the same size as S.

Proof: Let S = {s1, . . . , sn} and let T be another transcendence basis. We claim that there exists t1 ∈
T such that t1 is transcendental over K(s2, . . . , sn). If every t ∈ T is algebraic over K(s2, . . . , sn), then
K(T ) is algebraic over K(s2, . . . , sn), and so F is algebraic over K(s2, . . . , sn), which is a contradiction.
Hence such a t1 exists.

Now we check that {t1, s2, . . . , sn} is a transcendence basis of F over K. We need to show that s1 is
algebraic over K(t1, s2, . . . , sn). Suppose not. Then, {s1, t1, s2, . . . , sn} is algebraically independent,
which is a contradiction. Hence, K(t1, s1, s2, . . . , sn) is algebraic over K(t1, s2, . . . , sn). Hence, F is
algebraic over K(t1, s2, . . . , sn). So, the check is complete.

Repeating this process, we find that T = {t1, . . . , tn} and thus they have the same size.

Theorem VI.1.9: Let F be an extension of K and let S be a transcendental basis of infinite cardinality.
Then, every transcendence basis of F over K has the same cardinality of S.

Proof: Let T be another transcendence basis. T is also infinite by the previous theorem. Now, we
have the diagram

F

K(S)

alg

K(T )

alg

K

Let s ∈ S. Then, s is algebraic over K(T ). So there exists a finite subset Ts ⊂ T such that s is
algebraic over K(Ts). Choose Ts for each s ∈ S. We now cliam that ∪(Ts) ⊂ T .

We check that F is algebraic over K(∪(Ts)). By construction, K(S) is algebraic over K(∪(Ts)) and
F is algebraic over K(S). So, the check is true. So, ∪(Ts) is a transcendence basis. Hence ∪(Ts) = T .
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Finally, we check that | ∪ (Ts)| ≤ |S|. �

Definition: Let F be an extension of K. Then, the transcendence degree TrDeg
[
F : K

]
is the cardinality

of a transcendence basis for F over K.

Theorem VI.1.11: If K ⊂ F ⊂ E, then TrDeg
[
E : K

]
= TrDeg

[
E : F

]
+ TrDeg

[
F : K

]
.

Theorem VI.1.12: Let F1, F2 be algebraically closed extensions of K1,K2 respectively. If TrDeg
[
F1 :

K1

]
= TrDeg

[
F2 : K2

]
then any isomorphism of K1 to K2 extends to an isomorphism F1

∼= F2 .
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1.7 Chapter VIII - Commutative Rings and Modules (Again)

1.7.1 Section VIII.7 - The Hilbert Nullstellensatz

Definition: Let K be a field. Let F be an algebraically closed extension of K. Let S ⊆ K[x1, . . . , xn].
Consider the set

V (S) := {(a1, . . . , an) ∈ Fn | f(a1, . . . , an) = 0, ∀f ∈ S}.

Subsets of Fn of form V (S) for S ⊆ K[x1, . . . , xn] are called K-algebraic sets. They are also sometimes called
affine K-varieties. Note that V (S) = V (I) where I is the ideal generated by S.

Remark: Now, let Y be a subset of Fn and set

J(Y ) = {f ∈ K[x1, . . . , xn] | f(a1, . . . , an) = 0, ∀(a1, . . . , an) ∈ Y }.

Observe that J(Y ) is an ideal.

Lemma VIII.7.1: Let F be an algebraically closed extension of K, and let S, T ⊆ K[x1, . . . , xn] and let
X,Y ⊆ Fn. Then,

(i) V (K[x,1 . . . , xn]) = ∅; J(Fn) = {0}; J(∅) = K[x1, . . . , xn].

(ii) If S ⊆ T , then V (T ) ⊆ V (S). If X ⊆ Y , then J(Y ) ⊆ J(X).

(iii) S ⊆ J(V (S)); Y ⊆ V (J(Y )).

(iv) V (S) = V (J(V (S))); J(Y ) = J(V (J(X))).

Remark: Note the similarlity between the above lemma, and the properties of the Galois correspondence
between subgroups of the Galois group and intermediate field extensions.

Lemma VIII.7.2: (Noether Normalization Lemma) Let R be an integral domain which is a finitely
generated ring extension of a field K (i.e., a finitely generated K-algebra). Let r := TrDeg

[
F : K

]
, where

F = frac(R). Then, there exists an algebraically independent subset {t1, . . . , tr} of R such that R is integral
over K[t1, . . . , tr].

Proof: Suppose R = K[u1, . . . , un]. Then, F = K(u1, . . . , un). If {u1, . . . , un} is algebraically
independent, then we’re done. So, assume that {u1, . . . , un} is algebraically dependent. Then,∑

(i1,...,in)∈I

ki1,...,inu
i1
1 u

i2
2 · · ·uinn = 0,

for nonzero ki1,...,in ∈ K. Note that I is finite.

Let c ∈ N be greater than all ik occuring as an entry of all elements of I. If (i1, . . . , in), (j1, . . . , jn) ∈ I,
and if

i1 + ci2 + c2i3 + · · ·+ cn−1in = j1 + cj2 + c2j3 + · · ·+ cn−1jn

then, c | i1 − j1, and by our choice of c we must actually have that i1 = j1. Therefore,

i2 + ci3 + · · ·+ cn−2in = j2 + cj3 + · · ·+ cn−2jn,

and by the same reasoning we now have i2 = j2, etc.

Thus, the numbers i1 + ci2 + · · ·+ cn−1in for (i1, . . . , in) ∈ I are all distinct positive integers. So, there
exists a unique tuple (j1, . . . , jn) ∈ I such that j1 + j2c+ · · ·+ jnc

n−1 is maximum.

Define vi for 2 ≤ i ≤ n by u2 = v2 + uc1, u3 = v3 + uc
2

1 , . . ., un = vn + uc
n−1

1 . Now,

kj1,...,jnu
j1+j2c+···+jncn−1

1 + f(u1, v2, . . . , vn) = 0
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where degu1
(f) < j1 + j2c+ · · ·+ jnc

n−1.

Dividing by kj1,...,jn gives a monic polynomial in K[v2, . . . , vn][x] satisfied by u1. Now, R =
K[u1, . . . , un] = K[u1, v2, . . . , vn] and u1 is integral over K[v2, . . . , vn]. Thus, R is integral over
K[v2, . . . , vn]. If {v2, . . . , vn} is algebrically independent, then we’re done. Otherwise, repeat the
previous step. �

Lemma VIII.7.3:(Weak Nullstellensatz) Let F be an algebraically closed extension of K and let I be a
proper ideal of K[x1, . . . , xn]. Then,

V (I) := {(a1, . . . , an) ∈ Fn | f(a1, . . . , an) = 0, ∀f ∈ I}

is not empty.

Proof: First recall that if I ⊆ J , then V (J) ⊆ V (I). To prove that V (I) is nonempty, we will show
that V (J) is nonempty. So, we can assume that I is a maximal ideal of K[x1, . . . , xn]. Therefore,
K[x1, . . . , xn]/I is a field, and we can consider the maps:

K[x1, . . . , xn] −→
=R︷ ︸︸ ︷

K[x1, . . . , xn]/I ⊃ K ⊂ F

Therefore, there exists a field homomorphism from R to F . (By Noetherian normalization, there exist
t1, . . . , tr ∈ R algebraically independent such that R is integral over K[t1, . . . , tr]. But R is a field, ie
r = 0, thus R is algebraic.) Let ϕ be the induced homomorphism from K[x1, . . . , xn] to F .

Let f ∈ K[x1, . . . , xn]. Then, ϕ(f(x1, . . . , xn)) = f(ϕ(x1), . . . , ϕ(xn). If f ∈ I, then f maps to 0 in R.
Hence 0 = f(ϕ(x1), . . . , ϕ(xn)). Thus,

(ϕ(x1), . . . , ϕ(xn)) ∈ Fn

is an element of V (I). So, V (I) is nonempty. �

Theorem VIII.7.4: (Hilbert Nullstellensatz) Let F be an algebraically closed extension of K and I a proper
ideal of K[x1, . . . , xn]. Then, J(V (I)) = rad(I).

Proof: Observe that rad(I) ⊆ J(V (I)) from definitions and the fact that in a field, am = 0 if and
only if a = 0.

Conversely, let f ∈ J(V (I)), and assume without loss of generality that f 6= 0. Regard K[x1, . . . , xn]
as a subring of K[x1, . . . , xn, y]. Let L be the ideal of K[x1, . . . , xn, y] generated by I and yf − I.

If (a1, . . . , an, b) is a zero of L in Fn+1, then (a1, . . . , an) ∈ V (I). But,

(yf − 1)(a1, . . . , an, b) = b f(a1, . . . , an)︸ ︷︷ ︸
=0

−1 = −1.

This shows that L has no common zeros in Fn+1. By Weak Nullstellensatz, we have that L =
K[x1, . . . , xn, y], and so we can write

1 =

(
t−1∑
i=1

gifi

)
+ gt(yf − 1)

where fi ∈ I. The gi are polynomials in n+ 1 variables (in K[x1, . . . , xn, y]).

Now consider the evaluation homomorphism

K[x1, . . . , xn, y] −→ K(x1, . . . , xn)



110 CHAPTER 1. COURSE NOTES

by choosing the mapping xi 7→ xi and y 7→ 1
f . Applying this to the equation for 1 above, we get

1 =

t−1∑
i=1

gi(x1, . . . , xn,
1

f
)fi(x1, . . . , xn).

Let fm be the highest power of f occuring in any denominator of any gi. Then,

fm =

t−1∑
i=1

gif
m︸ ︷︷ ︸

∈ K[x1,...,xn]

fi︸︷︷︸
∈ I

.

Therefore, f ∈ rad(I). �

Remark: Let K be a field and let F be an algebraically closed extension of K. Each f ∈ K[x1, . . . , xn]
defines a function from Fn to F by substitution. If V = V (I), then f

∣∣
V

is a function on V . We have the
map

Γ : K[x1, . . . , xn]
restriction−−−−−−−−→

{
F -valued functions on V

}
.

The image Γ(V ) is called the ring of regular functions. The kernel Ker(Γ) is defined to be J(V (I)), and so

Γ(V ) ∼= K[x1, . . . , xn]/J(V (I)) = K[x1, . . . , xn]/ rad(I).

Γ has the properties:

(1) Γ(V ) is a finitely generated K-algebra.

(2) Γ(V ) has no nilpotent elements. (This condition is sometimes called reduced.)

Remark: If the reader is interested in more of this type of material, they should investigate the
Zariski Topology.
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1.8 Chapter IX - The Structure of Rings

1.8.1 Section IX.1 - Simple And Primitive Rings

Definition: A left module A over a ring R is called simple or irreducible if RA 6= 0 and A has no proper

subgroups. We call a ring R simple if R2 6= 0 and R has no proper (two-sided) ideals.

Remark: If R has a 1, then for any maximal left ideal L (which exists by Zorn’s Lemma), R/L is a simple
module.

Theorem: (Schur’s Lemma) Suppose R is a ring and A is a simple R-module. Then, EndR(A) is a division
ring. Recall that

EndR(A) := ϕ ∈ EndZ(A) | r(ϕ(a)) = ϕ(ra), ∀r ∈ R, a ∈ A}.

Remark: We can consider the left modules RA and consequently EndR(A)A. In fact, since any module
over a division ring is free (i.e., a vector space), we have that EndR(A)A is a vector space. This is the
idea of double centralizers.

Proof: We show that every nonzero element of EndR(A) is invertible. Let ϕ ∈ EndR(A) be nonzero.
Since Ker(ϕ) is a submodule of A, and since A is simple and Ker(ϕ) 6= A, we have that Ker(ϕ) = {0}.
Hence, ϕ is injective. Similarly, Im(ϕ) is a submodule of A and it’s nontrivial, so Im(ϕ) = A. So, ϕ
is a bijection, and so ϕ−1 ∈ EndR(A), as long as ϕ−1 is still an R-module homomorphism, which we
verify now.

We want to check that ϕ−1(ra) = rϕ−1(a). Let a ∈ A and let b = ϕ−1(a), so that ϕ(b) = a. Now,

ϕ−1(ra) = ϕ−1(rϕ(b)) = ϕ−1(ϕ(rb)) = rb = rϕ−1(a).

Hence ϕ−1 ∈ EndR(A). Therefore, EndR(A) is a division ring. �

Remark: The converse to Schur’s Lemma is false. For example, let F be a field and let R be the ring

R :=

{(
a b
0 c

)
| a, b, c ∈ F

}
.

Let

A := F 2 =

{(
x
y

)
| x, y ∈ F

}
.

Now,

A1 :=

{(
z
0

)
| z ∈ F

}
.

is a nonzero proper submodule of A and so is not simple. However, R acts on A by left matrix multiplication,
and so EndR(A) ∼= F , which is a division ring (since it’s a field).

Definition: A left ideal I in a ring R is regular if there exists e ∈ R such that r− re ∈ I for every r ∈ R. A
right ideal J is regular if there exists e ∈ R such that for all r ∈ R we have that r − er ∈ J . Note that rings
with unity are all regular, by choosing e = 1.

Theorem IX.1.3: A left module A over a ring R is simple if and only if there exists a left maximal regular
ideal I such that A ∼= R/I as R-modules.

Proof: Let A be a simple module. Then, RA 6= 0 and so there exists a ∈ A such that Ra 6= 0. Since
Ra is a submodule of A, we must have that Ra = A. Thus the map R→ Ra = A defined by r 7→ ra is
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an R-module homomorphism. Let I be the kernel of this map, so that I Is a left ideal and R/I ∼= A.
Since Ra = a, there exists e ∈ R such that ea = a. Then, for any r ∈ R, we have that ra = rea and
so (r − re)a = 0. Thus, r − re ∈ I. Hence I is a left maximal regular ideal.

Conversely, suppose that I is a left maximal regular ideal of R. Then, R/I is an R-module. Pick e
such that r− re ∈ I for all r ∈ R. Now, we check that R(R/I) 6= 0. Suppose r(R/I) = 0 for all r ∈ R.
Then, 0 = r(e+ I) = re+ I = r + I. Hence, R ⊆ I, which is a contradiction. Hence R/I is simple. �

Definition: Let R be ring and let A be a (left) R-module. Then, AnnR(A) is an ideal, namely the kernel
of ρ : R→ EndZ(A). We say that A is a faithful module (or that ρ is a faithful action) if AnnR(A) = 0. We
say that a ring is primitive if it has a faithful, simple module.

Remark: Consider a ring R ⊆ EndZ(A), and note that then EndR(A) =: D ⊆ EndZ(A), and D is a division
ring. Now, A can be viewed in one of two ways: either as an R-module, with D = EndR(A), or as a D-
module, with R ⊆ EndD(A). While equality in this last containment may not be true, we will see that in
some sense R is at least a large part of EndD(A).

Definition: Let V be a (left) vector space over a division ring D. A subring R of EndD(V ) is called
a dense ring of endomorphisms of V if, for every positive integer n and every linearly independent subset
{u1, . . . , un} of V and every arbitrary sequence v1, . . . , vn, there exists θ ∈ R such that θ(ui) = vi.

Theorem IX.1.9: Let R be a dense ring of endomorphisms of a left (resp. right) vector space V over
a division ring D. Then, R is left (resp. right) Artinian if and only if dimD(V ) is finite, in which case
R = EndD(V )

Proof: We prove the left case. The right case is analogous. Let R ⊆ EndZ(V ) and suppose that
R is left Artinian. Assume toward a contradiction that dim(V ) is infinite. Then, there exists an
infinite linearly independent set {u1, u2, . . .}. We can view V as a left R-module. For each n, let
In := AnnR({u1, . . . , un}). Then, In is a left ideal and I1 ⊇ I2 ⊇ I3 ⊇ · · · . These inclusions must be
proper, so this contradicts the assumption that R is Artinian. Hence dim(V ) is finite.

Conversely, if dimD(V ) is finite, then we observe that the only dense ring of endomorphisms is
EndD(V ). So, R = EndD(V ) ∼= Matn(D) for n = dimD(V ). We proved previously that Mathn(D) is
left (and right) Artinian, because it has a composition series. �

Lemma IX.1.11: Let A be a simple R-module for any ring R. Let D := EndR(A) and view A as a D-vector
space. If V is a finite dimensional D-subspace of A and a ∈ Ar V , then there exists r ∈ R such that ra 6= 0
and rV = 0.

Proof: (by induction on dimD(V )) If dimD(V ) = 0, then V = {0} and a 6= 0. Since A is simple, by a
remark following the definition of a simple module in Hungerford, we have that Ra = A and so there
exists r ∈ R such that ra 6= 0.

Now, assume true for n − 1. Firstly, if W is an (n − 1)-dimensional subspace and u ∈ A rW , then
there exists r ∈ R such that rW = 0 and ra 6= 0. Secondly, if W is an (n − 1)-dimensional subspace
and I := AnnR(W ) is a left ideal, then if v ∈ A and rv = 0 for all r ∈ I, it follows that V inW .

Let V be an n-dimensional subspace and let a ∈ A r V . Let {v1, . . . , vn} be a basis of V . Let
W := Span{v1, . . . , vn−1}. Then, V = W ⊕Dvn. Set I := AnnV (W ). Then, there exists r ∈ I such
that rvn 6= 0. Then, Ivn is an R-submodule of A since I is a left ideal. So, Ivn 6= 0 and hence Ivn = A.

We want r ∈ R such that rV = 0 with ra 6= 0. Such an r must be in I. If no such r exists, then define
θ : A→ A as follows: for rvn ∈ Ivn = A, set θ(rvn) = ra. To see that θ is well-defined, if r1vn = r2vn
for ri ∈ I, then (r1 − r2)vn = 0. Hence r1 − r2 ∈ Ann(V ). Thus, (r1 − r2)a = 0 and so r1a = r2a.
Hence, well-defined.
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Note that θ ∈ EndR(A) =: D. For all r ∈ I we have that

0 = θ(rvn)− ra = rθ(vn)− ra = r(θ(vn)− a).

Hence by our “secondly” remark above, it follows that θ(vn)−a ∈W and so a = θ(vn)− (θ(vn)−a) ∈
Dvn +W = V , which is a contradiction. Hence the lemma follows. �

Theorem IX.1.12: (Jacobson Density Theorem) Let R be a primitive ring with faithful simple module A.
Consider A as a vector space over D := EndR(A). Then, R is isomorphic to a dense ring of endomorphisms
of the D-vector space A.

Proof: For r ∈ R, define αr : A → A to be the map a 7→ ra, so αr ∈ EndD(A). Now define
α : R→ EndD(A) by r 7→ αr.

Let {u1, . . . , un} be a linearly independent set in A. Let v1, . . . , vn be an arbitrary sequence of n
elements. We want to find r ∈ R such that αr(ui) := rui = vi for all i. By the previous Lemma we
have for each i an element ri ∈ R such that riui 6= 0 and riuj = 0 for all j 6= i.

Also by the Lemma, for all i there exists si such that siriui 6= 0. Then, Rriui 6= 0, so Rrivi = A for
all i. So, for all i, there exists ti ∈ R such that tiriui = vi. Note that tiriuj = 0 for all j 6= i.

Let r =
∑
i

tiri. Now after checking that this r works, the theorem is complete. �

Remark: Let A,D be as above. If n := dimD(A) < ∞, then EndD(A) ∼= Matn(D) is a simple Artinian
ring. If S is a dense subring of Matn(D), then S = Matn(D).

Corollary IX.1.13: If R is a primitive ring, then either R ∼= Matn(D) for some n ∈ N and some division
ring D, or else for all n ∈ N, there exists a subring Rn of R and a surjective homomorphism Rn → Matn(D).

