

Math 1450 - Calculus 1

Mon, Nov 24

Announcements:

- * This Week: lecture today
discussion Tuesday
nothing Wed, Thurs, Fri
- * HW 13 due Thurs, Dec 4 - start now!

* Final Exam:

Wednesday, Dec 10, 8pm - 10pm
Weasler Auditorium

Today:

- 5.2: The definite integral
- 5.3: The fundamental theorem

Office Hours
Mondays, 12-1

Wednesdays, 2-3

+ Help Desk! 12-1

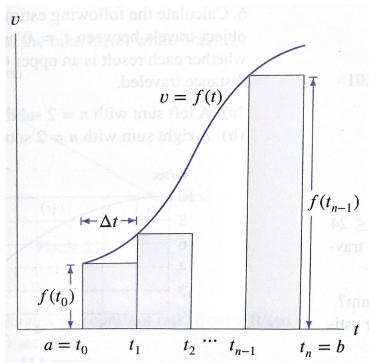


Figure 5.8: Left-hand sums

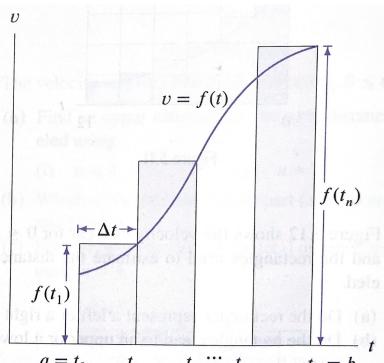
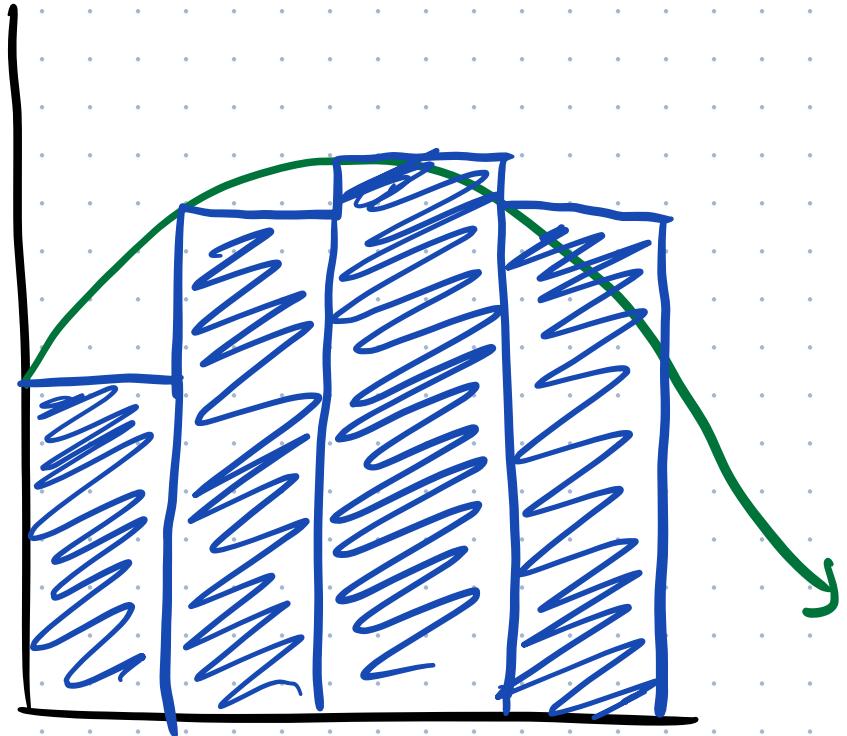


Figure 5.9: Right-hand sums

$$0 \leq t \leq 12$$



Section 5.2: The Definite Integral

↗ opposite of a derivative

" Σ " capital greek sigma σ

Let " $P(i)$ " be some mathematical expression in terms of the variable i .

