

Math 1450 - Calculus 1

Mon, Dec 1

Announcements:

* HW 13 due Thursday

* Final Exam:

Wednesday, Dec 10, 8pm - 10pm
Weuster Auditorium

Today:

→ 5.3: The fundamental theorem

→ 5.4: Theorems about definite integrals

Office Hours

Mondays, 12-1

Wednesdays, 2-3

+ Help Desk! 12-1

Section 5.3 – The Fundamental Theorem and Interpretations

$\int_a^b v(t) dt =$ area under the curve $v(t)$
between $t=a$ and $t=b$

= change in position between
 $t=a$ and $t=b$

Define
 $s(t)$ = position at time t

$$\rightarrow = s(b) - s(a)$$

$$\int_a^b v(t) dt = s(b) - s(a)$$

$v(t)$ is the
derivative of
 $s(t)$

This Says :

To calculate $\int_a^b v(t) dt$:

- (1) Find a function $s(t)$ whose derivative is $v(t)$
- (2) Do $s(b) - s(a)$

Ex:

3

2

$$\int 2t \, dt$$

Find a function $s(t)$ whose derivative is $2 \cdot t$.

$$s(t) = t^2 \text{ works}$$

$$s(3) - s(2) = 9 - 4 = 5$$

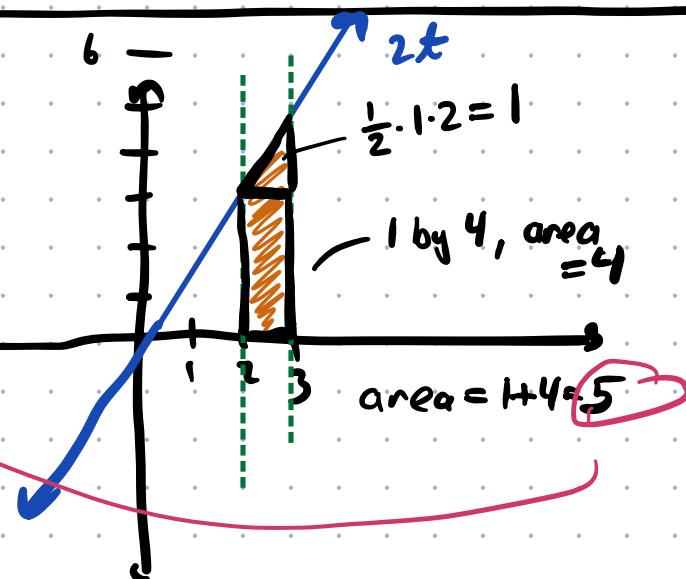
$$\int_{-1}^4 t^2 \, dt \quad s(t) = \frac{t^3}{3}$$

$$s(4) - s(-1)$$

$$\frac{64}{3} - \left(-\frac{1}{3}\right) = \boxed{\frac{65}{3}}$$

If the velocity of a car at time t is $2t$, what is the change in position from $t=2$ to $t=3$?

What is the area under the curve $2 \cdot t$ between $t=2$ and $t=3$?



The Fundamental Theorem of Calculus

If f is continuous on the interval

$[a, b]$, and if $f(t) = F'(t)$, then

$$\int_a^b f(t) dt = F(b) - F(a)$$

Ex: Let $f(t)$ represent a bacterial population that is 5 million at time $t=0$. At time t the population is growing at a rate 2^t million bacteria per hour. What is the population rate of change at time $t=1$.

$$\int_0^1 2^t dt = \text{change in population between } t=0 \text{ and } t=1$$

$$\frac{5 \text{ million}}{\text{start pop.}} + \int_0^1 2^t dt = \text{final answer}$$

amount of change in pop.

Ex: Let $f(t)$ represent a bacterial population that is 5 million at time $t=0$. At time t the population is growing at a rate 2^t million bacteria per hour. What is the population rate of change at time $t=1$.

$\int_0^1 2^t dt$ We need a function $s(t)$ whose derivative is 2^t .