Proof: Let M be a faithful simple R-module. If dimD(M) =: n < ∞, then R ∼= Matn(D). Assume
dimD(M) = ∞. Let m1,m2, . . . be an infinite linearly independent sequence of elements. Set Rn :=
{r ∈ R | rMn ⊆M)n}, where Mn := spanD({m1, . . . ,mn}).

Then, since R acts densely on M , it follows that Rn acts densely on Mn, and so we have a
homomorphism Rn � EndD(Mn) ∼= Matn(D). �

Theorem IX.1.14: (Wedderburn-Artin) The following conditions on a left Artinian ring are equivalent.

(i) R is simple.

(ii) R is primitive.

(iii) R is isomorphic to EndD(V ) for some D-vector space V .

(iv) R ∼= Matn(D) for some n and D.

Proof:

(i) =⇒ (ii) Let I be a minimal left ideal. Then, AnnR(I) is an ideal, and so it must be zero or R.
If AnnR(I) = R, then RI = 0 and so {r ∈ R | Rr = 0} 6= 0. But, this set is an ideal and hence
must be R, but since R2 6= 0, this is a contradiction. Thus, AnnR(I) = 0 and RI 6= 0, so I is a
faithful simple module and R is primitive.

See Hungerford for other equivalences. �

Lemma IX.1.15: Let V be a finite dimensional vector space over a division ring D. If A and B are simple
faithful modules over the endomorphism ring R = HomD(V, V ), then A and B are isomorphic R-modules.
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Proof: Let I be a minimal left ideal of R. Then, A is faithful since R is simple, so IA 6= 0. Then,
there exists a ∈ A such that Ia 6= 0. But, Ia is an R-submodule of A, and hence equal to A.

We must check that I → Ia(= A) given by r 7→ ra is a nonzero R-module homomorphism, necessarily
an isomorphism, since I and A are simple. �

Lemma IX.1.16: Let V be a D-division space and R = EndD(V ). Suppose that g : V → V is a
homomorphism of abelian groups such that gr = rg for all r ∈ R (i.e., g is an R-endomorphism). Then, there
exists d ∈ D such that for all v ∈ V , we have gv = dv.

Let u be a nonzero element of V . Show that u and g(u) are linearly dependent over D. If dimD(V ) = 1,
then everything works out. So, now suppose that dimD(V ) ≥ 2 and that {u, g(u)} is a linearly
independent set. Then, there exists r ∈ R(= EndD(V )) such that ru = 0 and rg(u) 6= 0. But, we have
that

r(g(u))− g(r(u)) = 0

which yields a contradiction. Therefore there exists d ∈ D such that g(u) = du. Now, if v ∈ V then
by density we can choose s ∈ R such that s(u) = v. Now,

g(v) = g(su) = sg(u) = s(du) = d(su) = dv. �

Proposition IX.1.17: For i = 1, 2, let Vi be a vector space of finite dimension ni over the division ring Di.
Then,

(i) If there is an isomorphism of rings HomD1(V1, V1) ∼= HomD2(V2, V2), then dimD1(V1) = dimD2(V2) and
D1
∼= D2.

(ii) If there is an isomorphism of rings Matn1(D1) ∼= Matn2(D2), then n1 = n2 and D1 is isomorphic to D2.

Recall: EndD(M) ∼= Matn(Dopp) for any D-vector space M .

Example: Let DD be the 1-dimensional left D-vector space. Let ϕ ∈ EndD(DD). Set a := ϕ(1). Then, for
any d ∈ DD, we have that ϕ(d) = ϕ(d, 1) = dϕ(1) = da. Hence, ϕ is right multiplication by a.

Let ϕ,ϕ′ ∈ EndD(DD). Then, there exists a and a′ ∈ D such that ϕa(x) = xa and ϕa′ = xa′ for all x ∈ D.
Then, (ϕa ◦ ϕa′)(x) = ϕa(ϕa′(x)) = ϕa(xa′) = xa′a. Thus, ϕ ◦ ϕ′ is multiplication by a′a. This tells us that
EndD(DD) ∼= Dopp.
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1.8.2 Section IX.2 - The Jacobson Radical

Definition: An ideal I of a ring R is left primitive if R/I is a (left) primitive ring. Note that we’re not
saying that I is a left ideal. We have an analogous definition of a right primitive ideal.

Definition: An element a ∈ R is left quasi-regular if there exists r ∈ R such that ra+ r + a = 0. We have
an analogous definition of a right quasi-regular element of R.

Definition: An ideal I is called left quasi-regular if every element of I is left quasi-regular. Again we have
the analogous definition for a right quasi-regular ideal.

Recall: A left ideal I is regular if there exists e ∈ R such that for all r ∈ R we have r − re ∈ I.

Lemma IX.2.4: If I 6= R is a regular left ideal of R, then I is contained in a maximal left ideal which is
regular.

Proof: Since I is regular, there exists e ∈ R such that for all r ∈ R we have r − re ∈ I. Hence, any
left ideal J containing I is also regular.

Let S be the set of all ideals L such that I ⊆ L 6= R, ordered by inclusion. Write S as {Ii}i∈C .
Define K := ∪(Ii). This makes K a left ideal. We claim that K is proper. If not, then e ∈ K, and
so there exists i such that e ∈ Ii. But then r − re ∈ I ⊆ Ii for all r, i.e., re ∈ Ii for all r. Therefore,
Ii = R, which is a contradiction. �

Lemma IX.2.5: Let K be the intersection of all regular maximal left ideals. Then, K is a left quasi-regular
left ideal.

Proof: Let K be a left ideal. Let a ∈ K. Define T := {r + ra | r ∈ R}. We claim that T = R. If this
is true, then −a ∈ T and so there exists r such that r + ra = −a, i.e., ra+ r + a = 0, which makes a
left quasi-regular.

So, we now show that T = R for every a ∈ K. T is a left ideal and is regular (take e = −a). Assume
T 6= R. So, T ⊆ I0, where I0 is a regular maximal left ideal. Then, a ∈ K ⊆ I0, so ra ∈ I0 for all
r ∈ R. Since r+ra ∈ T ⊆ I0, we get that r ∈ I0, which is a contradiction. This completes the proof. �

Lemma IX.2.6: Let R be a ring with a simple left module. If I is a left quasi-regular left ideal, then I ⊆
[the intersection of all simple left modules].

Proof: Suppose not. Then, there exists a simple module B with IB 6= 0. So, b ∈ B and Ib 6= 0.
Hence, Ib = B, since Ib is a submodule. Thus, there exists a ∈ I such that ab = −b. Since I is left
quasi-regular and a ∈ I, there exists r ∈ R such that r + a+ ra = 0.

Calculating,

0 = 0 · b
= (r + a+ ra)b

= rb+ ab+ rab

= rb− b+ r(−b)
= −b.

This is a contradiction, since b 6= 0. Thus, every left quasi-regular left ideal is contained in the
intersection of all annihilators of simple left modules. �
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Lemma IX.2.7: An ideal P of R is left primitive if and only if P is the annihilator of a simple left R-module.

Proof: See book.

Lemma IX.2.8: If I is a left ideal and I is left quasi-regular, then I is right quasi-regular.

Proof: Let a ∈ I. Then, there exists r ∈ R such that r + a + ra = 0 and so r = −a − ra ∈ I. Now,
there exists s such that s+ r + sr = 0. Thus, s is right quasi-regular.

Define ◦ by x ◦ y := x+ y + xy. Note that ◦ is associative. Then,

a = 0 ◦ a = (s ◦ r) ◦ a = s ◦ (r ◦ a) = s ◦ 0 = s. �

Theorem IX.2.3: Let R be a ring. Then there exists an ideal J(R) such that

(i) J(R) is the intersection of all the left annihilators of simple left R-modules.

(ii) J(R) is the intersection of all regular maximal left ideals.

(iii) J(R) is the intersection of all left primitive ideals.

(iv) J(R) is a left quasi-regular left ideal which contains every left quasi-regular left ideal.

(v) The properties in (i)-(iv) hold when “left” is replaced by “right”.

The ideal J(R) is called the Jacobson radical.

Proof: (See book for more details.) Define J(R) to be the intersection all annihilators of simple left
R-modules. If J(R) = R, then (ii), (iii), and (iv) hold. Now assume J(R) 6= R. Then, by Lemma
IX.2.7, (iii) holds immediately.

To see (ii), define K to be the intersection of all regular maximal left ideals of R. By Lemmas
IX.2.5 & IX.2.6, we have that K ⊆ J(R), so it remains to prove J(R) ⊆ K. Let c ∈ J(R). By
Theorem IX.1.3, J(R) is the intersection of all left annihilators of the quotients R/I, where I runs
over all regular maximal left ideals of R. For each regular maximal ideal I there exists e ∈ R such that
c− ce ∈ I. Since c ∈ AnnR(R/I), we have that cr ∈ I for all r ∈ R, and in particular ce ∈ I. Hence,
c ∈ I for every regular maximal ideal I. Thus, J(R) ⊆ I = K. Therefore, J(R) = K.

For (iv) observe that J(R) is a left quasi-regular left ideal by (ii) and Lemma IX.2.5. J(R) contains
every left quasi-regular left ideal by Lemma IX.2.6.

For (v), see book. �

Remark: In a commutative ring with 1, we have that⋂
{maximal ideals} = J(R) ⊃ N(R) =

⋂
{prime ideals}.

Recall that N(R) is the nilradical of R.

Example: Let R = Z. Then, J(R) = {0} = N(R).

Definition: A ring R is called semisimple if J(R) = 0.
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Theorem IX.2.10: Let R be a ring.

(i) If R is primitive then R is semisimple.

(ii) If R is simple and semisimple, then R is primitive.

(iii) If R is simple, then either R is primitive semisimple or R is a radical ring.

Definition: An element a ∈ R is called nilpotent if there exists n ∈ N such that an = 0. A (left, right,
two-sided) ideal I is nil if every element of I is nilpotent. An ideal I is called nilpotent if there exists n ∈ N
such that In = {0}. It is clear that nilpotent ideals are nil, but the converse is false.

Theorem IX.2.12: Let R be a ring. Every nil right or left ideal is contained in J(R).

Proof: Nilpotent elements are left or right quasi-regular. Observe that

(1 + a)−1 =

∞∑
i=0

(−1)iai,

and this sum is actually finite because a is nilpotent. �

Proposition IX.2.13: Let R be a left Artinian ring. Then, J(R) is a nilpotent ideal. Consequently, every
nil left or right ideal is nilpotent and J(R) is the unique maximal nilpotent left (or right) ideal of R.

Proof: Set J := J(R). Note that J ⊃ J2 ⊃ J3 ⊃ · · · . By the Artinian condition, there exists k > 0
such that Jk = J i for all i ≥ k. We claim that Jk = 0.

Suppose not. Let S := {left ideals I such that JkI 6= 0}. Then,

JkJ = Jk+1 = Jk 6= 0,

and so J ∈ S. So, S 6= ∅¿ Thus S has a minimal element I0 (by the minimality condition). Then
JkI0 6= 0, and so there exists a ∈ I0 such that Jka 6= 0.

Therefore, there exists r ∈ Jk with ra = a. Since −r ∈ Jk ⊂ J , we see that −r is left quasi-regular.
So, there exists s ∈ R such that s− r − sr = 0. Now,

a = ra

= −(−ra)

= −(−ra+ 0)

= −(−ra+ sa− sa)

= −(−ra+ sa− s(ra))

= −(−r + s− sr)a
= 0.

This is a contradiction, and so the theorem is proved. �

Remark: Suppose R is a F -algebra, i.e., R has a 1 and has a subring F 3 1R in the center of R. Then, any
(left, right, two-sided) ideal of R is a vector space over F . If R is finite dimensional as a vector space over
F , we say that R is a finite dimensional algebra. In this case, it is clear from considering dimensions that R
is left and right Artinian.

Example: If G is a finite group, then FG (the group algebra) is a finite dimensional algebra.
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Theorem IX.2.14: If R is a ring, then R/J(R) is semisimple.

Proof: Let π : R→ R/J(R) be the natural projection map. Let C := {regular maximal left ideals of R}.
If I ∈ C then J(R) ⊆ I and π(I) is a maximal left ideal of R/J(R). If e ∈ R such that r − re ∈ I for
all r ∈ R, then r − re ∈ π(I) for all r ∈ R/J(R), and so π(I) is regular.

Let
r ∈

⋂
I∈C

π(I) =
⋂
I∈C

I/J(R).

Then,

r ∈
⋂
I∈C

I = J(R).

Then,

J(R/J(R)) =
⋂
{regular maximal left ideals of R/J(R)} ⊆

⋂
I∈C

π(I) = 0.

So, R/J(R) is semisimple. �

Remark: Consider a ring R with I a left primitive ideal. Then, R/I is primitive and is isomorphic to a
dense ring of automorphisms of a vector space over some division ring. Let J(R) be the intersection of all
left primitive ideals. We can consider the map

R −→
∏

left prime
ideals I

R/I,

which induces the diagram

R/J(R) ⊂ -
∏

left prime
ideals I

R/I

R/I
?

-

This map is called the subdirect product.

Theorem: R is simple if and only if R is isomorphic to a subdirect product of primitive rings.

Proof: We have already shown that if J(R) = 0 then R is isomorphic to a subdirect product
of primitive rings (see the remark above). Conversely, if R ⊆

∏
Ri is a subdirect product of

primitive rings, let πi : R � Ri be the ith projection. Then, Ker(πi) is a left primitive ideal and
J(R) ⊆ ∩(Ker(πi)) = {0}. Therefore, R is semisimple. �

Lemma IX.2.15: Let R be a ring and let a ∈ R. Then,

(i) If −a2 is left quasi-regular then so is a.

(ii) a ∈ J(R) if and only if Ra is a left quasi-regular left ideal.

Remark: Recall that we cannot call Ra “the ideal generated by a” because R might not have a 1, in
which case a 6∈ Ra.

Proof of (i): Since −a2 is quasi-regular, there exists r ∈ R such that

r + (−a2) + r(−a2) = 0.
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Define s := r − a− ra. Now,

s+ a+ sa = r − a− ra+ a+ (r − a− ra)a

= r − ra+ ra− a2 − ra2

= r − a2 − ra2

= 0.

Thus s is the ring element which shows that a is left quasi-regular. �

Proof of (ii): If a ∈ J(R) then Ra ⊆ J(R), and so Ra is a left quasi-regular left ideal. Conversely,
suppose that Ra is a left quasi-regular left ideal. Set K := {ra + na | r ∈ R, n ∈ Z}. Then, K is a
left ideal containing a and Ra. Let s = ra + na ∈ K. Then, −s2 = −(ra + na)(ra + na) and we see
that −s2 is left quasi-regular. Hence so is s by part (i). Therefore, K is left quasi-regular, and thus
K ⊆ J(R), i.e., a ∈ J(R). �

Theorem IX.2.16: If I is an ideal of R (regarded as a ring), then

(i) J(I) = I ∩ J(R),

(ii) If R is semisimple then so is every ideal of R,

(iii) J(R) is a radical ring, i.e., J(J(R)) = J(R).

Proof of (i): It’s clear that I ∩ J(R) is an ideal of I. If a ∈ I ∩ J(R), then a is a left quasi-regular
element of R, and so there exists r ∈ R such that r + a+ ra = 0. Since a ∈ I and ra ∈ I we see that
r ∈ I. Therefore, a is actually a left quasi-regular element of I. This tells us that I ∩ J(R) is a left
quasi-regular left ideal of I, and hence I ∩ J(R) ⊆ J(I).

Conversely, assume a ∈ J(I) and r ∈ R. Then,

−(ra)2 = −(rar)a ∈ IJ(I) ⊆ J(I).

Therefore, −(ra)2 is left quasi-regular in I. By the previous lemma, ra is left quasi-regular in I, and
so it is left quasi-regular in R. This yields that the ideal Ra is left quasi-regular in R, and so a ∈ J(R).
Therefore, J(I) ⊆ I ∩ J(R). �

Theorem IX.2.17: If Ri for i ∈ I is a family of rings, then J(
∏
RI) =

∏
(J(Ri)).

Proof: Let (ai)i∈I ∈
∏

(Ri). Then check that this element is left quasi-regular if and only if ai is
left quasi-regular in Ri. Therefore,

∏
(J(Ri)) is a left quasi-regular ideal of

∏
(Ri). So,

∏
(J(Ri)) ⊆

J(
∏

(Ri)). Let πk :
∏

(Ri) → Rk be the canonical projection, and set Ik = πk(J(
∏

(Ri))) ⊆ J(Rk).
Therefore, J(

∏
(Ri)) ⊆

∏
(J(Ri)). �
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1.8.3 Section IX.3 - Semisimple Rings

Theorem IX.3.3: (Wedderburn-Artin) The following conditions on a ring are equivalent:

(i) R is a nonzero semisimple left Artinian ring.

(ii) R is a direct product of a finite number ideals, each of which is a simple ring isomorphic to the
endomorphism ring of a finite dimensional vector space over a division ring.

(iii) There exist division rings D1, . . . , Dt, and positive integers n1, . . . , nt such that

R ∼= Matn1
(D1)× · · · ×Matnt

(Dt).

Proof: First note that (ii) ⇐⇒ (iii) is slightly trivial, see Hungerford.

We now prove (i) ⇐⇒ (ii). For, (ii) =⇒ (i), recall that

J
(∏

Ri

)
=
∏

J(Ri).

If the Ri are simple and primitive they are semisimple. So, J(R) = 0. Also, EndDi(Vi) is left Artinian
for any vector space Vi over a division ring Di. Hence

t∏
i=1

EndDi(Vi)

is also left Artinian.

Now we show the much harder (i) =⇒ (ii). First observe that

0 = J(R) =
⋂
{left primitive ideals of R} =

⋂
i∈I

Pi,

where {Pi | i ∈ I} is the set of left primitive ideals of R. Now,

ϕ : R ↪→
∏
i∈I

R/Pi

by the natural map. Suppose we know that I is a finite set. Well, each R/Pi is simple, and the Pi are
maximal ideals, so

R2 + Pi = R

since (R/Pi)
2 6= 0, and

Pi + Pj = R

for all i 6= j. So, by the Chinese Remainder Theorem, ϕ is surjective, and so an isomorphism,
which would complete the theorem. So, in this step it remains to prove that indeed I is a finite set.

Well, observe that

R2 = (P1 + P2)(P1 + P3)

= P 2
1 + P1P3 + P2P1 + P2P3

⊆ P1 + P2P3

⊆ P1 + P2 ∩ P3.

So,
R = R2 + P1 ⊆ P1 + P2 ∩ P3.

By induction and repeating this process, we have that

P1 + (P2 ∩ · · · ∩ Pn) = R
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if the Pi are distinct.

Now assume toward a contradiction that I is infinite. Consider

P1 ⊃ P1 ∩ P2 ⊃ P1 ∩ P2 ∩ P3 ⊃ · · · .

By DCC, there exists n such that

P1 ∩ P2 ∩ · · · ∩ Pn = P1 ∩ P2 ∩ · · · ∩ Pn ∩ Pn+1,

i.e.,
Pn+1 ⊃ P1 ∩ P2 ∩ · · · ∩ Pn.

But, but our calculation, we know that

R = Pn+1 + (P1 ∩ · · · ∩ Pn) ⊆ Pn+1.

This is a contradiction, and so the theorem is complete. �

Corollary IX.3.4:

(i) A semisimple left Artinian ring has an identity.

(ii) A semisimple ring is left Artinian.

(iii) A semisimple left Artinian ring is both left and and right Noetherian.

Definition: An element e of a ring is called an idempotent if and only if e2 = e.