$$\sum_{i=a}^{i=b} P(i) = P(a) + P(a+1) + P(a+2) + \dots + P(b-1) + P(b)$$

$i=a$ "add $P(i)$ for all values of i (whole #s)
between a and b "

$$\sum_{i=3}^6 i^2 = 3^2 + 4^2 + 5^2 + 6^2 = 86$$

$$\text{Left} = \Delta t \cdot (f(t_0) + f(t_1) + \dots + f(t_{n-1}))$$

$$= \sum_{i=0}^{n-1} (\Delta t) \cdot f(t_i)$$

$$= (\Delta t) \cdot \sum_{i=0}^{n-1} f(t_i)$$

$$\text{Right} = \Delta t \cdot (f(t_1) + f(t_2) + \dots + f(t_n))$$

$$= \sum_{i=1}^n (\Delta t) \cdot f(t_i)$$

$$= (\Delta t) \sum_{i=1}^n f(t_i)$$

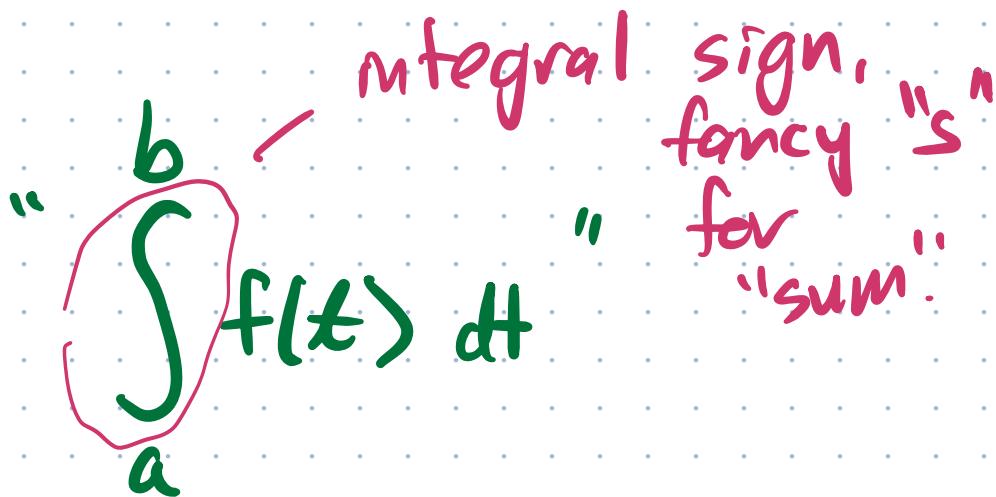
"Riemann sums" - the name for these left and right sums

As the number of rectangles (n) gets bigger and bigger, the approximation to the true area under the curve gets better and better.

So, we're going to take the limit as $n \rightarrow \infty$

The Definite Integral

We use the notation



to mean:

the **(signed)** area under the curve $f(t)$
between $t=a$ and $t=b$.

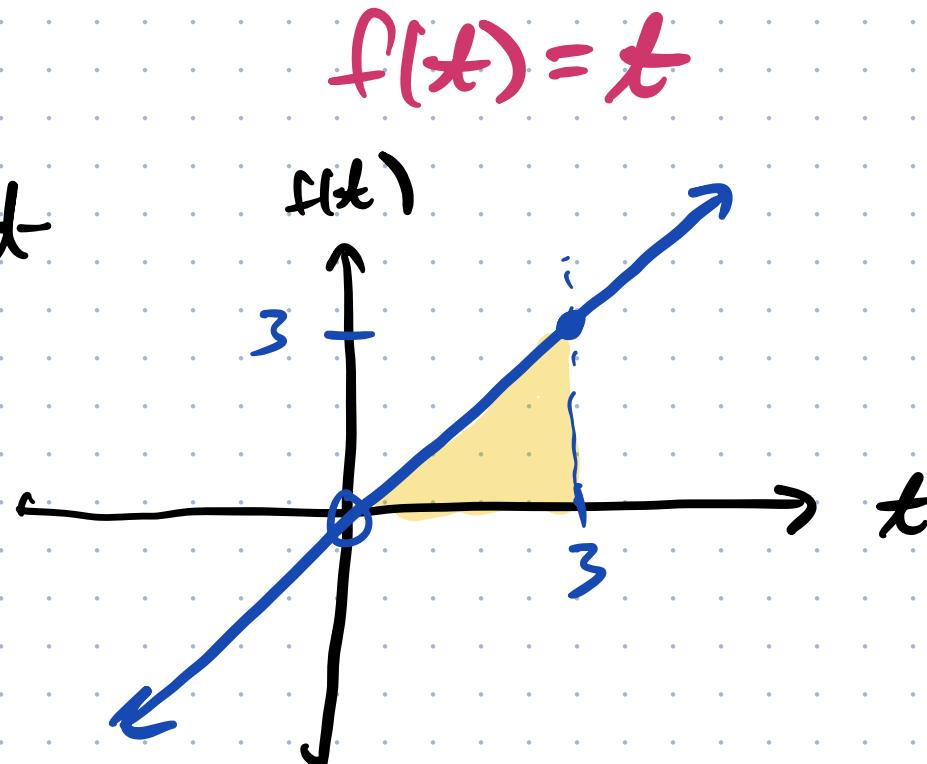
right endpoint above the axis counts as positive
b the function below the axis counts as negative