Does 2^t work? $(2^t)' = \ln(2) \cdot 2^t$

Does $\frac{2^t}{\ln(2)}$ work? $\left(\frac{2^t}{\ln(2)}\right)' = \frac{\ln(2) \cdot 2^t}{\ln(2)} = 2^t$.

$$\int 2^t dt = \left(\frac{2^t}{\ln(2)}\right) - \left(\frac{2^0}{\ln(2)}\right) = \frac{2}{\ln(2)} - \frac{1}{\ln(2)} = \frac{1}{\ln(2)} \underset{\text{yes}}{\approx 1.44}$$

Ex: Let $f(t)$ represent a bacterial population that is 5 million at time $t=0$. At time t the population is growing at a rate 2^t million bacteria per hour. What is the population rate of change at time $t=1$.

Answer: $5 + \int_0^1 2^t dt \approx 5 + 1.44$

≈ 6.44 million bacteria

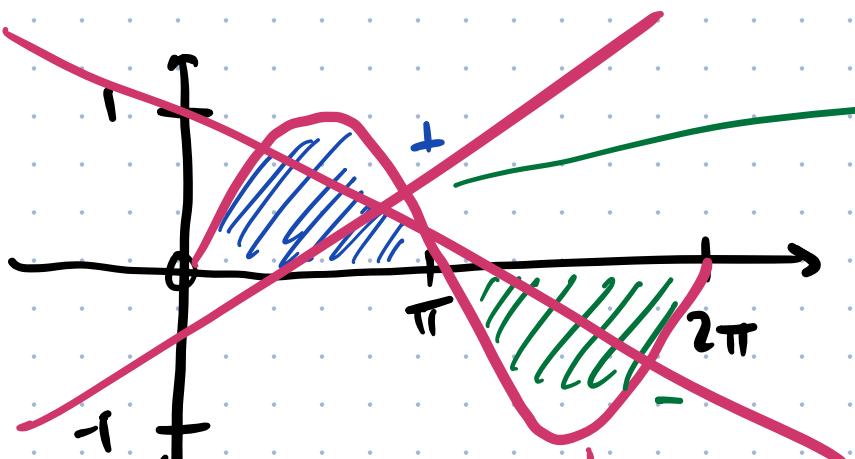
$$\text{Ex: } \int_0^{2\pi} \cos(\theta) d\theta$$

A function whose derivative is $\cos(\theta)$:

$$= \sin(2\pi) - \sin(0)$$

$$\sin(\theta)$$

$$= 0 - 0 = 0$$

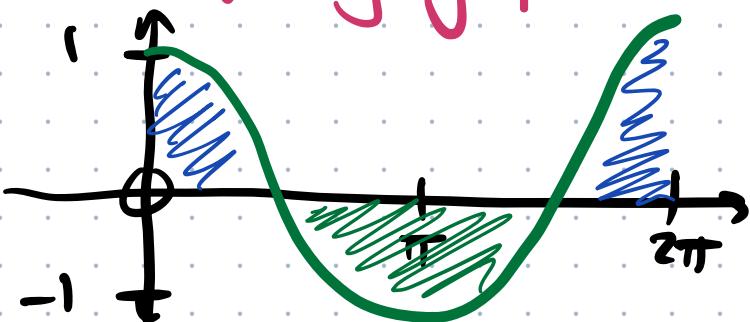


Blue area:

$$\int_0^{\pi} \sin(\theta) d\theta$$

$$F = -\cos(\theta)$$

$$\begin{aligned} & -\cos(\pi) - (-\cos(0)) \\ & 1 + 1 = 2 \end{aligned}$$



Ex:

$$\int_{2}^{5} \frac{2}{x} dx$$

look for a function whose derivative is $\frac{2}{x}$

||

$$\boxed{2 \cdot \ln(5) - 2 \cdot \ln(2)}$$

the derivative of $\ln(x)$ is $\frac{1}{x}$

the derivative of $2 \cdot \ln(x)$ is $\frac{2}{x}$

the derivative of $2 \cdot \ln(x) + 17$ is also $\frac{2}{x}$

$$(2 \cdot \ln(5) + 17) - (2 \cdot \ln(2) + 17)$$

$$\boxed{2 \cdot \ln(x) + C}$$

Section 5.4: Theorems about Definite Integrals

Fact #1: If f is continuous and a and b are any #'s:

$$\int_a^b f(x) dx = - \int_b^a f(x) dx$$

Ex: If $\int_3^5 f(x) dx = 10$, then $\int_5^3 f(x) dx = -10$.

Fact #2: If f is continuous and a, b, c are any #'s, then:

$$\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$$

orange area + green area = purple area