Remark: In the case of a semisimple ring as in the Wedderburn-Artin Theorem, we can write the elements
of R in the form

(M1, . . . ,Mt)

and so we can find idempotents ej defined by

ej := (0, . . . , 0, Inj
, 0, . . . , 0)

where Inj is in the jth component and is the identity matrix of the correct size.

Corollary IX.3.5: If I is an ideal in a semisimple left Artinian ring R, then I = Re for e an idempotent in
the center of R.

Proof: Note that
Rej = {(0, 0, . . . , 0,M, 0, . . . , 0, 0)}

and this is a simple ideal of R. So,

I ∩Rej =

{
Rej , ej ∈ I

0, ej 6∈ I
,

since it is an ideal of Rej . Now, define

e :=
∑
ej∈I

ej ,

and
e′ :=

∑
ej 6∈I

ej .

If ek 6∈ I, then Iek ∈ I ∩Rek = 0. Then, Ie′ = 0, and so

I = I · 1 = I

(
t∑
i=1

ei

)
= I(e+ e′) = Ie.

This proves the theorem. �
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Theorem IX.3.6: Let R be a ring and A be a module. Then, the following are equivalent:

(i) A is a sum of a family of simple submodules.

(ii) A is the (internal) direct sum of a family of simple modules.

(iii) For every nonzero element a ∈ A, we have Ra 6= 0. Additionally, every submodule B of A is a direct
summand, i.e., there exists a submodule C such that A = B ⊕ C.

Proof:
(i) =⇒ (ii): Suppose A is generated by {Bi | i ∈ I}, a family of simple submodules. Consider subsets

J of I such that
∑
j∈J

Bj is direct.

By Zorn’s Lemma, there exists a maximal such subset J0. We claim that
∑
j∈J0 Bj = A. It suffices

to show that for all i,

Bi ≤
∑
j∈J0

Bi.

Well, if not, then

Bi ∩

∑
j∈J0

 � Bi,

and hence it is equal to zero, since Bi is simple. �

(ii) =⇒ (iii): Assume A is the direct sum A =
∑
i∈I Bi. Let

0 6= a ∈ A, a = bi1 + · · ·+ bik , 0 6= bij ∈ Bij .

If Ra = 0, then Rbij = 0 for all i, j. But, Bij is simple, so Bij = Rbij . Since M is simple, we pick
0 6= b ∈ M and we see that X := {N ≤ M | RN = 0} = 0. So if b 6= 0 then b 6∈ X hence Rb 6= 0.
Therefore, Ra 6= 0. Let B be a nonzero submodule of A. Then, for i ∈ I, either Bi ⊂ B or Bi∩B = 0,
since Bi is simple. If A = B, then we’re done. So, assume that there exists i such that Bi ∩ B = 0.
By Zorn’s Lemma, there exists a maximal subset J with the property that

B ∩

∑
j∈J

Bi

 = 0.

In that case,
∑
J0∪{i}

Bj is direct, which contradicts the maximality of J0.

We now claim that

A = B ⊕

∑
j∈J

Bj

 .

It suffices to show that

Bi ⊆ B ⊕

∑
j∈J

Bj


for all i ∈ I. We can assume that i 6∈ J and assume toward a contradiction that

Bi 6⊆ B ⊕

∑
j∈J

Bj

 .
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Then,

B ∩

 ∑
J∪{i}

Bj

 = 0

and so Bi ∩B = 0, i.e., Bi ∩
∑
j∈J

Bj = 0. We can now write

b = bi +
∑

bj

bi = −b+
∑

bj

Bi ∩
(
B +

∑
Bj

)
6= 0.

This is a contradiction, which proves the claim. �

(iii) =⇒ (i): Let N be a submodule of A and let K be a submodule of N . By hypothesis, we can
write A = K ⊕ L and so

N = N ∩A = N ∩ (K ⊕ L) = K ⊕ (N ∩ L).

So, K is a direct summand of N . We next show that A has simple submodules. Let a 6= 0 be an
element of A. By Zorn’s Lemma there exists a submodule B of A which is maximal with respect to
a 6∈ B. By hypothesis, A = B ⊕ C for some C 6= 0. Also, RC 6= 0 by hypothesis.

We now claim that C is simple. If not, then there exists a proper nonzero submodule D ≤ C. Then,
C = D ⊕ E for some nonzero E. So, A = B ⊕D ⊕ E. Then, B < B ⊕D and B < B ⊕ E.

Thus, for
a ∈ (B ⊕D) ∩ (B ⊕ E)

we have that
a = b+ d = b′ + e

and so
0 = (a− a) = (b− b′) + d− e

which implies that d− e = 0 and b = b′, and so a ∈ B, which is a contradiction.

Now let A0 be the sum of all simple submodules of A. Then, there exists N such that A = A0 ⊕N .
If n 6= 0, then by the preceding argument applied again, we can prove that N has a simple submodule
T and so T ⊆ A0 which implies that T ⊆ A0 ∩N = 0, a contradiction. �

Theorem IX.3.7: The following are equivalent conditions on a ring R with 1.

(i) R is semisimple left Artinian.

(ii) Every left R-module is projective.

(iii) Every left R-module is injective.

(iv) Every short exact sequence of R-modules splits.

(v) Every nonzero unitary left R-module is semisimple.

(vi) R is a unitary semisimple left R-module.

(vii) Every left ideal is of the form Re, where e is idempotent.

(viii) R is the direct sum of minimal left ideals Ki for i = 1, 2, . . . ,m, such that Ki = Rei for ei idempotent
with eiej = δij and e1 + · · ·+ em = 1.
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Proof: See Hungerford.

Remark: Note that in decomposing RR = ⊕Rfi with fi idempotents and R a minimal left ideal and
fifj = δij and

∑
fi = 1, the fi are not uniquely determined. This is a major source of confusion in most

textbooks.

Example: Let R = Matn(D), we can let fi be the matrices which have a 1 in the i, i spot and 0s elsewhere,
or we can consider the set of idempotents gi := ufiu

−1 for any invertible u ∈ R×.
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1.8.4 Section IX.5 - Algebras

Definition: Let K be a commutative ring with 1. Then, R is a K-algebra if (R,+) is a unitary (left)
K-module and k(ab) = (ka)b = a(kb) for all k ∈ K and a, b ∈ R.

Remark: If R has a 1 and K is a field, then K1R is an isomorphic copy of K in the center of R.

Remark: The ideals in an algebra, called algebra ideals must be ideals as a ring and ideals as a module. If
the underlying ring has a 1, the algebra ideals coincide with the ring ideals.

Theorem IX.5.4: A semisimple left Artinian K-algebra (with K a field, so with a 1) is isomorphic to a
product

Matn1(D1)× · · · ×Matnt(Dt)

where Di are division algebras.

Definition: Let A be an algebra over a field K. An element a ∈ A is algebraic over K if there exists a
nonzero polynomial f(x) ∈ K[x] such that f(a) = 0.

Remark: Note that if A is finite dimensional as a vector space over K, then every element is algebraic.

Lemma IX.5.6: If D is an algebraic division algebra over an algebraically closed field K, then D = K.

Proof: D contains a copy of K in its center. If d ∈ D, then K(d) is an algebraic extension field of K,
hence d ∈ K. �

Theorem: IX.5.7 If A is a finite dimensional semisimple algebra over an algebraically closed field K, then

A ∼= Matn1
(K)× · · · ×Matnt

(K)

for some ni ∈ N.

Proposition IX.5.8: (Maschke’s Theorem) Let KG be the group algebra of a finite group G over a field
K. Assume that |G| is a unit in K. Then KG is semisimple.

Proof: We show that every module is projective by showing that every short exact sequence of
KG-modules

0 - A
i- B

π- C - 0

splits. Considered as a vector space, the sequence splits. So, there exists a K-linear map

θ : C → B

such that

π ◦ θ = 1C .

We want to make a KG-module homomorphism from θ.

Let ψ : C → B be defined by

ψ(c) := |G|−1
∑
g∈G

gθ(g−1c).
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We claim that ψ is a KG-module homomorphism. For starters, ψ is a K-linear map since it’s the sum
of a composition of K-linear maps. Now,

(π ◦ ψ)(c) = |G|−1
∑
g∈G

π(gθ(g−1c))

= |G|−1
∑
g∈G

g(πθ(g−1c))

= |G|−1
∑
g∈G

g(g−1c)

= |G|−1
∑
g∈G

c

= |G|−1(|G|c)
= c.

Finally, we show that ψ is a KG-map. It suffices to show that for h ∈ G and c ∈ C

ψ(hc) = hψ(c).

Well, note that as g runs over G, so does x := h−1g, and so

ψ(hc) = |G|−1
∑
g∈G

gθ(g−1(hc)︸ ︷︷ ︸
= (g−1h)c

)

= |G|−1
∑
x∈G

(hx)θ(x−1c)

= h

(
|G|−1

∑
x∈G

xθ(x−1c)

)
= hψ(c).

Hence, we’ve shown that every short exact sequence of KG-modules splits, i.e., every module is
projective, i.e., KG is semisimple. �
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1.8.5 Section IX.6 - Division Algebras

Definition: An algebra A with a 1 over a field K is a central simple K-algebra if A is a simple K-algebra
and the center of A is precisely K.

Example: Consider Matn(K), or H (the Hamilton Quaternions). Both are central simple R-algebras.

Remark: A division ring D is a central simple K-algebra, where K is defined to be the center of D.

Theorem IX.6.2: If A is a central simple K-algebra and B is a simple K-algebra, then A⊗K B is a simple
K-algebra.

Proof: Suppose that U is a nonzero ideal of A⊗K B and let 0 6= u ∈ U . Let {yi}i∈I be a basis of B.
We write u uniquely as

u =

n∑
i=1

ai ⊗ yi

where 0 6= ai ∈ A. Among all such u, we can assume u to be chosen such that n is minimized.

Since A is simple, we have that Aa1A = A, and so there exist rj , sj such that

1A =

t∑
j=1

rja1sj .

Now,

v :=

t∑
j=1

(rj ⊗ 1)u(sj ⊗ 1)

=

t∑
j=1

(rj ⊗ 1)

[
(a1 ⊗ y1) +

n∑
i=2

ai ⊗ yi

]
(sj ⊗ 1)

=

t∑
j=1

rja1sj ⊗ y1 +

n∑
i=2

 t∑
j=1

rjaisk

⊗ yi


= 1⊗ y1 +

m∑
i=2

ai ⊗ yi ∈ U,

with ai 6= 0 by minimality of n. Note that we have v ∈ U above because U is an ideal.

Now let a ∈ A and w ∈ U with

w := (a⊗ 1)v − v(a⊗ 1)

=
[
a⊗ y1 +

∑
aai ⊗ yi

]
−
[
a⊗ y1 +

∑
aia⊗ yi

]
=

n∑
i=2

(aai − aia)⊗ yi.

By minimality, all aai − aia = 0.
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Since a ∈ A was arbitrary, we have that ai ∈ Z(A) = K, and therefore,

v = 1⊗ y1 +

n∑
i=2

ai ⊗ yi

= 1⊗ y1 +

n∑
i=2

1⊗ aiyi

= 1⊗ b

for some b ∈ B. Since B is simple, we have that BbB = B. Hence, there exists ck, dk ∈ B such that

1B =

m∑
k=1

ckbdk.

Therefore,
m∑
k=1

(1⊗ ck)(1⊗ b)(1⊗ dk) = 1⊗ 1.

Since the element on the left is in U , we conclude that 1 ∈ U , i.e., U = A⊗K B. Therefore A⊗K B is
simple. �

Remark: If B is actually central simple in the above proof, then this theorem can be strengthened to show
that A⊗K B is also central simple.

Theorem IX.6.3: Let D be a division ring with center K. Let F be a maximal subfield. Then, D ⊗K F is
isomorphic to a dense K-subalgebra of EndF (D) (F acting by right multiplication).

Proof: For x ∈ D, let αx ∈ EndF (D) be defined by αx(d) := xd (left multiplication). For c ∈ F , let
βc ∈ End(D) be defined by βc(d) = dc (right multiplication).

Check that αx, βc ∈ EndF (D) for all x ∈ D and c ∈ F . Also, αxβc = βcαx for all c ∈ F and x ∈ D. So,
we get a K-bilinear map D×F → EndF (D) defined by (x, c) 7→ αxβc. We hence get a homomorphism
of K-modules θ : D ⊗K F → EndF (D) defined by x⊗ c 7→ αxβc. It needs to be checked that this is a
homomorphism of algebras.

Since D ⊗K F is simple and θ is nonzero, we have that θ is a monomorphism.

Let A = Im(θ). We have to show that A is a dense subring of EndF (D). Since D is a division ring, it
is a simple left D-module, hence a simple left A-module.

Hence D is a simple faithful left A-module. So, by the Density Theorem, A is isomorphic to a dense
subring of End∆(D), where ∆ = EndA(D), (i.e., EndEndA(D)(D)). We claim that ∆ = {βc | c ∈ F}.

It is clear that βc ∈ ∆ for all c ∈ F , since αxβc = βcαx and F is commutative. Now let f ∈ ∆. Then,
for x ∈ D, f(x) = f(x · 1) = f(αx(1)) = αx(f(1)) = xf(1). Now let c ∈ F . Then, f(c) = cf(1), but
also f(βc(1)) = βc(f(1)) = f(1) · c. Hence, f(1) · c = c · f(1), for all c ∈ F . Therefore, by maximality
of F , we have that f(1) ∈ F . Therefore, since f(x) = xf(1), it follows that f(x) = βf(1)(x) for all
x ∈ D, i.e., f = βf(1).

This completes the proof. �

Lemma IX.6.4: Let A be a K algebra with a 1, and let F be a field extension of K. Then, A⊗K F is an
F -algebra with a 1, and dimF (A⊗K F ) = dimK(A).

Lemma IX.6.5: Let D be a division algebra over K and let A be a finite dimensional K-algebra. Then,
D ⊗K A is a left Artinian K-algebra.
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Theorem IX.6.6: Let D be a division algebra with center K and let F be a maximal subfield. Then,
dimK(D) <∞ if and only if dimK(F ) <∞, in which case dimF (D) = dimK(F ) and dimK(D) = (dimK(F ))2.

Proof: Consider D ⊗K F . Then,

dimF (D ⊗K F ) = dimK(D).

If dimK(D) <∞, then D⊗K F is a dense subring of EndF (D) which is finite dimensional over F , i.e.,
D ⊗K F = EndF (D) and dimF (D) < ∞. Observe that K ⊂ F ⊂ D, and now, dimK(F ) < ∞. The
same argument shows that if dimK(F ) <∞¡ then dimK(D) <∞.

Now note that
dimK(D) = dimF (D ⊗K F ) = dimF (EndF (D)) = (dimF (D))2.

Hence
dimK(F ) · dimF (D) = dimK(D) = (dimF (D))2)

and so
dimK(F ) = dimF (D). �

Definition: If u is a unit of a ring R, then the ring automorphism x 7→ uxu−1 is called an
inner automorphism.

Theorem IX.6.7: (Noether-Skolem) Let R be a simple left Artinian ring with center K. Let A,B be simple
K-subalgebras of R and α : A → B an isomorphism. Then, there exists β ∈ R× such that α(a) = βaβ−1,
for all a ∈ A.

Proof: Think of R as HomD(V, V ), where V is a finite dimensional left D-vector space and D is a

division ring. Note that K ∼= Z(D). Now, define A := D⊗K A and B := D⊗K B, so if α : A
∼=−−−→ B,

then 1⊗ α : A
∼=−−−→ B.

V is a D ⊗K R-module, since
(d⊗ r)(v) = d(r(v)) = r(dv).

Hence V is a A = (D ⊗K A)-module by restriction. This is the first A-module structure on V .

Similarly, V is a B-module. From this, using α we get that V has a second A-module structure:

A
1⊗α−−−−→ B

defined by
(d⊗ a)(v) := d(α(a)v) = α(a)(dv).

Now observe that since A is a simple K-algebra, we have

(1) Every A module is semisimple.

(2) All simple A modules are isomorphic.

Since V is a finite dimensional left D-vector space, we must have (for both A-module structures), that

V ∼=A W ⊕ · · · ⊕W︸ ︷︷ ︸
t times

i.e., the two A module structures are isomorphic, i.e., there exists β ∈ HomK(V, V ) and isomorphism,
such that

(d⊗ a)(β(v)) = β((d⊗ a)(v))

where the multiplication on the left is in one module structure and the multiplication on the right is
in the other.
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So, we have that

d(a(β(v))) = β(d(α(a)v)).

Set a = 1, and see that

d(β(v)) = β(d(v)).

Therefore, β ∈ HomD(V, V ) = R, i.e., β ∈ R×.

Set d = 1. Then,

a(β(v)) = β(α(a)(v))

and therefore

aβ = βα(a)

in R, and hence

α(a) = β−1aβ

for all a ∈ A. �

Corollary IX.6.8: (Frobenius Theorem) If D is an algebraic division algebra over R, then D ∼= R or D ∼= C
or D ∼= H. Recall that

H : +{a+ bi+ cj + dk | a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1}.

Proof: Let K be the center of D and let F be a maximal subfield. Then,

R ⊂ K ⊂ F ⊂ D.

We have that K and F are algebraic over R. Well, if F ∼= R, then D ∼= R. If F ∼= C, then if K ∼= C
we set F = K = D ∼= C. So, now assume that F ∼= C and K ∼= R. Then, dimK(F ) = 2, and so
dimK(D) = 4, by Theorem 6.6.

We now apply the Noether-Skolem theorem on A := C ∼= F and B := F with α : a + ib 7→ a − ib,
i.e., α is complex conjugation. So, there exists β ∈ D× such that βiβ−1 = −i. Then,

β2iβ−2 = β(−i)β−1 = −βiβ−1 = −(−i) = i.

So, β2 commutes with i, hence with F , and therefore, β2 ∈ F .

So, we can write β2 = w + iz for some w, z ∈ R, and thus β
2

= β(β2)β−1 = β2. Therefore, β2 ∈ R.

If β2 > 0, then β ∈ R, which is a contradiction, since β 6∈ Z(D). Hence, β2 = −r2 for some r > 0.
Thus, (

β

r

)2

= −1,

and so conjugation by β is the same as conjugation by
β

r
, so we can replace β by

β

r
.

Hence D = 〈1, i, j〉 and jij−1 = −i so j2 = −1. Set k := ij and check that now D = H. �

Corollary IX.6.9: (Wedderburn’s Theorem) Every finite division ring is a field.

Proof: Let F be a maximal subfield of D. If F = D, then we’re done. Hence assume F $ D. Then,

dimZ(D)(D) =
(
dimZ(D)(F )

)2
.

Let a be any element of D. Then, a lies in some maximal subfield F ′ and |F ′| = |F |. Therefore,
F ′ ∼= F since there is a unique finite field of any order.
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Applying the Noether-Skolem theorem, there exists β ∈ D× such that a ∈ βFβ−1. Thus, since a was
arbitrary, we have

D =
⋃

β∈D×
βFβ−1.

Let G := D× and let H := F×. Then,

G =
⋃
β∈G

βHβ−1.

But this is a contradiction to the assumption that H is proper in G and that both are finite. The
reason this is a contradiction is that the number of conjugates of H is[

G : NG(H)
]

and [
G : NG(H)

]
≤
[
G : H

]
.

Also, ∣∣∣∣∣∣
⋃
β∈G

βHβ−1

∣∣∣∣∣∣ ≤ 1 +
[
G : H

]
(|H| − 1) = |G| − (

[
G : H

]
+ 1) < |G|. �

Remark: This group theory part at the end is not a contradiction in the infinite space. Consider
the group G of all rotations in space and H all rotations about a particular fixed axis. Well, if you
conjugate H, you get the rotations around a different axis, and every rotation has an axis, so every
rotation in G is in some conjugate of H.
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1.9 Chapter X - Categories

1.9.1 Section X.1 - Functors and Natural Transformations

Remark: S always denotes the category of sets.