$\int_a^b f(t) dt$ tells us
the variable
left endpoint

just like
 $\frac{d}{dx}$ tells us the
variable

Ex:

$$\int_0^3 t \, dt$$



$$A = \frac{1}{2} \cdot b \cdot h$$

$$A = \frac{1}{2} \cdot 3 \cdot 3$$

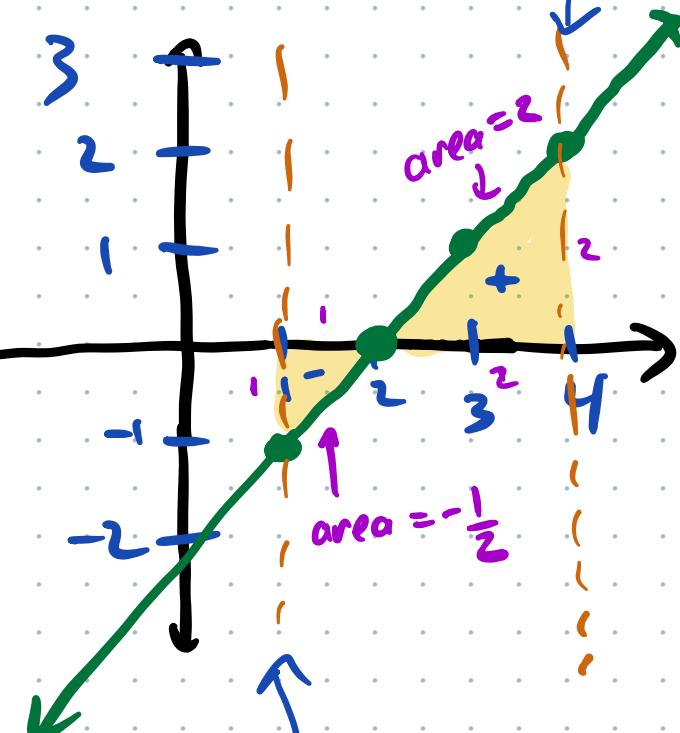
$$\boxed{= 4.5}$$

$$\int_0^3 t \, dt = 4.5$$

Ex:

$$\int (t-2) dt$$

$$= 1.5 = \underline{3}$$



$$f(t) = t - 2$$

Facts b

- * $\int_a^b f(t) dt$ is approximated by adding the area of left or right Riemann sums
- * More rectangles = better approximation