Definition: Let C and D be categories. A covariant functor T from C to D (denoted T : C → D) is a pair

of functions: an object function and a morphism function which assigns to each morphism C
f−−→ C ′ in C a

morphism T (C)
T (f)−−−−→ T (C ′) in D such that

(1) T (1C) = 1T (C), for all C ∈ Obj(C ).

(2) T (g ◦ f) = T (g) ◦ T (f), whenever g ◦ f is defined.

Definition: A contravariant functor from C to D is equivalent to a covariant functor from C to Dopp, it
reverses arrows when it maps morphisms.

Examples

(1) The identity functor IC : C → C .

(2) Let R be a ring and let C be the category of left R-modules. For a fixed A ∈ C , define T (C) :=

HomR(A,C). Let f be a morphism C
f−−→ C ′, then T (f) is a map HomR(A,C)

T (f)−−−−→ HomR(A,C ′),
and we define T (f) by T (f) : g 7→ f ◦ g for all g ∈ HomR(A,C). It is easy to check that this
satisfies the requirements in the definition of a functor (using associativity of composition of module
homomorphisms).

(3) More generally, if C is any category and A ∈ Obj(C ), define hA : C → S (where S is the category of
sets), by

hA(C) = hom(A,C)

(where hom(A,C) is the set of morphisms from A to C in C ) and for C
f−−→ C ′, set hA(f) :

hom(A,C)→ hom(A,C ′) by

hA(f) : g 7→ f ◦ g.

(4) Let C be a concrete category. The forgetful functor is the functor C → S (where S is the category of
sets), by

A 7→ the set A,

f 7→ the set function f.

Example: Consider the following example of a contravariant functor. Let R be a ring and let C be the
category of left R-modules. Let A be a left R-module. We consider the contravariant Hom functor C → A
defined by HomR(−, A). The oject function assigns to each C ∈ Obj(C ) the set HomR(C,A). For morphisms,

given a morphism C
f−−→ C ′, the map h 7→ h ◦ f . Once again we must check the axioms.

Example: Let R be a ring and let A be a right R-module. Then, TA : B 7→ A⊗R B with, given B
f−−→ B′,

T (f) : A ⊗R B → A ⊗R B′ defined by a ⊗ b 7→ a ⊗ f(b) (which is well defined), forms a covariant functor
from left R-modules to the category of abelian groups.

Remark: Composition of functors (called composite functors) works exactly as expected.
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Definition: Let T, S : C → D be functors. A natural transformation α from T to S is a family {αC | C ∈ C }
of morphisms αc ∈ hom(T (C), S(C)), i.e.

T (C)
αC−−−→ S(C),

such that for every morphism f : C → C ′ in C , the diagram

T (C)
αC- S(C)

T (C ′)

T (f)
? αC′- S(C ′)

S(f)
?

commutes.

Example: Let R be a ring. Let C be the category of R-modules. Let T be the functor represented

by R ⊗R −, i..e, T (B) = R ⊗R B. Let S be the identity functor. If f is a morphism B
f−−→ B′, then

T (f) : R ⊗R B → R ⊗R B′ is given by r ⊗ b 7→ r ⊗ f(b). For any B, define αB : T (B) → S(B) by
αB(r ⊗R b) 7→ rb.

Now we check that the diagram

R⊗R B
αB- B

R⊗R B′
IdR⊗f

? αB′- B′

f
?

commutes. Now, fαB(r ⊗ b) = f(rb) = rf(b) and αB′(Id⊗f)(r ⊗ b) = αB′(r ⊗ f(b)) = rf(b). So, αC is a
natural transformation for all C ∈ C .

Lastly, we can define γ : S → T and γB : B → R ⊗R B by b 7→ 1 ⊗R b. We can check that γ is a natural
transformation and that γB ◦ αB = IdB and αB ◦ γB = IdR⊗RB , so αB is an isomorphism. This gives an
actual definition to the term natural isomorphism.

Example: Let X be a topological sapce. Let C be the category of open sets in X, where morphisms are the
inclusion maps. Consider the contravariant functors from C to S , where S is the category of sets. Then, we

want to define T : C → S with U 7→ T (U). If U ⊂ V , then we have an inclusion map T (V )
iU,V−−−−→ T (U),

e.g. T (U) = {functions from U to R} and T (iU,V ) is the restriction map.

These functors are called presheaves on X. Let P be the category of presheaves on X. Then, Obj(P) are
contravariant functors T : C → S . The morphisms in this category are the natural transformations between
these functors. These are called morphisms of presheaves or presheave maps.

Let S, T be presheaves. A presheave map α : S → T is a family {αU | U open} with αU : S(U)→ T (U) and
if U ⊂ V then we have the commutative diagram

S(V )
αV- T (V )

S(U)

S(iU,V )
? αU- T (U)

T (iU,V )
?

Definition: If C is a category and A ∈ Obj(C ), then we get an automatic functor

hA := homC (A,−) : C → S .

A functor T : C → S is representable if and only if there exists A ∈ Obj(C ) and a natural isomorphism
α : hA → T . The pair (A,α) is called a representation of T .
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Example: Let K be a commutative ring with 1. Let A and B be fixed K-modules. For each K-module C,
let T (C) be the set of K-bilinear maps A×B → C and for f : C → C ′, set T (f)(b) = f ◦ b. So given

A×B b−−→ C
f−−→ C ′,

we have T (f) : T (C) → T (C ′). It remains to check that T is a covariant functor from M (the category of
K-modules) to S .

Now we can consider the universal property of tensor products:

A×B
i- A⊗K B

C

∃!f
?b -

where i is given by (a, b) 7→ a⊗K b and f and b are K-bilinear. This we have a bijection

T (C)←− HomK(A⊗K B,C),

f ◦ i←[ f : αC .

It remains to check thst {αC} gives a natural transformation. Then, T is represented by (A ⊗K B,α). We
have the following diagram.

g ◦ i - f ◦ (g ◦ i) = (f ◦ g) ◦ i

b - f ⊗ b

T (C)
T (f)

- T (C ′)

HomR(A⊗K B,C)

αC
6

- HomK(A⊗K B,C ′)

αC′
6

g - f ◦ g

g

6

- f ◦ g

6

Definition: Let (A,α) be a representation of T : C → S (note that we’re implying that A ∈ Obj(C ) and
α : hA → T ). Let CT be the category of pairs (C, s) where C ∈ Obj(C ) and s ∈ T (C). The morphisms from
(C, s) to (D, t) in this category are the maps f : C → D such that T (f)(s) = t. A universal object in CT is
called a universal element of the functor T .

Remark: Let (A ⊗K B,α) be a representative of T : M → S and T (C) is the set of bilinear maps
A⊗B → C. Then,

MT = {(C, b) | C is a K-module and b is a K-bilinear map A×B → C}.

Then, a morphism (C, b)→ (C ′, b′) is a map f : C → C ′. We showed that (A⊗K B, i) is a universal element
of T , where i : A×B → A⊗K B.

Lemma X.1.5: Let T : C → S be a covariant functor.

(i) If α : hA → T is a natural transformation and u = αA(1A) ∈ T (A), then for any object C of C and
g ∈ homC (A,C), we have αC(g) = T (g)(u).

(ii) If u ∈ T (A) and for each object C of C we define βC : homC (A,C)→ T (C) by βC(g) = T (g)(u), then
β := {βC}C∈Obj(C ) is a natural transformation from hA to T such that βA(1A) = u.



1.9. CHAPTER X - CATEGORIES 135

Proof: See Hungerford.

Theorem X.1.6: Let T : C → S be a covariant functor. There is a one-to-one correspondence between the
class X of all representations of T , and the class Y of all universal elements of T , given by

(A,α) 7→ (A,αA(1A)).

Proof: Let (A,α) be a representation of T and set u := αA(1A). We need to show that (A, u) is
actually a universal element of the category CT . Let (B, s) ∈ Obj(CT ). By hypothesis, we have a
bijection αB : homC (A,B) → T (B). Therefore, there exists a unique f ∈ homC (A,B) such that
αB(f) = s. Then, T (f)(u) = s (see Lemma X.1.5(i)). Hence, f is a morphism from (A, u) to (B, s)
in CT . Suppose h is another morphism in CT from (A, u) to (B, s). Then, h ∈ homC (A,B) and
T (h)(u) = s. Then, αB(h) = T (h)(u) = s = αB(f). But then h = f since αB is bijective. Hence
(A, u) is a universal element.

Conversely, suppose that (A, u) is a universal element of T . Then, by Lemma X.1.5(ii) the family

βC : homC (A,C)→ T (C)

βC(f) = T (f)(u)

defines a natural transformation from hA to T . Also, βA(1A) = u. We want to show that (A, β) is
a representation of T . It remains to show that each βC is a bijection to conclude that β is a natural
isomorphism (since we already showed that it was a natural transformation). Let s ∈ T (C). Then,
(C, s) ∈ Obj(CT ), and so there exists a unique morphism f : A → C in C such that T (f)(u) = s.
But, T (f)(u) = βC(f) as above. Hence, βC is surjective. Now suppose that βC(f1) = βC(f2). Then,
T (f1)(u) = T (f2)(u) =: w, and so f1, f2 are both morphisms in CT taking (A, u) to (C,w). Since
(A, u) is a universal object, f1 = f2, i.e., βC in injective. Hence βC is an isomorphism. Since C was
arbitrary, we’ve shown that β is a natural isomorphism.

Now let Φ : X → Y be defined by Φ : (A,α) 7→ (A,αA(1A)). Let Ψ : Y → X be defined by
Ψ : (A, u) 7→ (A, β), where β comes from Lemma X.1.5(ii). We’ve showed above that these two
maps are well-defined (i.e., they do map to where we claim they do). We must check that Ψ ◦Φ = IdX
and that Φ ◦Ψ = IdY . To see this, draw the commutative diagrams for all of these maps. �

Corollary X.1.7: Let T : C → S be a covariant functor. If (A,α) and (B, β) are representatives of T , then
there exists a unique equivalence f : A→ B such that for all C ∈ Obj(C ), the following diagram commutes.

hB(C) = homC (B,C)

T (C)

βC
-

hA(C) = homC (A,C)

ϕ
?

αC

-

The map ϕ : homC (B,C)→ homC (A,C) is given by g 7→ g ◦ f . We denote ϕ by homC (f, 1C).

Proof: Let u = αA(1A) ∈ T (A) and v = βB(1B) ∈ T (B). Then, (A, u) and (B, v) are both universal
objects of T , by Theorem X.1.6. Since these are both universal objects, there exists a unique
equivalence f : A → B such that T (f)(u) = v. Now we much check that the diagram commutes.
Consider,

αC(homC (f, 1C))(g) = αC(g ◦ f)

= T (g ◦ f)(u) by applying Lemma X.1.5 to α

= T (g)T (f)(u)

= T (g)(v)

= βC(g) by applying Lemma X.1.5 to β.

This shows commutativity. Uniqueness of this equivalence is clear by definition. �
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Corollary X.1.8: (Yoneda Lemma) Let T : C → S be a covariant functor. Let A be an object of C . There
is a one-to-one correspondence between the set T (A) and the set Nat(hA, T ) of all natural transformations
from hA to T . The bijection is natural in A and T .

Proof: Define ψ : Nat(hA, T ) → T (A) with αA : hA(A) → T (A), by ψ(α) := αA(1A). Define ϕ :
T (A)→ Nat(hA, T ) by ϕ(u) := β from Lemma X.1.5 (where g ∈ homC (A,C) and βC(g) := T (g)(u),
so that βC : hA(C)→ T (C) for all C (note that this family {βC} is a natural transformation)).

Now we show that ϕ and ψ are inverses. Firstly,

(ψ ◦ ϕ)(u) = ψ(β)

= βA(1A)

= T (1A)(u)

= 1T (A)(u)

= u.

Next, let u := αA(1A). Then,
(ϕ ◦ ψ)(α) = ϕ(u) =: β.

So for g ∈ homC (A,C), we have βC(g) = T (g)(u) = T (g)(αA(1A)). We claim that this is equal to
αC(g), which then shows α = β, which completes the claim. To see this, consider the diagram

1A h homC (A,A)
αA - T (A)

g ◦ h
?

homC (A,C)

homC (1A, g)
?

αC
- T (C)

T (g)
?

g
?

- αC(g) = T (g)(αA(1A))

This shows that T (g)(αA(1A)) = αC(g).

We have shown the one-to-one correspondence between T (A) and Nat(hA, T ). It remains to show that
this bijection is natural in both A and T . First we show that it is natural in A. Let f : A → B. We
need to show that there exists a commutative diagram:

Nat(hA, T )
ψA- T (A)

Nat(hB , T )

N∗(f)
? ψB- T (B)

T (f)
?

where (N∗(f)(α))C : homC (B,C)→ T (C) is defined by g 7→ αC(g ◦ f). Note that g ◦ f ∈ homC (A,C)
and so αC(g ◦ f) ∈ T (C). It must be checked that this diagram commutes.

Now we show that Nat(hA, T ) is natural in T . Let α : T → S and consider the diagram

Nat(hA, T ) - T (A)

Nat(hA, S)

N∗(α
?

- S(A)

αA
?

We define (N∗(α))C : homC (A,C)→ S(C) by (N∗(α))C := αC ◦βC . We must check that N∗(α) = α◦β
and that this diagram commutes. �

Remark: Consider a functor T : C ×D → S which is contravariant in C and covariant in D . If S : C → D
is covariant, then the map (C,D) 7→ homD(S(C), D) (which we might call the functor homD(S(−),−)) is
an example of such a T . The next theorem asks when such a functor T will be naturally isomorphic to the
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given example.

Theorem X.1.9: Let C and D be categories and T a functor C × D → S which is contravariant in the
first variable and covariant in the second variable such that for all C ∈ Obj(C ) the functor T (C,−) : D → S
is representable by (AC , α

C) (we’re just saying that A and α, depend on C, we’re not actually looking at
the map αC). Then, there exists a functor S : C → D such that S(C) = AC for all C ∈ Obj(C ) and such
that we have a natural isomorphism of homD(S(−),−) to T . [Note that the wording of this conclusion is
ambiguous in Hungerford.]

Proof: Define the object map of the functor S to be C 7→ AC . Given a morphism C
f−−→ C ′, we need

to determine S(f). We have a morphism

αCAC
: homD(AC , AC)→ T (C,AC).

Set uC := αCAC
(1AC

). Then, (AC , uC) is a universal element for T (C,−). Now, we have that

T (f, 1AC
) : T (C ′, AC′)→ T (C,AC′).

Let v = T (f, 1AC′ )(uC′) ∈ T (C,AC′). Then, by universality of (AC , uC), there exists a unique
morphism in D which is

f : AC → AC′

such that
T (1C , f)(uC) = v.

This f will be our S(f).

If C
id−−−→ C and id : AC → AC maps id : uC 7→ uC . By the universality of (AC , uC), it’s true that

id = idAC
.

Now consider maps

C
f- C ′

g- C ′′

We must show that S(g◦f) = S(g)◦S(f). By construction, S(f) is the unique morphism AC′
g−−→ AC′′

such that
T (1C′ , g)(uC′) = T (g, 1AC′′ )(uC′′)

We can visualize this with the following diagram

uC′ ∈ AC′
g- AC′′ 3 uC′′

uc ∈ AC

f
6

Next, S(f) is the unique morphism AC → AC′ such that

T (1C , f)(uC) = T (f, 1AC′ )(uC′)

. Well, S(g ◦ f) must be the unique morphism AC
h−−→ AC′′ such that

T (1C , h)(uC) = T (g ◦ f, 1AC′′ )(uC′′).

Computing,

T (1C , g ◦ f)(uC) = T (1C ,g)T (1c, f)(uC)

= T (1C , g)T (f, 1AC′ )(uC′)

= T (f, g)(uC′)

= T (f, 1AC′′ )T (1C , g)(uC′)

= T (f, 1AC′′ )T (g, 1AC′′ )(uC′′)

= T (g ◦ f, 1AC′′ )(uC′′).
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Hence S is actually a functor.

We now consider
αCD : HomD(S(C), D)→ T (C,D).

This is a functor of two variables (on the product category). In order to show naturality, we must

show that for C
f−−→ C ′ and D

g−−→ D′, the following diagram commutes:

T (C ′, D)
T (f, 1) - T (C,D)

T (1, g) - T (C,D′)

homD(S(C ′), D)

αC
′

D
6

- homD(S(C), D)

αCD
6

- homD(S(C), D′)

αCD′
6

The square on the right is commutative since

αC : homD(AC ,−)→ T (C,−)

is a natural isomorphism by assumption.

Now we must show that the left square is commutative. Let k′ ∈ homD(S(C ′), D). Then,

T (f, 1D)αC
′

D (k) = T (f, 1D)T (1C′ , k)(uC′)

= T (1C , k) ◦ T (f, 1AC′ )(uC′)

= T (1C , k)T (1C , f)(uC)

= T (1C , k ◦ f)(uC)

= T (1C , k ◦ S(f))(uC)

= αCD homD(S(f), 1D)(k),

where the last equality is by Lemma X.1.5. Thus commutativity is shown.

1.9.2 Section X.2 - Adjoint Functors

Unless otherwise stated, S is the category of sets.

Definition: Functors S : C → D and T : D → C are adjoint if there is a natural isomorphism

HomC (−, T (−)) ∼= HomD(S(−),−).

Example: Let C be the category of sets and D be the category of groups. Let S be the functor which takes
a set to its free group. Let T be the forgetful functor. Then, S and T are adjoint.

Example: Let R and S be rings, with AR, RBS , CS modules. Then, by an earlier theorem, there is an
isomorphism

HomS(A⊗R B,C) ∼= HomR(A,HomS(B,C)).

This isomorphism is natural in A and C. So, we have a natural isomorphism of functors

HomS(−⊗R B, ) HomR(−,HomS(B,−)).

Proposition X.2.2: A covariant functor T : C → D has a left adjoint if and only if for all C ∈ Obj(C ), the
functor

homC (C, T (−)) : D → S

is representable.
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Proof: Suppose that T has a left adjoint S : D → C . Then, for all C ∈ Obj(C ) and D ∈ Obj(D), we
have

homD(S(C), D) ∼= homC (C, T (D))

and this is natural in both C and D. So, we have that

αDC : homD(S(C),−) ∼= homC (C, T (−))

and (S(C), αC) is a representative of homC (C, T (−)).

Conversely, suppose the functor homC (C, T (−)) : D → S is representable for each C ∈ Obj(C ).
Then, we have an object AC ∈ D and a natural isomorphism

αC : homD(AC ,−) ∼= homC (C, T (−)).

Then, by Theorem X.1.9, there exists a functor S : C → D such that

S(C) = AC

for all C, and we have a natural isomorphism

homD(S(−),−) ∼= homC (−, T (−)),

i.e., (S, T ) is an adjoint pair. �

Corollary X.2.3: A covariant functor T : D → C has as left adjoint if and only if for all C ∈ Obj(C ) there
exists an object S(C) ∈ Obj(D) and a morphism uC : C → T (S(C)) such that (S(C), uC) is a universal
element of the functor homC (C, T (−)) : D → S .

Corollary X.2.4: Any two left adjoints of a covariant functor T : D → C are naturally isomorphic.

Proof: Suppose S1, S2 : C → D are left adjoints of T , with

α : homD(S1(−),−) ∼= homC (−, T (−)),

β : homD(S2(−),−) ∼= homC (−, T (−)).

For each C ∈ Obj(C ), we have that S1(C) and S2(C) both represent the functor homC (C, T (−)). So,
for each C, there is an equivalence (by Corollary X.1.7)

fC : S1(C)→ S2(C)

such that we have a commutative diagram for all D ∈ Obj(D):

homD(S1(C), D)
αC- homC (C, T (D))

homD(S2(C), D)

homD(fC , 1)
? βC

-

We have to show that if g : C → D is a morphism in C , then the following diagram commutes:

S1(C)
fC- S2(C)

S1(C ′)

S1(g)
?

fC′
- S2(C ′)

S2(g)
?
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Now, in a sense, we want to hom the whole diagram, to get:

fC′ � 1S2(C′)

homD(S1(C ′), S2(C ′)) �
homD(fC′ , 1)

homD(S2(C ′), S2(C ′))

homD(S1(C), S2(C ′))

homD(S1(g), 1)
?

�
homD(fC , 1)

homD(S2(C), S2(C ′))

homD(S2(g), 1)
?

fC′ ◦ S1(g)
?

S2(g) ◦ fC � S2(g)
?

To show that this diagram commutes, we must show that

fC′ ◦ S1(g) = S2(g) ◦ fC .

Then we will be done. Well, consider the redrawing in a new shape, with some additions:

homD(S2(C ′), S2(C ′))

homD(S1(C ′), S2(C ′))
αC′ -

�
homC (C ′, T (S2(C ′))

βC′

-

homD(S2(C), S2(C ′))
?

homD(S1(C), S2(C ′))
?

-
�

homC (C, T (S2(C ′)))
?

βC

-

Thinking of this as a triangular prism with the base facing us, the front square commutes since α is
natural with respect to C, and the right square commutes by the naturality of B. It remains to see
that the left square commutes. This follows from the commutativity of the top and bottom triangles,
the front and right squares, and the injectivity of αC (see Hungerford for details). �

1.9.3 Section X.3 - Morphisms

Definition: A morphism f : C → D in a category C is monic (or, a monomorphism) if for all B ∈ Obj(C )
and morphisms g, h : B → C such that fh = fg, we have h = g.

Definition: A morphism f : C → D in a category C is epic (or, a epimorphism) if for all g, h : D → E for
some E ∈ Obj(C ) such that gf = hf , we have g = h.

Example: In the categories of sets, modules, groups, and abelian groups, it is true that a morphism is monic
if and only if it is injective and epic if and only if it is surjective. For infinite groups, this is a bit tricky to prove.

Example: In the category of rings with identity, a ring homomorphism f : Q→ R is completely determined
by its image on Z. So, the inclusion map

ϕ : Z ↪→ Q

is an epimorphism, since if two functions agree on Z, then they agree everywhere. It’s clear that ϕ is not
surjective. So, this is an example of a non-surjective epimorphism.
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Example: In the category of divisible abelian groups, where morphisms are group homomorphisms, consider

ψ : Q ν−−→ Q/Z

to be the natural reduction map, and consider the diagram

A
f-

g
- Q

ν- Q/Z

We claim that ν is a monomorphism. Suppose that ν ◦ f = ν ◦ g. Suppose that f 6= g. Then, there exists
a ∈ A such that

f(a)− g(a) =
r

s
6= 0.

If f(a) − g(a) ∈ Z (i.e., if s = ±1), then we can pick a new s such that gcd(s,m) = 1. Then there exists
b ∈ A such that sb = a, and so

s(f(b)− g(b)) = sf(b)− sg(b) = f(a)− g(a) = m,

i.e.,

f(b)− g(b) =
m

s
,

with s 6= ±1.

Since A is divisible, there exists b ∈ A such that rb = a. Then,

r(f(b)− f(a)) = f(a)− g(a) =
r

s
= r

(
1

s

)
and so

f(b)− g(b) =
1

s
.

Then,

ν

(
1

s

)
= ν(f(b))− ν(g(b)) = 0

and so
1

s
∈ Z,

i.e.,
s = ±1,

which is a contradiction.

Definition: If f : C → D and g : C → D are morphisms, then an equalizer for (f, g) is a morphism

i : B - C
f-

g
- D

such that fi = gi and if h : A → C satisfies fh = gh then there exists a unique morphism h : A → B such
that

B
i- C

-
- D

A

h
6

h

-

commutes.
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Example: In the case of modules, for f : C → D and 0 : C → D (the zero map), we have the following
diagram.

Ker(f)
i- C

f-

0
- D

A

h6
h

-
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Suggested Exercises

Section Suggested Exercises
V.1 1-18
V.2 2,3,4,6,7,9,10,11,13
V.3 2,5,8,9,12,15,18,23,24
V.4 1,2,3,4,5,8,10,12,13,14
V.5 5,7,8,11
V.6 10
V.7 3,8*
V.8 10*
V.9 3*
I.7 1,(2,3,4,5),6,7
I.8 4

IV.1 4,5,6,7,9,12,16
IV.2 2
IV.3 3,5,7,8,9,10,11
IV.4 1,3,4,7,8,9
IV.5 2,3,4,5,7,8,9,10
III.4 1,3,8,10,14,15

VIII.1 1-7
VIII.2 1,6,10,15
VIII.3 3,4,6,8,9,10,11
VIII.4 1,3,4
VIII.5 1,5,7,8
VIII.6 5,7,10,11
VI.1

VIII.7 2,3
IX.1 2,3,4,7
IX.2 1,2,4,6,11
IX.3 3,4,6,13
IX.5 4,5
X.2 3,4
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Chapter 3

Summary of Facts

3.1 Chapter V - Fields And Galois Theory

3.1.1 Section V.1 - Field Extensions

Text:

• If F is an extension field of K and u ∈ F is transcendental over K, then there is an isomorphism of
fields K(u) ∼= K(x) which is the identity on K.

• If F is an extension field of K and u ∈ F is algebraic, then

(a) K(u) = K[u]

(b) K(u) ∼= K[x]/(f) where f ∈ K[x] is the unique irreducible monic such that
[
f(u) = 0

]
and[

g(u) = 0 if and only if f | g
]
.

(c) |K(u) : K| = n, where n = deg f for the f described above.

(d) {1, u, u2, . . . , un−1} is a basis of the vector space K(u) over K.

(e) Every element of K(u) can be written uniquely of the form a0 + a1u+ · · ·+ an−1u
n−1, for ai ∈ K.

• Let σ : K → L be an isomorphism of fields. Let u be in an extension field of K and let v be in an
extension field of L. If u is transcendental over K and v is transcendental over K, then σ can be
extended to an isomorphism σ : K(u)→ L(v) which maps u 7→ v. On the other hand, if u is a root of
an irreducible polynomial f ∈ K[x] and v is a root of the irreducible polynomial σf , then again σ can
be extended to an isomorphism σ : K(u)→ L(v) which maps u 7→ v.

• Let K be a field and let f ∈ K[x]. Let n := deg f . Then, there exists a simple extension field F = K(u)
of K such that

(i) u ∈ F is a root of f ,

(ii)
[
K(u) : K

]
≤ n, with equality holding if and only if f is irreducible in K[x],

(iii) If f is irreducible in K[x], then K(u) is unique up to an isomorphism which is the identity on K.

• If F is a finite dimensional extension field of K, then F is finitely generated and algebraic over K.

• Let F be an extension of K. If F = K(X) for some X ⊆ F with every element of X algebraic over K,
then F is an algebraic extension of K. Additionally, if øX <∞, then F is finite dimensional over K.

• If F is an algebraic extension field of E and E is an algebraic extension field of K, then F is an algebraic
extension of K.

145
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• Let F be an extension of K. The set E of all elements of F that are algebraic over K is a subfield of F
(which is, of course, algebraic over K). E is the unique maximal algebraic extension of K contained in F .

Exercises:

•
[
F : K

]
= 1 if and only if F = K.

•
[
F : K

]
prime =⇒ there are no intermediate fields between F and K.

• If u ∈ F has degree n over K, then n |
[
F : K

]
.

• A field extension can be finitely generated, but not finite dimensional. (Ex: Q(π) ⊃ Q.)

• K(u1, . . . , un) ∼= FOF
(
K[u1, . . . , un]

)
.

• For σ ∈ Sn, K(u1, . . . , un) ∼= K(uσ(1), · · · , uσ(n)) and K[u1, . . . , un] ∼= K[uσ(1), · · · , uσ(n)].

• K(u1, . . . , un−1)(un) = K(u1, . . . , un) and K[u1, . . . , un−1][un] = K[u1, . . . , un].

• If each ui is algebraic over K, then K(u1, . . . , un) = K[u1, . . . , un].

• Let L,M be subfields of F , and LM their composite. Then if K ⊂ L ∩M and M = K(S) for some
S ⊂M , then LM = L(S).

• Every element of K(x1, . . . , xn) which is not in K is transcendental over K.

• If v is algebraic over K(u) and v is transcendental over K, then u is algebraic over K(v).

• If
[
K(u) : K

]
is odd, then K(u) = K(u2).

• If F is algebraic over K and D is an integral domain such that K ⊂ D ⊂ F , then D is a field.

• Let L and M be intermediate fields in the extension K ⊂ F . Then

(a)
[
LM : K

]
is finite if and only if

[
L : K

]
and

[
M : K

]
are finite.

(b) If
[
MK : F

]
is finite, then

[
L : K

]
and

[
M : K

]
divide

[
LM : K

]
, and[

LM : K
]
≤
[
L : K

][
M : K

]
.

(c) If
[
L : K

]
and

[
M : K

]
are finite and relatively prime, then[

LM : K
]

=
[
L : K

][
M : K

]
.

(d) If L and M are algebraic over K, then so is LM .

• Let L and M be intermediate fields of the extension K ⊂ F , with each having finite dimension over K.
If
[
LM : K

]
=
[
L : K

][
M : K

]
, then L ∩M = K. The converse holds if

[
L : K

]
or
[
M : K

]
equals 2.

• F is an algebraic extension of K if and only if for every intermediate field E, every monomorphism
σ : E → E which is the identity on K is in fact an automorphism on E.

• If u ∈ F is algebraic over K(X) for some X ⊂ F , then u ∈ F is actually algebraic over K(X ′) for some
finite X ′ ⊂ F .

• Let E1, E2 be subfields of F and let X ⊂ F . If every element of E1 is algebraic over E2, then every
element of E1(X) is algebraic over E2(X).

• If c, d are constructible real numbers, then so are: c + d, c − d, c/d (d 6= 0), cd,
√
c (c ≥ 0). The

constructible real numbers form a subfield containing (properly) Q.
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3.1.2 Section V.2 - The Fundamental Theorem

Text:

• Let F be an extension of K and let f ∈ K[x]. If u ∈ F is a root of f and σ ∈ AutK F , then σ(u) ∈ F
is also a root of f .

• Let F be an extension of K, with intermediate field E, and let H ≤ AutK F . Then

(i) H ′ := {v ∈ F | σ(v) = v for all σ ∈ H} is an intermediate field of the extension.

(ii) E′ := {σ ∈ AutK F | σ(u) = u for all u ∈ E} = AutE F is a subgroup of AutK F .

• If F is a finite dimensional Galois extension of K, then there is a bijection between the set of
intermediate fields of the extension and the set of subgroups of the Galois group AutK F . This bijection
is given by the ′ operator: E 7→ E′ and H 7→ H ′. The bijection has the following properties:

(i) The relative dimension of two intermediate fields is equal to the relative index of the corresponding
subgroups; in particular, AutK F has order

[
F : K

]
.

(ii) F is Galois over every intermediate field E, but E is Galois over K if and only if E′ � G, i.e.,
AutE F � AutK F . In this case, G/E′ ∼= AutK E.

Condition (i) is not true in a non-finite dimensional Galois extension.

• If F is an extension of K, then there is a one-to-one correspondence between the closed intermediate
fields of the extension and the closed subgroups of the Galois group,given by E 7→ E′ = AutE F . The
inverse of the correspondence is given by assigning to each closed subgroup H its fixed field H ′.

• Let F be an extension of K, with intermediate fields L,M such that F ⊃ M ⊃ L ⊃ K. If
[
M : L

]
is

finite, then
[
L′ : M ′

]
≤
[
M : L

]
. In particular, if

[
F : K

]
is finite, then øAutK F ≤

[
F : K

]
.

• Let F be an extension of K, and let H,J be subgroups of the Galois group AutK F with H < K. If[
J : H

]
is finite, then

[
H ′ : J ′

]
≤
[
J : H

]
.

• Let F be an extension of K, with intermediate fields L,M such that F ⊃ M ⊃ L ⊃ K. Let H,J be
subgroups of the Galois group AutK F with H < J .

(i) If L is closed and
[
M : L

]
is finite, then M is closed and

[
L′ : M ′

]
=
[
M : L

]
.

(ii) If H is closed and
[
J : H

]
is finite, then J is closed and

[
H ′ : J ′

]
=
[
J : H

]
.

(iii) If F is a finite dimensional Galois extension of K, then all intermediate fields and all subgroups
of the Galois group are closed and AutK F has order

[
F : K

]
.

• If E is a stable intermediate field of the extension F over K, then E′ = AutE F � AutK F .

• If H � AutK F , then the fixed field H ′ of H is a stable intermediate field of the extension.

• If F is a Galois extension field of K and E is a stable intermediate field of the extension, then E is
Galois over K.

• If F is an extension of K and E is an intermediate field that is algebraic and Galois over K, then E is
stable (relative to F and K).

• Let F be an extension of K with a stable intermediate field E. Then, the quotient group
AutK F/AutE F is isomorphic to the group of all K-automorphisms of E that are extendible to F .

• (Artin’s Theorem) Let F be a field. Let G be a group of automorphism of F . Let K be the fixed field
of G in F . Then, F is Galois over K. If G is finite, then F is a finite dimensional Galois extension of
K with Galois group G.

• If G is a finite group, then there exists a Galois field extension with Galois group isomorphic to G.
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Exercises:

• If K $ E ⊆ K(x), are field extensions, then
[
K(x) : E

]
is finite.

• If K is an infinite field, then K(x) is Galois over K. If K is finite, then K(x) is not Galois over K.

• If K is an infinite field, then the only closed subgroups of AutK K(x) are itself and its finite subgroups.

• If E is Galois over K and F is Galois over E, and every σ ∈ AutK E is extendible to F , then F is
Galois over K.

• If F is a finite dimensional Galois extension of K and E an intermediate field, then there exists a
smallest field L such that E ⊂ L ⊂ F and L is Galois over K. Furthermore,

AutL F =
⋂

σ∈AutK F

σ(AutK F )σ−1.

3.1.3 Section V.3 - Splitting Fields, Algebraic Closure, and Normality

Text:

• The splitting field of a finite set of polynomials S := {f1, f2, . . . , fn} is equivalent to the splitting field
of a single polynomial f := f1f2 · · · fn.

• If K is a field and f ∈ K[x] has degree n ≥ 1, then there exists a splitting field F of f with
[
F : K

]
≤ n!.

• The following conditions on a field F are equivalent:

(i) Every nonconstant polynomial f ∈ F [x] has a root in F .

(ii) Every nonconstant polynomial f ∈ F [x] splits over F .

(iii) Every irreducible polynomial in F [x] has degree 1.

(iv) There is no algebraic extension field of F (except F itself).

(v) There is a field K of F such that F is algebraic over K and ever polynomial in K[x] splits in F [x].

• If F is an extension field of K, then the following conditions are equivalent:

(i) F is algebraic over K and F is algebraically closed.

(ii) F is a splitting field over K of the set of all [irreducible] polynomials in K[x].

• If F is an algebraic extension field of K, then |F | ≤ ℵ0|K|.

• Every field K has an algebraic closure. Any two algebraic closures of K are K-isomorphic.

• If K is a field and S a set of polynomials (of positive degree) in K[x], then there exists a splitting field
of S over K. (This covers the non-finite dimensional case, i.e., the splitting field of an infinite number
of polynomials exists.

• Let σ : K → L be an isomorphism of fields. Let S := {fi}i∈I be a set of polynomials of positive degree
in K[x], and let S′ = {σfi}i∈I be the corresponding set of polynomials in L[x]. If F is a splitting field
of S over K and M is a splitting field of S′ over L, then σ is extendible to an isomorphism F ∼= M .

• Let K be a field and S a set of polynomials in K[x]. Then any two splitting fields of S over K are
K-isomorphic. In particular, any two algebraic closures of K are K-isomorphic.

• If F is an extension field of K, then the following statements are equivalent:

(i) F is algebraic and Galois over K.

(ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].

(iii) F is a splitting field over K of a set T of separable polynomials in K[x].
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• If F is an algebraic extension field of K, the the following statements are equivalent

(i) F is normal over K.

(ii) F is a splitting field over K of some set of polynomials in K[x].

(iii) IfK is any algebraic closure ofK containing F , then for anyK-monomorphism of fields σ : F → K,
we have that Imσ = F , so that σ is actually a K-automorphism of F .

• Let F be an algebraic extension field of K. Then F is Galois over K if and only if F is normal and
separable over K. If charK = 0, then F is Galois over K if and only if F is normal in K.

• If E is an algebraic extension field of K, then there exists an extension field F of E such that

(i) F is normal over K.

(ii) No proper subfield of F containing E is normal over K.

(iii) If E is separable over K, then F is Galois over K.

(iv)
[
F : K

]
is finite if and only if

[
E : K

]
is finite.

The field F is uniquely determined up to an E-isomorphism.

• If F is a finite dimensional separable extension of an infinite field K then F = K(u) for some u ∈ F .

Exercises:

• If F is a splitting field of S on K and E is an intermediate field then F is a splitting field of S on E.

• If f ∈ K[x] has deg f = n, and F is a splitting field of f over K, then
[
F : K

]
divides n!.

• No finite field is algebraically closed.

• F is an algebraic closure of K if and only if F is algebraic over K and for every algebraic extension E
of K there exists a K-monomorphism E → F .

• F is an algebraic closure of K if and only if F is algebraic over K and for every algebraic field extension
E of another field K1 and isomorphism of fields σ : K1 → K, σ extends to a monomorphism E → F .

• If u1, . . . , un ∈ F are separable over K, then K(u1, . . . , un) is a separable extension over K.

• If F is generated by a (possibly infinite) set of separable elements over K, then F is a separable extension
of K.

• Let E be an intermediate field of F over K. If u ∈ F is separable over K, then u is separable over E.
If F is separable over K, then F is separable over E and E is separable over K.

• Suppose
[
F : K

]
is finite. Then, the following are equivalent:

(i) F is Galois over K.

(ii) F is separable over K and F is a splitting field of a polynomial f ∈ K[x].

(iii) F is a splitting field over K of a polynomial f ∈ K[x] whose irreducible factors are separable.

• If L and M are intermediate fields such that L is a finite dimensional Galois extension of K, then LM
is finite dimensional and Galois over M and AutM LM ∼= AutL∩M L.

• If F is algebraic Galois over K, then F is algebraic Galois over an intermediate field E.

• If F is Galois over E, E is Galois over K, and F is a splitting field over E of a family of polynomials
in K[x], then F is Galois over K.

• If an intermediate field E is normal over K, then E is stable (relative to F and K).

• Let F be normal over K and E an intermediate field. Then E is normal over K if and only if E is
stable. Furthermore AutK F/E

′ ∼= AutK E.
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• If F is normal over an intermediate field E and E is normal of K, then F need not be normal over K.
(Consider Q( 4

√
2) ⊃ Q(

√
2) ⊃ Q.)

• If
[
F : K

]
= 2, then F is normal over K.

• An algebraic extension F of K is normal over K if and only if for every irreducible f ∈ K[x], f factors
in F [x] as a product of irreducible factors all of which have the same degree.

3.1.4 Section V.4 - The Galois Group of a Polynomial

Text:

• Let K be a field and f ∈ K[x] a polynomial with Galois group G. Then, G is isomorphic to a subgroup
of Sn and if f is (irreducible) separable of degree n, then n divides |G| and G is isomorphic to a
transitive subgroup of Sn.

• Let K be a field and f ∈ K[x] an (irreducible) separable polynomial of degree 3. The Galois group of f
is either S3 or A3. If charK 6= 2 it is A3 if and only if the discriminant of f is the square of an element
of K.

• Let K be a field and f ∈ K[x] an (irreducible) separable quartic with Galois group G (considered as a
subgroup of S4). Let α, β, γ be roots of the resolvant cubic of f and let m =

[
K(α, β, γ) : K

]
. Then,

(i) m = 6⇐⇒ G = S4;

(ii) m = 3⇐⇒ G = A4;

(iii) m = 1⇐⇒ G = V ;

(iv) m = 2⇐⇒ G ∼= D4 or G ∼= Z4; in this case G ∼= D4 if and only if f is irreducible over K(α, β, γ)
and G ∼= Z4 otherwise.

• If p is prime and f is an irreducible polynomial of degree p over the field of rational numbers which has
precisely two nonreal roots in the field of complex numbers, then the Galois group of f is (isomorphic
to) Sp.

3.1.5 Section V.5 - Finite Fields

Text:

• If F is a finite field, then charF = p 6= 0 for some prime p, and |F | = pn for some integer n ≥ 1.

• If F is a field and G is a finite subgroup of the multiplicative group of nonzero elements of F , then G is
a cyclic group. In particular, the multiplicative group of all nonzero elements of a finite field is cyclic.

• If F is a finite field, then F is a simple extension of its prime subfield Zp; that is, F = Zp(u) for some
u ∈ F .

• If F is a field of characteristic p and r ≥ 1 is an integer, then the map ϕ : F → F given by u 7→ up
r

is
a Zp-monomorphism of fields. If F is finite, then ϕ is a Zp-automorphism of F .

• Let p be a prime and let n ≥ 1 be an integer. Then, F is a finite field with pn elements if and only if
F is a splitting field of xp

n − x over Zp.

• If p is a prime and n ≥ 1 an integer, then there exists a field with pn elements. Any two finite fields
with the same number of elements are isomorphic.

• If K is a finite field and n ≥ 1 an integer, then there exists an irreducible polynomial of degree n in
K[x].
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• If F is a finite dimensional extension field of a finite field K, then F is finite and is Galois over K. The
Galois group AutK F is cyclic.

Exercises:

• If p ∈ Z is prime, then ap = a for all a ∈ Zp.

• If |K| = pn, then every element of K has a unique pth root.

• If |K| = q and f ∈ K[x] is irreducible, then f divides xq
n − x if and only if deg(f) divides n.

• If |K| = pr and |F | = pn then r | n and AutK F is cyclic with generator ϕ given by u 7→ up
r

.

• Every element in a finite field may be written as the sum of two squares.

• If K is finite and F is an algebraic closure of K, then AutK F is abelian. Every nontrivial element of
AutK F has infinite order.

3.1.6 Section V.6 - Separability

Text:

• Let F be an extension field of K. Then, u ∈ F is both separable and purely inseparable over K if and
only if u ∈ K.

• Let F be an extension field of K with charK = p 6= 0. If u ∈ F is algebraic over K, then up
n

is
separable over K for some n ≥ 0.

• If F is an algebraic extension field of a field K of characteristic p 6= 0, then the following statements
are equivalent:

(i) F is purely inseparable over K;

(ii) the irreducible polynomial of any u ∈ F is of the form xp
n − a ∈ K[x];

(iii) if u ∈ F , then up
n ∈ K for some n ≥ 0;

(iv) the only elements of F which are separable over K are the elements of K itself;

(v) F is generated over K by a set of purely inseparable elements.

• If F is a finite dimensional purely inseparable extension field ofK and charK = p 6= 0 then
[
F : K

]
= pn

for some n ≥ 0.

• Let F be an algebraic extension field of K, S the set of all elements of F which are separable over K,
and P the set of all elements of F which are purely inseparable over K.

(i) S is a separable extension field of K.

(ii) F is purely inseparable over S.

(iii) P is a purely inseparable extension field of K.

(iv) P ∩ S = K.

(v) F is separable over P if and only if F = SP .

(vi) If F is normal over K, then S is Galois over K, F is Galois over P , and AutK S ∼= AutP F =
AutK F .

• If F is a separable extension field of E and E is a separable extension field of K, then F is separable
over K.

• (Primitive Element Theorem) Let F be a finite dimensional extension field of K.

(i) If F is separable over K, then F is a simple extension of K.
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(ii) More generally, F is a simple extension of K if and only if there are only finitely many intermediate
fields.

Exercises:

• If E is an intermediate field between F and K, then if F is purely inseparable over K we have that F
is purely inseparable over E.

• If F is purely inseparable over an intermediate field E and E is purely inseparable over K, then F is
purely inseparable over K.

• If charK = p 6= 0 and
[
F : K

]
is finite and not divisible by p, then F is separable over K.

• Let charK = p 6= 0. Then an algebraic element u ∈ F is separable over K if and only if K(u) = K(up
n

)
for all n ≥ 1.

• If f ∈ K[x] is irreducible of degree m > 0, and charK does not deivide m, then f is separable.

• The following conditions on a field K are equivalent, and a field that satisfies them is called perfect:

(i) every irreducible polynomial in K[x] is separable;

(ii) every algebraic closure K of K is Galois over K;

(iii) every algebraic extension field of K is separable over K;

(iv) every charK = 0 or [charK = p and K = Kp]

• Every finite field is perfect.

• Let F be an algebraic extension of K such that every polynomial in K[x] has a root in F . Then F is
an algebraic closure of K.

3.1.7 Section V.7 - Cyclic Extensions

Text:

• If F is a finite dimensional Galois extension field of K and

AutK F = {σ1, . . . , σn}

then for any u ∈ F ,

NF
K(u) = σ1(u) · · ·σn(u),

TFK (u) = σ1(u) + · · ·+ σn(u).

• NF
K(u)NF

K(v) = NF
K(uv).

• TFK (u) + TFK (v) = TFK (u+ v).

• Every set of distinct automorphisms of a field F is linearly independent.

• Let F be a cyclic extension of K of degree n, let σ be a generator of AutK F and let u ∈ F . Then

(i) TFK (u) = 0 if and only if u = v − σ(v) for some v ∈ F .

(ii) (Hilbert’s Theorem 90) NF
K(u) = 1K if and only if u = vσ(v)−1 for some nonzero v ∈ F .

• If K is a field of characteristic p 6= 0 and xp − x − 1 ∈ K[x], then xp − x − 1 is either irreducible or
splits in K[x].

• Let n be a positive integer and K a field which contains a primitive nth root of unity ξ.

(i) If d | n, then ξn/d = η is a primitive dth root of unity in K.
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(ii) If d | n and u is a nonzero root of xd − a ∈ K[x], then xd − a has d distinct roots, namely
u, ηu, η2u, . . . , ηn−1u, where η ∈ K is a primitive dth root of unity. Furthermore, K(u) is a
splitting field of xd − a over K and is Galois over K.

• Let n be a positive integer and K a field which contains a primitive nth root of unity. Then the following
conditions on an extension field F of K are equivalent.

(i) F is cyclic of degree d, where d | n;

(ii) F is a splitting field over K of a polynomial of the form xn − a ∈ K[x] (in which case F = K(u),
for any root u of xn − a);

(ii) F is a splitting field over K of an irreducible polynomial of the form xd − b ∈ K[x], where d | n
(in which case F = K(v), for any root v of xd − b).

Exercises:

• If n is an odd integer such that K contains a primitive nth root of unity and charK 6= 2, then K also
contains a 2nth root of unity.

• If F is a finite dimensional extension of Q, then F contains only a finite number of roots of unity.

3.1.8 Section V.8 - Cyclotomic Extensions

Text:

• Let n be a positive integer, K a field such that charK does not divide n and F a cyclotomic extension
of K of order n.

(i) F = K(ξ), where ξ ∈ F is a primitive nth root of unity.

(ii) F is an abelian extension of dimension d, where d | ϕ(n), (where ϕ is the Euler function); if n is
prime, F is actually a cyclic extension.

(iii) AutK F is isomorphic to a subgroup of order d of the multiplicative group of units of Zn.

Recall that an abelian extension is an algebraic Galois extension whose Galois group is abelian. The
dimension of F over K may strictly less than ϕ(n). For example, if ξ is a primitive 5th root of unity in
C, then R ⊂ R(ξ) ⊂ C, whence,

[
R(ξ) : R

]
= 2 < 4 = ϕ(5).

3.1.9 Section V.9 - Radical Extensions

None.
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3.2 Chapter I - Groups

3.2.1 Section I.7 - Categories: Products, Coproducts, and Free Objects

Text:

• Any two products of the same family of objects and maps are equivalent. The same applies to
coproducts.

• If F is a free object on the set X and F ′ is a free object on the set X ′ and |X| = |X ′|, then F and F ′

are equivalent.

• Any two universal [resp. couniversal] objects in a category are equivalent.

Exercises:

• If f : A→ B is an equivalence in a category and g : B → A is the morphism such that g ◦ f = 1A and
f ◦ g = 1B , then g is unique.

• The product in the category of groups is the usual direct product.

• The product in the category of abelian groups is the usual direct product.

• The coproduct in the category of sets is the disjoint union.

3.2.2 Section I.8 - Direct Products and Direct Sums

Text:

• The coproduct in the category of abelian groups is the weak direct product. This is not the coproduct
in the category of all groups.

Exercises:

• S3 is not the direct product of any family of its proper subgroups. The same is true of Zpn and Z.

3.2.3 Section I.9 - Free Groups, Free Products, Generators, and Relations

Text:

• Free objects in the category of all groups are the free groups.

• Every group is the homomorphic image of some free group.

• The coproduct in the category of all groups is the free product.

Exercises:

• Every nonidentity element in a free group F has infinite order.

• The free group on one element is isomorphic to Z.

• A free group is a free product of infinite cyclic groups.
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3.3 Chapter IV - Modules

3.3.1 Section IV.1 - Modules, Homomorphisms, and Exact Sequences

Text:

• Every additive abelian group G is a unitary Z-module.

• If S is a ring and R is a subring, then S is an R-module. In particular, R[x1, . . . , xn] and R[[x]] are
R-modules.

• If I is a left ideal of R, then I is a left R-module.

• R/I is an R-module.

• The intersection of an arbitrary set of submodules is a submodule.

• The direct product and direct sum of R-modules are themselves R-modules.

• (The Short Five Lemma) Let R be a ring and

0 - A
f- B

g- C - 0

0 - A′

α
?

f ′
- B′

β
?

g′
- C ′

γ
?

- 0

a commutative diagram of R-modules and R-module homomorphisms such that each row is a short
exact sequence. Then,

(i) α, γ monomorphisms =⇒ β is a monomorphism;

(ii) α, γ e =⇒ β is an epimorphism;

(iii) α, γ isomorphisms =⇒ β is an isomorphism.

• Let R be a ring and

0 - A1
f- B

g- A2
- 0

be a short exact sequence of R-module homomorphisms. Then the following conditions are equivalent.

(i) There is an R-module homomorphism h : A2 → B with gh = 1A2
;

(ii) There is an R-module homomorphism k : B → A1 with kf = 1A1 ;

(iii) The given seqience is isomorphism (with identity maps on A1 and A2) to the direct sum short
exact sequence

0 - A1
ι1- A1 ⊕A2

ι2- A2
- 0

In particular, B ∼= A1 ⊕A2.

A short exact sequence that satisfies these equivalent conditions is said to be split exact.

Exercises:

• Let R be a ring and Rop its opposite ring. If A is a left [resp. right] R-module, then A is a right [resp.
left] Rop-module such that ra = ar for all a ∈ A, r ∈ R and r ∈ Rop.
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3.3.2 Section IV.2 - Free Modules and Vector Spaces

Text:

• Let R be a ring with identity. The following conditions on a unitary R-module F are equivalent, and
if F satisfies them it is called a free R-module.

(i) F has a nonempty base;

(ii) F is the internal direct sum of a family of cyclic R-modules, each of which is isomorphic as a left
R-module to R;

(iii) F is R-module isomorphic to a direct sum of copies of the left R-module R;

(iv) There exists a nonempty set X and a function ι : X → F with the following property: given any
unitary R-module A and function f : X → A, there exists a unique R-module homomorphism
f : F → A such that f ◦ ι = f . In other words, F is a free object in the category of unitary
R-modules.

• In the category of all modules over an arbitrary but fixed ring (possibly without identity), the free
objects are free modules.

• Every (unitary) module A over a ring R (with identity) is the homomorphic image of a free R-module
F . If A is finitely generated, then F may be chosen to be finitely generated.

• Every vector space V over a division ring D has a basis and is therefore a free D-module. More
generally, every linearly independent subset of V is contained in a basis. Additionally, every spanning
subset of V contains a basis.

• Every basis of a free R-module has the same cardinality if R is a commutative ring with identity. Every
basis of a vector space over a division ring has the same cardinality. This is not true for free modules
over an arbitrary ring with identity.

Exercises:

• A ring R with identity, when considered as an R-module over itself, is not a free object in the category
of all R-modules.



3.3. CHAPTER IV - MODULES 157

3.3.3 Section IV.3 - Projective and Injective Modules

Text:

• Every free module F over a ring R with identity is projective.

• Every module A over a ring R is the homomorphic image of a projective R-module.

• Let R be a ring. The following conditions on an R-module P are equivalent.

(i) P is projective;

(ii) Every short exact sequence 0 - A
f- B

g- P - 0 is split exact (hence B ∼= A⊕P );

(iii) There is a free module F and an R-module K such that F ∼= K ⊕ P .

• A direct sum of R-modules
∑
Pi is projective if and only if each Pi is projective.

• A direct product of R-modules
∏
Ji is injective if and only if each Ji is injective.

• An abelian group D is divisible if and only if D is an injective (unitary) Z-module.

• Every abelian group A may be embedded in a divisible abelian group.

• Let R be a ring. The following conditions on a unitary R-module J are equivalent.

(i) J is injective;

(ii) Every short exact sequence 0 - J
f- B

g- C - 0 is split exact (hence B ∼= J⊕C);

(iii) J is a direct summand of any module B of which it is a submodule.

Exercises:

• The following conditions on a ring R (with identity) are equivalent:

(a) Every (unitary) R-module is projective.

(b) Every short exact sequence of (unitary) R-modules is split exact.

(c) Every (unitary) R-module is injective.

• Every vector space over a division ring D is both projective an an injective D-module.

• No nonzero finite abelian group is divisible.

• No nonzero free abelian group is divisible.

• Q is not a projective Z-module.
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3.3.4 Section IV.4 - Hom and Duality

Text:

• Let R be a ring. Then 0 - A
ϕ- B

ψ- C is an exact sequence of R-modules if and only if
for every R-module D

0 - HomR(D,A)
ϕ- HomR(D,B)

ψ- HomR(D,C)

is an exact sequence of abelian groups.

• Let R be a ring. Then A
θ- B

ξ- C - 0 is an exact sequence of R-modules if and only if
for every R-module D

0 - HomR(C,D)
ξ- HomR(B,D)

θ- HomR(A,D)

is an exact sequence of abelian groups.

• The following conditions on modules over a ring R are equivalent.

(i) 0 - A
ϕ- B

ψ- C - 0 is a split exact sequence of R-modules;

(ii) 0 - HomR(D,A)
ϕ- HomR(D,B)

ψ- HomR(D,C) - 0 is a split exact sequence of abelian
groups for every R-module D;

(iii) 0 - HomR(C,D)
ψ- HomR(B,D)

ϕ- HomR(A,D) - 0 is a split exact sequence of abelian
groups for every R-module D;

• The following conditions on a module P over a ring R are equivalent:

(i) P is projective;

(ii) If ψ : B → C is an R-module epimorphism, then ψ : HomR(P,B) → HomR(P,C) is an
epimorphism of abelian groups.

(iii) If 0 - A
ϕ- B

ψ- C - 0 is any short exact sequence of R-modules, then

0 - HomR(P,A)
ϕ- HomR(P,B)

ψ- HomR(P,C) - 0

is an exact sequence of abelian groups.

• The following conditions on a module J over a ring R are equivalent:

(i) J is injective;

(ii) If θ : A → B is an R-module monomorphisms, then θ : HomR(B, J) → HomR(A, J) is an
epimorphism of abelian groups.

(iii) If 0 - A
θ- B

ξ- C - 0 is any short exact sequence of R-modules, then

0 - HomR(C, J)
ξ- HomR(B, J)

θ- HomR(A, J) - 0

is an exact sequence of abelian groups.

• Let A, B, {Ai | i ∈ I}, and {Bi | i ∈ I} be modules over a ring R. Then there are isomorphisms of
abelian groups:

(i) HomR

(∑
i∈I

Ai, B

)
=
∏
i∈I

HomR(Ai, B);
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(ii) HomR

A,∏
j∈J

Bj

 ∼= ∏
j∈J

HomR(A,Bj).

• If A is a unitary left module over a ring R with identity then there is an isomorphism of left R-modules
A ∼= HomR(R,A).

• Let A be a left module over a ring R.

(i) There is an R-module homomorphism θ : A→ A∗∗.

(ii) If R has an identity and A is free, then θ is a monomorphism.

(iii) If R has an identity and A si free with a finite bases, then θ is an isomorphism.

Exercises:

• For any abelian group A and positive integer m: Hom(Zm, A) ∼= A[m] = {a ∈ A | ma = 0}.

• Hom(Zm, Zn) ∼= Zgcd(m,n).

• The Z-module Zm has Z∗m = 0.

• For each k ≥ 1, Zm is a Zmk-module; as a Zmk-module, Z∗m
∼= Zm.

• If R is a ring with identity, then there is a ring homomorphism

HomR(R,R) ∼= Rop.

In particular, if R is commutative, then

HomR(R,R) ∼= R.

• If R has an identity and we denote the left R-module R by RR and the right R-module R by RR, then

(RR)∗ ∼= RR and (RR)∗ ∼= RR.
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3.3.5 Section IV.5 - Tensor Products

Text:

• If A
f- B

g- C
0- is an exact sequence of left modules over a ring R and D is a right R-

module, then

D ⊗R A
1D ⊗ f- D ⊗R B

1D ⊗ g- D ⊗R C - 0

is an exact sequence of abelian groups. An analogous statement holds for an exact sequence in the first
variable.

• If R is a ring with identity and AR and RB are unitary R-modules, then there are R-module
isomorphisms

A⊗R R ∼= A and R⊗R B ∼= B.

• The operation of tensor product is associative.

• The operation of tensor product distributes over direct sums.

Exercises:

• Let A be an abelian group. Then for each m > 0: A⊗Z Zm ∼= A/mA.

• Zm ⊗Z Zn ∼= Zc, where c = gcd(m,n).

• Let A be a torsion abelian group. Then: A⊗Z Q = 0.

• Q⊗Z Q ∼= Q.

• Not every tensor is a simple tensor.
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3.3.6 Section IV.7 - Algebras

Text:

• Every ring R is an additive abelian group, and so a Z-module, and so a Z-algebra.

• If K is a commutative ring with identity, then K[x1, . . . , xn] and K[[x]] are K-algebras.

• If V is a vector space over a field F , then HomF (V, V ) is an F -algebra.

• Both C and the ring of real quaternions are R-division algebras.

• If K is a commutative ring with identity, then Matn(K) is a K-algebra. If A is a K-algebra, then so is
Matn(A).

Exercises:

• In the category whose commutative K-algebras with identity and whose morphisms are K-algebra
homomorphisms f : A→ B such that f(1A) = 1B , then the coproduct of A and B is A⊗K B.

• If A and B are unitary K-modules, then there is an isomorphism of K-modules A⊗K B ∼= B ⊗K A.

• Let A be a ring with identity. Then A is a K-algebra with identity if and only if there is a ring
homomorphism of K into the center of A such that 1K 7→ 1A.

• In the category whose commutative K-algebras with identity and whose morphisms are K-algebra
homomorphisms f : A→ B such that f(1A) = 1B , then if X is the set {x1, . . . , xn} then K[x1, . . . , xn]
is a free object of the set X.
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3.4 Chapter III - Rings

3.4.1 Section III.4 - Rings of Quotients and Localization

Text:

• Let S be a multiplicative subset of a commutative ring R.

(i) If I is an ideal in R, then S−1I = {a/s | a ∈ I, s ∈ S} is an ideal in S−1R.

(ii) If J is another ideal in R, then

S−1(I + J) = S−1I + S−1J,

S−1(IJ) = (S−1I)(S−1J),

S−1(I ∩ J) = S−1I ∩ S1J.

• Let S be a multiplicative subset of a commutative ring R with identity and let I be an ideal of R.
Then, S−1I = S−1R if and only if S ∩ I = ∅.

• There is a one-to-one correspondence between the set of prime ideals of R which are contained in P
and the set of prime ideals of RP , given by Q 7→ QP .

• The ideal PP in RP is the unique maximal ideal of RP .

• If R is a commutative ring with identity, then the following conditions are equivalent.

(i) R is a local ring;

(ii) all nonunits of R are contained in some ideal M 6= R;

(iii) the nonunits of R form an ideal.

Exercises:

• If R is a principal ideal domain and S 6= 0, then S−1R is also a principal ideal domain.

• S−1 Rad(I) = Rad(S−1I).

• A commutative ring with identity is local if and only if for all r, s ∈ R the statement r+ s = 1R implies
that either r or s is a unit.

• Every nonzero homomorphic image of a local ring is local.
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3.5 Chapter VI - The Structure of Fields

3.5.1 Section VI.1 - Transcendence Bases

None.
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3.6 Chapter VIII - Commutative Rings and Modules

3.6.1 Section VIII.1 - Chain Conditions

Text:

• A division ring D is both Noetherian and Artinian since the only left or right ideals are D and 0.

• Every commutative principal ideal ring is Noetherian.

• The ring Matn(D) over a division ring is both Noetherian and Artinian.

• If R is a left Noetherian [resp. Artinian] ring with identity then every finitely generated left R-module
A satisfies the ascending [resp. descending] chain condition on submodule. This is also true if “left” is
replaced by “right”.

• A module A satisfies the ascending chain condition on submodules if and only if every submodule of A
is finitely generated. In particular, a commutative ring R is Noetherian if and only if every ideal of R
is finitely generated. There is no analogous property for the descending chain condition.

Exercises:

• If I is a nonzero ideal in a principal ideal domain R, then the ring R/I is both Noetherian and Artinian.

• Every homomorphic image of a left Noetherian [resp. Artinian] ring is left Noetherian [resp. Artinian].

• A ring R is left Noetherian [resp. Artinian] if and only if Matn(R) is left Noetherian [reps. Artinian]
for every n ≥ 1.

• An Artinian integral domain is a field.



3.6. CHAPTER VIII - COMMUTATIVE RINGS AND MODULES 165

3.6.2 Section VIII.2 - Prime and Primary Ideals

Text:

• If R is a commutative ring with identity and P is an ideal which is maximal in the set of all ideals of
R which are not finitely generated, then P is prime. In any integral domain, Rad(0) = 0.

• If I is an ideal in a commutative ring R, then Rad(I) = {r ∈ R | rn ∈ I for some n > 0}.

• Rad(Rad(I)) = Rad(I).

• Rad(I1I2 · · · In) = Rad

 n⋂
j=1

Ij

 =

n⋂
j=1

Rad(Ij).

• Rad(Im) = Rad(I).

• If Q is a primary ideal in a commutative ring R, then Rad(Q) is prime.

• Let Q and P be ideals in a commutative ring R. Then Q is primary for P if and only if:

(i) Q ⊂ P ⊂ Rad(Q), and

(ii) If ab ∈ Q and a 6∈ Q then b ∈ P .

• The intersection of a finite number of P -primary ideals is a P -primary ideal.

Exercises:

• In a commutative Artinian ring with identity, every prime ideal is maximal, and there are only a finite
number of distinct prime ideals.

• If R has an identity, then the set of all zero divisors of R is a union of prime ideals.

• If R has an identity, then Rad(I) is the intersection of all minimal prime ideals.
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3.6.3 Section VIII.3 - Primary Decomposition

Text:

• Let R be a commutative ring with identity and A a primary submodule of an R-module B. Then,
QA := {r ∈ R | rB ⊂ A} is a primary ideal in R.

• If R is a commutative ring with identity and B an R-module that satisfies ACC on submodules. Then
every proper submodule A has a reduced primary decomposition.

Exercises:

• Consider a commutative ring R with identity as an R-module. If Q is a primary submodule of R, then
Q is a primary ideal.

• If A is a P -primary submodule of an R-module B and rx ∈ A (r ∈ R, x ∈ B), then either r ∈ P or
x ∈ A.



3.6. CHAPTER VIII - COMMUTATIVE RINGS AND MODULES 167

3.6.4 Section VIII.4 - Noetherian Rings and Modules

Text:

• A commutative ring R with identity is Noetherian if and only if every prime ideal of R is finitely
generated.

• (Krull Intersection Theorem) Let R be a commutative ring with identity, I an ideal of R and A a

Noetherian R-module. If B =

∞⋂
n=1

InA, then IB = B.

• (Nakayama’s Lemma) If J is an ideal in a commutative ring R with identity, then the following
conditions are equivalent.

(i) J is contained in every maximal ideal of R;

(ii) 1R − j is a unit for every j ∈ J ;

(iii) If A is a finitely generated R-module such that JA = A, then A = 0l

(iv) If B is a submodule of a finitely generated R-module A such that A = JA+B, then A = B.

• (Corollary to Nakayama) If R is a Noetherian local ring with maximal ideal M , then

∞⋂
i=1

Mn = 0.

• If R is a local ring, then every finitely generated projective R-module is free.

• (Hilbert Basis Theorem) If R is a commutative Noetherian ring with identity, then so is R[x1, . . . , xn].

• If R is a commutative Noetherian ring with identity, then so is R[[x]].
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3.6.5 Section VIII.5 - Ring Extensions

Text:

• Let S be an extension ring of R and s ∈ S. Then the following conditions are equivalent:

(i) s is integral over R;

(ii) R[s] is a finitely generated R-module;

(iii) there is a subring T of S containing 1S and R[s] which is finitely generated as an R-module;

(iv) there is anR[s]-submoduleB of S which is finitely generated as anR-module and whose annihilator
in R[s] is zero.

• If S is a ring extension of R and S is finitely generated as an R-module, then S is an integral extension
of R.

• If T is an integral extension ring of S and S is an integral extension ring of R, then T is an integral
extension ring of R.

• (Lying-over Theorem) Let S be an integral extension ring of R and P a prime ideal of R. Then there
exists a prime ideal Q in S which lies over P (that is, Q ∩R = P ).

• (Going-up Theorem) Let S be an integral extension ring of R and P1, P prime ideals in R such that
P1 ⊂ P . If Q1 is a prime ideal of S lying over P1, then there exists a prime ideal Q of S such that
Q1 ⊂ Q and Q lies over P .

• Let S be an integral extension ring of R and let Q be a prime ideal in S which lies over a prime ideal
P inR. Then, Q is maximal in S if and only if P is maximal in R.

Exercises:

• Let S be an integral extension ring of R and suppose R and S are integral domains. Then S is a field
if and only if R is a field.

• Every unique factorization domain is integrally closed.
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3.6.6 Section VIII.6 - Dedekind Domains

Text:

• If R is a Dedekind domain, then every nonzero prime ideal of R is invertible and maximal.

• Every invertible fractional ideal of an integral domain R with quotient field K is a finitely generated
R-module.

• If R is Noetherian, integrally closed integral domain and R has a unique nonzero prime ideal P , then
R is a discrete valuation ring.

• The following conditions on an integral domain R are equivalent.

(i) R is a Dedekind domain.

(ii) Every proper ideal in R is uniquely a product of a finite number of prime ideals.

(iii) Every nonzero ideal in R is invertible.

(iv) Every fractional ideal of R is invertible.

(v) The set of all fractional ideals of R is a group under multiplication.

(vi) Every ideal in R in projective.

(vii) Every fractional ideal of R is projective.

(viii) R is Noetherian, integrally closed, and every nonzero prime ideal is maximal.

(ix) R is Noetherian and for every nonzero prime ideal P of R, the localization RP of R at P is a
discrete valuation ring.

Exercises:

• An invertible ideal in an integral domain that is a local ring is principal.

• A discrete valuation ring is Noetherian and integrally closed.

• If S is a multiplicative subset of a Dedekind domain R (with 1R ∈ S and 0 6∈ S), then S−1R is a
Dedekind domain.

• If I is a nonzero ideal in a Dedekind domain R, then R/I is an Artinian ring.

• Every proper ideal in a Dedekind domain may be generated by at most two elements.
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3.6.7 Section VIII.7 - The Hilbert Nullstellensatz

Text:

• (Noether Normalization Lemma) Let R be an integral domain which is a finitely generated extension
ring of a field K and let r be the transcendence degree over K of the quotient field F of R. Then there
exists an algebraically independent subset {t1, t2, . . . , tr} of R such that R is integral over K[t1, . . . , tr].

• (Weak Hilbert Nullstellensatz) If F is an algebraically closed extension field of a field K and I is a
proper ideal of K[x1, . . . , xn], then the affine variety V (I) defined by I in Fn is nonempty.

• (Hilbert Nullstellensatz) Let F be an algebraically closed extension field of a field K and I a proper
ideal of K[x1, . . . , xn]. Let

V (I) := {(a1, . . . , an) ∈ Fn | g(a1, . . . , an) = 0 for all g ∈ I}.

Then,

Rad(I) = J(V (I)) := {f ∈ K[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V (I)}.

In other words, f(a1, . . . , an) = 0 for every zero (a1, . . . , an) of I in fn if and only if fm ∈ I for some
m ≥ 1.
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3.7 Chapter IX - The Structure of Rings

3.7.1 Section IX.1 - Simple And Primitive Rings

Text:

• A left module A over a ring R is simple if and only if A is isomorphic to R/I for some regular maximal
left ideal I.

• A simple ring R with identity is primitive.

• A commutative ring R is primitive if and only if R is a field.

• Let R be a dense ring of endomorphisms of a vector space V over a division ring D. Then R is left
[resp. right] Artinian if and only if dimD V is finite, in which case R = HomD(V, V ).

• (Schur) Let A be a simple module over a ring R and let B be an R-module.

(i) Every nonzero R-module homomorphism f : A→ B is a monomorphism.

(ii) Every nonzero R-module homomorphism g : B → A is an epimorphism.

(iii) The endomorphism ring D = HomR(A,A) is a division ring.

• (Jacobson Density Theorem) Let R be a primitive ring and A a faithful simple R-module. Consider
A as a vector space over the division ring HomR(A,A) = D. Then R is isomorphic to a dense ring of
endomorphisms of the D-vector space A.

• (Wedderburn-Artin) The following conditions on a left Artinian ring R are equivalent.

(i) R is simple.

(ii) R is primitive.

(iii) R is isomorphic to the endomorphism ring of a nonzero finite dimensional vector space V over a
division ring D.

(iv) For some positive integer n, R is isomorphic to the ring of all n× n matrices over a division ring.

Exercises:

• If R is a dense ring of endomorphisms of a vector space V and K is a nonzero ideal of R, then K is
also a dense ring of endomorphisms of V .
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3.7.2 Section IX.2 - The Jacobson Radical

Text:

• If R is a ring, then there is an ideal J(R) of R such that:

(i) J(R) is the intersection of all left annihilators of simple left R-modules,

(ii) J(R) is the intersection of all the regular maximal left ideals of R,

(iii) J(R) is the intersection of all the left primitive ideals of R,

(iv) J(R) is a left quasi-regular left ideal which contains every left quasi-regular left ideal of R,

(v) Statements (i)-(iv) are also true if “left” is replaced by “right”.

• If I ( 6= R) is a regular left ideal of a ring R, then I is contained in a maximal left ideal which is regular.

• Let R be a ring and let K be the intersection of all regular maximal left ideals of R. Then K is a left
quasi-regular left ideal of R.

• An ideal P of a ring R is left primitive if and only if P is the left annihilator of a simple left R-module.

• Let I be a left ideal of a ring R. If I is left quasi-regular, then I is right quasi-regular.

• Let R be a ring.

(i) If R is primitive, then R is semisimple.

(ii) If R is simple and semisimple, then R is primitive.

(iii) If R is simple, then R is either a primitive semisimple or a radical ring.

• If R is a left [resp. right] Artinian ring, then the radical J(R) is a nilpotent ideal. Consequently, every
nil left or right ideal of R is nilpotent and J(R) is the unique maximal nilpotent left (or right) ideal of
R.

• If R is left [resp. right] Noetherian, then every nil left or right ideal is nilpotent.

• If R is a ring, then the quotient ring R/J(R) is semisimple.

• Let R be a ring and a ∈ R.

(i) If −a2 is left quasi-regular, then so is a.

(ii) a ∈ J(R) if and only if Ra is a left quasi-regular left ideal idea.

• If an ideal I of a ring R is considered as a ring, then J(I) = I ∩ J(R).

• If R is semisimple, then so is every ideal of R.

• J(R) is a radical ring.

• If {Ri | i ∈} is a family of rings, then

J

(∏
i∈I

Ri

)
=
∏
i∈I

J(Ri).

Exercises:

• R is a division ring if and only if every element of R except one is left quasi-regular.

• The homomorphic image of a semisimple ring need not be semisimple.



3.7. CHAPTER IX - THE STRUCTURE OF RINGS 173

3.7.3 Section IX.3 - Semisimple Rings

Text:

• A nonzero ring R is semisimple if and only if R is isomorphic to a subdirect product of primitive rings.

• (Wedderburn-Artin) The following conditions on a ring R are equivalent.

(i) R is a nonzero semisimple left Artinian ring.

(ii) R is a direct product of a finite number of simple ideals each of which is isomorphic to the
endomorphism ring of a finite dimensional vector space over a division ring.

(ii) There exist division rings D1, . . . , Dt and positive integers n1, . . . , nt such that R is isomorphic to
the ring Matn1

(D1)× · · · ×Matnt
(Dt).

• A semisimple left Artinian ring has an identity.

• A semisimple ring is left Artinian if and only if it is right Artinian.

• A semisimple left Artinian ring is both left and right Noetherian.

• The following conditions on a nonzero module A over a ring R are equivalent.

(i) A is the sum of a family of simple submodules.

(ii) A is the (internal) direct sum of a family of simple submodules.

(iii) For every nonzero element a ∈ A, Ra 6= 0; and every submodule B of A is a direct summand
(that is, A = B ⊕ C for some submodule C).

A module that satisfies these equivalent conditions is said to be semisimple or completely reducible.

• The following conditions on a nonzero ring R with identity are equivalent.

(i) R is semisimple left Artinian.

(ii) Every unitary left R-module is projective.

(iii) Every unitary left R-module is injective.

(iv) Every short exact sequence of unitary left R-modules is split exact.

(v) Every nonzero unitary left R-module is semisimple.

(vi) R is itself a unitary semisimple left R-module.

(vii) Every left ideal of R is of the form Re with e idempotent.

(viii) R is the (internal) direct sum (as a left R-module) of minimal left ideals K1, . . . ,Km such that
Ki = Rei (ei ∈ R) for i = 1, 2, . . . ,m and {e1, . . . , em} is a set of orthogonal idempotents with
e1 + · · ·+ em = 1R.

• Let R be a semisimple left Artinian ring.

(i) R = I1 × · · · × In where each Ij is a simple ideal of R.

(ii) If J is any simple ideal of R, then J = Ik for some k.

(iii) If R = J1× · · · × Jm with each Jk a simple ideal of R, then n = m and (after reindexing) Ik = Jk
for k = 1, 2, . . . , n.

• Let R be a semisimple left Artinian ring.

(i) Every simple left [resp. right] R-module is isomorphic to a minima left [resp. right] ideal of R.

(ii) The number of nonisomorphic simple left [resp. right] R-modules is the same as he number of
simple components of R.



174 CHAPTER 3. SUMMARY OF FACTS

Exercises:

• A commutative semisimple left Artinian ring is a direct product of fields.

• Every nonzero homomorphic image and every nonzero submodule of a semisimple module is semisimple.

• The intersection of two semisimple submodules is 0 or semisimple.
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3.7.4 Section IX.5 - Algebras

Text:

• Let A be a K-algebra.

(i) A subset I of A is a regular maximal left algebra ideal if and only if I is a regular maximal left
ideal of the ring A.

(ii) The Jacobson radical of the ring A coincides with the Jacobson radical of the algebra A. In
particular A is a semisimple ring if and only if A is a semisimple algebra.

• Let A be a K-algebra. Every simple algebra A-module is a simple module over the ring A. Every
simple module M over the ring A can be given a unique K-module structuce in such a way that M is
a simple algebra A-module.

• A is a semisimple left Artinian K-algebra if and only if there is an isomorphism of K-algebras

A ∼= Matn1
(D1)× · · · ×Matnt

(Dt),

where each ni is a positive integer and each Di a division algebra over K.

• If D is an algebraic division algebra over an algebraically closed field K, then D = K.

• Let A be a finite dimensional semisimple algebra over an algebraically closed field K. Then there are
positive integers n1, . . . , nt and an isomorphism of K-algebras

A ∼= Matn1
(K)× · · ·Matnt

(K).

• (Maschke) Let K(G) be the group algebra of a finite group G over a field K. If K has characteristic
0, then K(G) is semisimple. If K has prime characteristic p, then K(G) is semisimple if and only if p
does not divide |G|.

• (Corollary of Maschke) Let K(G) be the group algebra of a finite group G over an algebraically closed
field K. If charK = 0 or charK = p and p - |G|, then there exist positive integers n1, . . . , nt and an
isomorphism of K-algebras

K(G) ∼= Matn1
(K)× · · · ×Matnt

(K).

Exercises:

• A finite dimensional algebra over a field K satisfies both the ascending and descending chain conditions
on left and right algebra ideals.
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3.7.5 Section IX.6 - Division Algebras

Text:

• If A is a central simple algebra over a field K and B is a simple K-algebra with identity, then A⊗K B
is a simple K-algebra.
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3.8 Chapter X - Categories

3.8.1 Section X.1 - Functors and Natural Transformations

None

3.8.2 Section X.2 - Adjoint Functors

Text:

• A covariant functor T : D → C has a left adjoint if and only if for each object C ∈ C the functor
homC (C, T (−)) : D → S is representable.

• Any two left adjoints of a covariant functor T : D → C are naturally isomorphic.

Exercises:

• If T : C → S is a covariant functor that has a left adjoint, then T is representable.

3.8.3 Section X.3 - Morphisms

None.
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Chapter 4

Examples and Counterexamples

4.1 Chapter V - Fields And Galois Theory

• A finitely generated field extension which is not finite dimensional:
Q(π) is finitely generated over Q, but is not finite dimensional.

• Two fields that are isomorphic as vector spaces, but not as fields:

Q(i) and Q(
√

2).

• Fields F % K with AutK F = 1:

Let u be the real cube root of 2. Then, AutQQ(u) = 1. Also, AutQ R = 1.

• A polynomial which is separable over Q, but not separable over some other field:

x2 + 1 ∈ Q[x] is separable because it factors in C[x] as x2 + 1 = (x+ i)(x− i). Over Z2[x], x2 + 1 is not
separable because its not even irreducible: x2 + 1 = (x+ 1)2 in Z2[x].

• Fields F ⊃ E ⊃ K such that F is normal over E and E is normal over K,
but F is not normal over K:
Consider Q( 4

√
2) ⊃ Q(

√
2 ⊃ Q. Recall that extensions of degree 2 are normal.

4.2 Chapter I - Groups

None.

4.3 Chapter IV - Modules

• A finitely generated R-module which is not finitely generated as an abelian group:
Q.

• A submodule a free module which is not free:
Consider that Z6 is a free Z6-module, but the submodule {0, 2, 4} is not a free Z6-module (because it’s
too small).

• An abelian group which is not divisible:
Any nonzero finite abelian group or nonzero free abelian group is not divisible.

• A projective module which is not free:
Z2 and Z3 can be made into Z6-modules. Z6 = Z2 ⊕ Z3, and since Z6 is a free Z6-modules, both Z2
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and Z3 are projective Z6-modules (as they are summands of a free Z6-module. However, they are not
free, because they are too small.

• R-modules AR and RB such that A⊗R B 6= A⊗Z B:
Note that Z[x] is a Z-module and Z is a Z[x]-module (defining x to act trivially). Now, Z⊗Z[x]Z[x]⊗Z
and Z⊗Z Z[x]⊗ Z[x].

4.4 Chapter III - Rings

• A finite local ring:
Zpn has unique maximal ideal (p).

4.5 Chapter VI - The Structure of Fields

None.

4.6 Chapter VIII - Commutative Rings and Modules

• A ring which is integrally closed in one extension, but not in a larger extension:
Z is integrally closed in Q, but not in C.

• A Dedekind domain which is not a principal ideal domain:

Z[
√

10]. This is nontrivial to prove.

4.7 Chapter IX - The Structure of Rings

• An algebraic algebra:
If A is finite dimensional, then A is an algebraic algebra. For if dimK A = n and a ∈ A, then the n+ 1
elements a, a2, a3, . . . , an+1 must be linearly dependent. Thus, f(a) := k1a+k2a

2 + · · ·+kn+1a
n+1 = 0

for some ki ∈ K not all zero,. Thus f(a) = 0 .

• An infinite dimensional simple algebraic algebra:
The algebra of countable infinite matrices over a field K with only a finite number of nonzero entries.

• A Q-algebra which is a left Artinian Q-algebra but which is not a left Artinian ring:
Let A be a one-dimensional vector space over the rational field. Define ab = 0 for all a, b ∈ A.

4.8 Chapter X - Categories

None.



Chapter 5

Study Quizzes

5.1 Chapter V - Fields And Galois Theory

1. Define an algebraic element. Define a transcendental element.

2. Define an algebraic extension. Define a transcendental extension.

3. (Theorem V.1.5) Let F be an extension field of K and u ∈ F transcendental over K. Prove that there
is an isomorphisms of fields K(u) ∼= K(x) which is the identity on K.

4. (Theorem V.2.2) Let F be an extension field of K and f ∈ K[x]. If u ∈ F is a root of F and σ ∈ AutK F ,
then σ(u) ∈ F is also a root of f .

5. Define the fixed field of a subgroup. Define the subgroup corresponding to an intermediate field.

6. Define a Galois extension.

7. (Theorem V.2.5) State the Fundamental Theorem of Galois Theory.

8. Define the splitting field of a polynomial.

9. Define a separable element. Define a separable polynomial. Define a separable extension.

10. Define a normal extension. Define a normal closure.

11. Define the Galois group of a polynomial.

12. (Theorem V.4.11) Fill in the blanks. Let K be a field and f ∈ K[x] an (irreducible) separable quartic
with Galois group G (considered as a subgroup of S4). Let α, β, γ be roots of the resolvant cubic of f
and let m =

[
K(α, β, γ) : K

]
. Then,

(i) m = ⇐⇒ G = ;

(ii) m = ⇐⇒ G = ;

(iii) m = ⇐⇒ G = ;

(iv) m = ⇐⇒ G ∼= or G ∼= ; in this case G ∼= if and only if f is irreducible over K(α, β, γ)
and G ∼= otherwise.

13. (Theorem V.4.12) Prove that if p is prime and f is an irreducible polynomial of degree p over the field
of rational numbers which has precisely two nonreal roots in the field of complex numbers, then the
Galois group of f is (isomorphic to) Sp.
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14. (Proposition V.5.6 / Corollary V.5.7) Prove that is p is a prime and n ≥ 1 is an integer, F is a finite field
with pn elements if and only if F is a splitting field of xp

n − x over Zp. Prove that there exists a field
with pn elements. Prove that any two finite fields with the same number of elements are isomorphic.

15. Define a purely inseparable element, a purely inseparable polynomial, and a purely inseparable
extension.

16. (Corollary V.6.8) Prove that if F is a separable extension field of E and E is separable extension field
of K, then F is separable over K.

17. (Exercise V.6.2) Prove that if u ∈ F is purely inseparable over K, then u is purely inseparable over any
intermediate field E. Hence if F is purely inseparable over K, then F is purely inseparable over E.

18. (Exercise V.6.3) Prove that if F is purely inseparable over an intermediate field E and E is purely
inseparable over K, then F is purely inseparable over K.

19. Define norm and trace.

20. (Theorem V.7.6(ii)) State and prove Hilbert’s Theorem 90.

21. Define a cyclotomic extension.

22. Define a radical extension.

5.2 Chapter I - Groups

1. Define a category.

2. Define what it means for two objects in a category to be equivalent.

3. Define the product in a category.

4. Define the coproduct in a category.

5. (Theorem I.7.3) Prove that two products of the same family of objects with the same morphisms are
equivalent.

6. (Theorem I.7.5) Prove that two coproducts of the same family of objects with the same morphisms are
equivalent.

7. Define a concrete category.

8. Define a free object.

9. (Theorem I.7.8) Prove that two free objects on sets of the same cardinality are equivalent.

10. Define universal (initial) and couniversal (terminal) objects.

11. (Theorem 1.7.10) Prove that any two universal objects in a category are equivalent.

12. (Theorem 1.9.2) Prove that the free group is the free object in the category of groups.

13. (Theorem 1.9.3) Prove that every group is the homomorphic image of a free group.

5.3 Chapter IV - Modules

1. Define a module.

2. Define a module homomorphism.

3. Define what it means for a pair of module homomorphisms to be exact.
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4. Define what it means for a sequence of modules to be an exact sequence.

5. Define a split exact sequence.

6. (Theorem IV.1.17) State and prove the Short Five Lemma.

7. (Theorem IV.1.18) Let R be a ring and

0 - A1
f- B

g- A2
- 0

be a short exact sequence of R-module homomorphisms. Prove that the following conditions are
equivalent.

(i) There is an R-module homomorphism h : A2 → B with gh = 1A2 ;

(ii) There is an R-module homomorphism k : B → A1 with kf = 1A1
;

(iii) The given sequence is isomorphism (with identity maps on A1 and A2) to the direct sum short
exact sequence

0 - A1
ι1- A1 ⊕A2

ι2- A2
- 0

In particular, B ∼= A1 ⊕A2.

A short exact sequence that satisfies these equivalent conditions is said to be split exact.

8. (Exercise IV.1.12) State and prove the Five Lemma.

9. Define a free module.

10. Define a projective module.

11. (Theorem IV.3.2) Prove that every free module over a ring with identity is projective.

12. (Theorem IV.3.4) Let R be a ring. The following conditions on an R-module P are equivalent.

(i) P is projective;

(ii) Every short exact sequence 0 - A
f- B

g- P - 0 is split exact (hence B ∼= A⊕P );

(iii) There is a free module F and an R-module K such that F ∼= K ⊕ P .

13. (Theorem IV.3.5) Prove that a direct sum of R-modules
∑
Pi is projective if and only if each Pi is

projective.

14. Define an injective module.

15. (Theorem IV.3.7) Prove that a direct product of R-modules
∏
i∈I

Ji is injective if and only if Ji is injective

for every i ∈ I.

16. (Theorem IV.3.9) Prove that an abelian group D is divisible if and only if D is injective (unitary)
Z-module.

17. (Theorem IV.3.10) Prove that every abelian group A may be embedded in a divisible abelian group.

18. (Exercise IV.3.1) Prove that the following conditions on a ring R (with identity) are equivalent:

(a) Every (unitary) R-module is projective.

(b) Every short exact sequence of (unitary) R-modules is split exact.

(c) Every (unitary) R-module is injective.
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19. (Theorem IV.4.2) Let R be a ring. Prove that 0 - A
ϕ- B

ψ- C is an exact sequence of
R-modules if and only if for every R-module D

0 - HomR(D,A)
ϕ- HomR(D,B)

ψ- HomR(D,C)

is an exact sequence of abelian groups.

20. (Theorem IV.4.3) Let R be a ring. Prove that A
θ- B

ξ- C - 0 is an exact sequence of
R-modules if and only if for every R-module D

0 - HomR(C,D)
ξ- HomR(B,D)

θ- HomR(A,D)

is an exact sequence of abelian groups.

21. (Theorem IV.4.4) Prove that the following conditions on modules over a ring R are equivalent.

(i) 0 - A
ϕ- B

ψ- C - 0 is a split exact sequence of R-modules;

(ii) 0 - HomR(D,A)
ϕ- HomR(D,B)

ψ- HomR(D,C) - 0 is a split exact sequence of abelian
groups for every R-module D;

(iii) 0 - HomR(C,D)
ψ- HomR(B,D)

ϕ- HomR(A,D) - 0 is a split exact sequence of abelian
groups for every R-module D;

22. (Theorem IV.4.5) Prove that the following conditions on a module P over a ring R are equivalent:

(i) P is projective;

(ii) If ψ : B → C is an R-module epimorphism, then ψ : HomR(P,B) → HomR(P,C) is an
epimorphism of abelian groups.

(iii) If 0 - A
ϕ- B

ψ- C - 0 is any short exact sequence of R-modules, then

0 - HomR(P,A)
ϕ- HomR(P,B)

ψ- HomR(P,C) - 0

is an exact sequence of abelian groups.

23. (Theorem IV.4.6) Prove that the following conditions on a module J over a ring R are equivalent:

(i) J is injective;

(ii) If θ : A → B is an R-module monomorphisms, then θ : HomR(B, J) → HomR(A, J) is an
epimorphism of abelian groups.

(iii) If 0 - A
θ- B

ξ- C - 0 is any short exact sequence of R-modules, then

0 - HomR(C, J)
ξ- HomR(B, J)

θ- HomR(A, J) - 0

is an exact sequence of abelian groups.

24. Define a middle-linear map.

25. Define a tensor product.

26. State the Universal Property for tensor products over middle-linear maps.

27. Define a bilinear map.

28. State the Universal Property for tensor products over bilinear maps.
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29. (Theorem IV.5.7) Prove that if R is a ring with identity and AR and RB are unitary R-modules, then
there are R-module isomorphisms A⊗R R ∼= A and R⊗R B ∼= B.

30. Define a K-algebra.

31. Define a division algebra.

32. Define an algebra ideal.

33. Define a K-algebra homomorphism.

5.4 Chapter III - Rings

1. Define a multiplicative subset.

2. Define what we mean by S−1R.

3. Define the localization of R at P .

4. Define a local ring.

5.5 Chapter VI - The Structure of Fields

1. Define algebraically dependent. Define algebraically independent.

2. Define a transcendence basis.

3. Define transcendence degree.

4. Define a purely transcendental extension.

5.6 Chapter VIII - Commutative Rings and Modules

1. Define what it means for a module A to satisfy the ascending chain condition on submodules.

2. Define what it means for a module A to satisfy the descending chain condition on submodules.

3. Define what it means for a ring to satisfy the ascending chain condition.

4. Define what it means for a ring to satisfy the descending chain condition.

5. State the maximum and minimum condition on submodules.

6. (Theorem VIII.1.5 / Corollary VIII.1.6 / Corollary VIII.1.7) Let

0 - A
f- B

g- C - 0

be a short exact sequence of modules. Prove that B satisfies the ascending [resp. descending] chain
condition on submodules if and only if A and C satisfy it.

Prove as a corollary that if A is a submodule of a module B, then B satisfies the ascending [resp.
descending] chain condition if and only if A and B/A satisfy it.

Prove as a corollary that if A1, A2, . . . , An are modules then the direct sum A1 ⊕ · · · ⊕An satisfies the
ascending [resp. descending] chain condition on submodules if and only if each Ai satisfies it.

7. Define the following: a normal series, factors, length, refinement, proper refinement, equivalence,
composition series.
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8. Define a prime ideal.

9. Define a primary ideal.

10. Define the radical of an ideal I.

11. (Theorem VIII.2.6) Prove that if I is an ideal in a commutative ring R, then Rad(I) = {r ∈ R | rn ∈
I for some n > 0}.

12. Define what it means for an ideal to be P -primary.

13. Define the primary decomposition of an ideal. Define the reduced primary decomposition of an ideal.

14. Define a primary submodule.

15. Define the primary decomposition of a module.

16. (Theorem VIII.3.6) Prove the following: Let R be a commutative ring with identity and B an R-module
satisfying the ascending chain condition on submodules. Then every submodule A(6= B) has a reduced
primary decomposition. In particular, every submodule A( 6= B) of a finitely generated module B over
a commutative Noetherian ring R and every ideal ( 6= R) of R has a reduced primary decomposition.

17. (Proposition VIII.4.1) Prove that a commutative ring R with identity is Noetherian if and only if every
prime ideal of R is finitely generated.

18. (Theorem VIII.4.4) State and prove the Krull Intersection Theorem.

19. (Lemma VIII.4.5) State and prove Nakayama’s Lemma.

20. (Theorem VIII.4.9) State and prove the Hilbert Basis Theorem.

21. (Proposition VIII.4.10) Prove that if R is a commutative Noetherian ring with identity, then so is R[[x]].

22. Define an extension ring.

23. Define an integral extension.

24. (Theorem VIII.5.6) If T is an integral extension ring of S and S is an integral extension ring of R, then
T is an integral extension ring of R.

25. Define an integrally closed extension.

26. (Theorem VIII.5.9) State and prove the Lying-Over Theorem.

27. (Corollary VIII.5.10) State and prove the Going-Up Theorem.

28. (Exercise VIII.5.8) Prove that every unique factorization domain is integrally closed.

29. Define a Dedekind domain.

30. Define a fractional ideal.

31. Define an invertible ideal.

32. State as many equivalent properties to “R is a Dedekind domain” as you can think of. There are 8.

33. Define a discrete valuation ring.

34. (Exercise VIII.6.5) Prove that a discrete valuation ring R is Noetherian and integrally closed.

35. (Exercise VIII.6.7) Prove that if S is a multiplicative subset of a Dedekind domain R (with 1R ∈ S,
0 6∈ S), then S−1R is a Dedekind domain.

36. (Exercise VIII.6.10) If I is a nonzero ideal in a Dedekind domain R, then R/I is Artinian.

37. (Exercise VIII.6.11) Every proper ideal in a Dedekind domain may be generated by at most two
elements.

38. Define V (S) and J(Y ) as in section VIII.7.
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39. (Theorem VIII.7.2) State and prove the Noether Normalization Lemma.

40. (Theorem VIII.7.3) State and prove the Weak Hilbert Nullstellenatz.

41. (Theorem VIII.7.4) State and prove the Hilbert Nullstellensatz.

5.7 Chapter IX - The Structure of Rings

1. Define a simple module.

2. Define a simple ring.

3. Define a regular left ideal. Define a regular right ideal.

4. Define the left annihilator. Define the right annihilator.

5. Define a faithful left module. Define a faithful right module.

6. Define a left primitive ring. Define a right primitive ring.

7. (Proposition IX.1.6) Prove that a simple ring R with identity is primitive.

8. (Proposition IX.1.7) Prove that a commutative ring R is primitive if and only if R is a field.

9. Define a dense ring of endomorphism.

10. (Theorem IX.1.12) State and prove that Jacobson Density Theorem.

11. (Theorem IX.1.14) State the Wedderburn-Artin theorem about equivalences on a left Artinian ring R
(there are four equivalences).

12. Define a left primitive ideal. Define a right primitive ideal.

13. Define a left quasi-regular element. Define a right quasi-regular element.

14. (Theorem IX.2.3) State the Jacobson radical equivalences.

15. Define a semisimple ring.

16. Define a radical ring.

17. (Theorem IX.2.10) Let R be a ring. Prove that:

(i) If R is primitive, then R is semisimple.

(ii) If R is simple and semisimple, then R is primitive.

(iii) If R is simple, then R is either a primitive semisimple or a radical ring.

18. Define a nilpotent ring element. Define a nilpotent ideal.

19. Define a nil ideal.

20. Is a nil ideal nilpotent? Is a nilpotent ideal nil?

21. (Theorem IX.2.14) Prove that if R is a ring, then the quotient ring R/J(R) is semisimple.

22. (Exercise IX.2.2) Prove Kaplansky’s Theorem: R is a division ring if and only if every element of R
except one is left quasi-regular. [Note that the only element in a division ring D that is not quasi-regular
is −1D.]

23. (Exercise IX.2.4) Prove that the radical J(R) contains no nonzero idempotents. However, prove that a
nonzero idempotent may be left quasi-regular.

24. (Exercise IX.2.6(a)) Prove that the homomorphic image of a semisimple ring need not be semisimple.

25. (Exercise IX.2.6(b)) Prove that if f : R→ S is a ring epimorphism, then f(J(R)) ⊂ J(S).
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26. (Exercise IX.2.17) Show that Nakayama’s Lemma (Theorem VIII.4.5) is valid for any ring R with
identity, provided condition (i) is replaced by the condition (i’) J is contained in the Jacobson radical
of R.

27. Define the subdirect product.

28. (Theorem IX.3.3) State and prove the other Wedderburn-Artin Theorem.

29. Define a semisimple module.

30. Define a left Artinian K-algebra.

31. Define a left (algebra) A-module.

32. Define a left (algebra) A-submodule.

33. Define a simple left (algebra) A-module.

34. Define a (algebra) A-module homomorphism.

35. (Theorem IX.5.4) Prove that A is a semisimple left Artinian K-algebra if and only if there is an
isomorphism of K-algebras

A ∼= Matn1
(D1)× · · · ×Matnt

(Dt)

where each ni is a positive integer and each Di is a division algebra over K.

36. Define an algebraic algebra.

37. (Proposition IX.5.8) State and prove Maschke’s Theorem.

38. Define a central simple K-algebra.

39. (Theorem IX.6.2) Prove that if A is a central simple algebra over a field K and B is a simple K-algebra
with identity, then A⊗K B is a simple K-algebra.

5.8 Chapter X - Categories

1. Define a covariant functor. Define a contravariant functor.

2. Define the covariant hom functor. Define the contravariant hom functor.

3. Define a natural transformation. Define a natural isomorphism / equivalence.

4. Define a representable covariant functor. Define a representable contravariant functor.

5. (Theorem X.1.6) Let T : C → S be a covariant functor from a category C to the category S of sets.
Prove that there is a one-to-one correspondence between the class X of all representations of T and the
class Y of all universal elements of T , given by (A,α) 7→ (A,αA(1A)).

6. Define an adjoint pair.

7. (Proposition X.2.2) Prove that a covariant functor T : D → C has a left adjoint if and only if for each
object C in C the functor homC (C, T (−)) : D → S is representable.

8. Define a monic morphism.

9. Define an epic morphism.

10. Define a zero object.
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