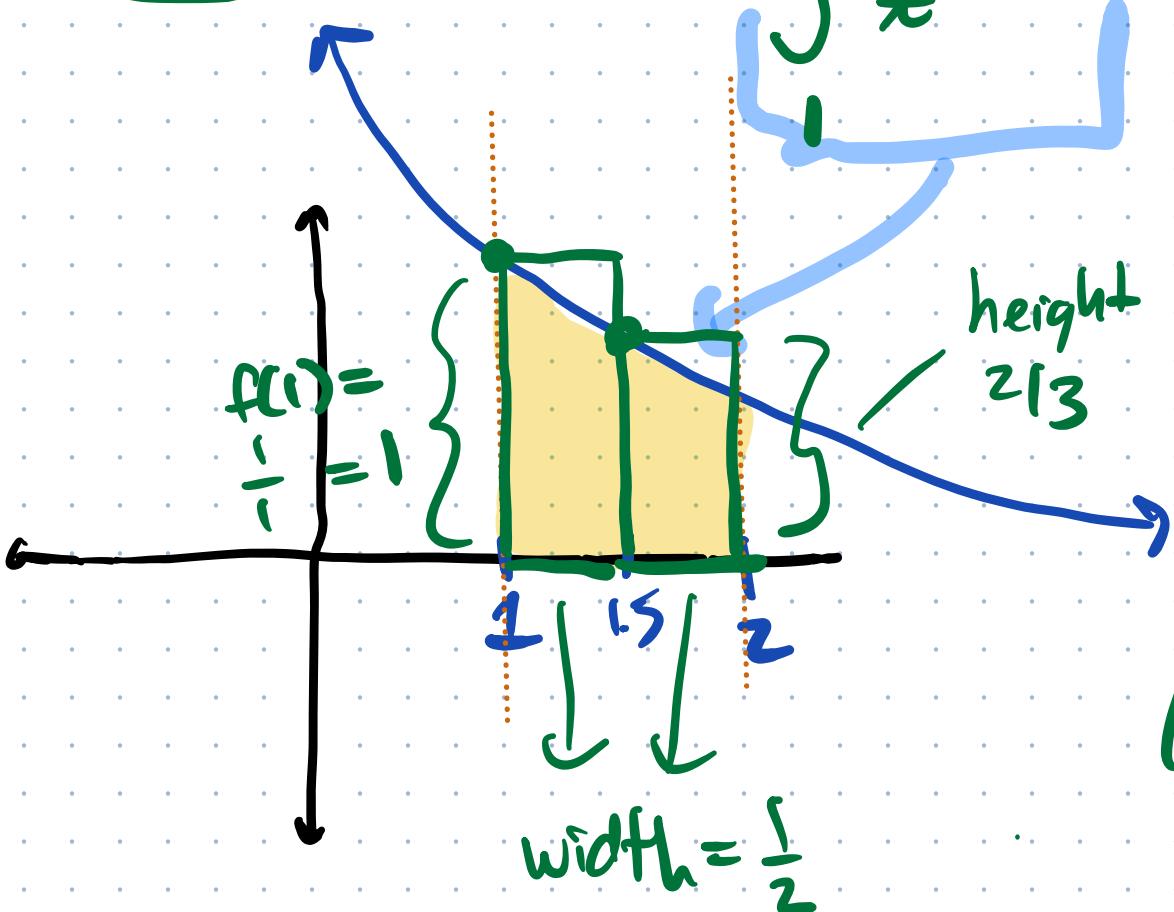
So:

$$\int_a^b f(t) dt = \lim_{n \rightarrow \infty} (\text{LH sum})$$
$$= \lim_{n \rightarrow \infty} \left(\sum_{i=0}^{n-1} f(t_i) \cdot \Delta t \right)$$

RH sum version:

$$\int_a^b f(t) dt = \lim_{n \rightarrow \infty} (\text{RH sum})$$
$$= \lim_{n \rightarrow \infty} \left(\sum_{i=1}^n f(t_i) \cdot \Delta x \right)$$

Ex: Estimate $\int_1^2 \frac{1}{x} dt$ with a LH sum and $n=2$.



$$\text{height } f(1.5) = f\left(\frac{3}{2}\right)$$

$$= \frac{1}{\frac{1}{2}} = \frac{2}{3}$$

$$\begin{aligned} & \left(\frac{1}{2}\right)(1) + \left(\frac{1}{2}\right) \cdot \left(\frac{2}{3}\right) \\ &= \frac{1}{2} + \frac{1}{3} = \frac{5}{6} = 0.833... \end{aligned}$$

actual area = $\ln(2) \approx 0.693$

Ex: The top half of a circle with radius 1 cm is described by the function

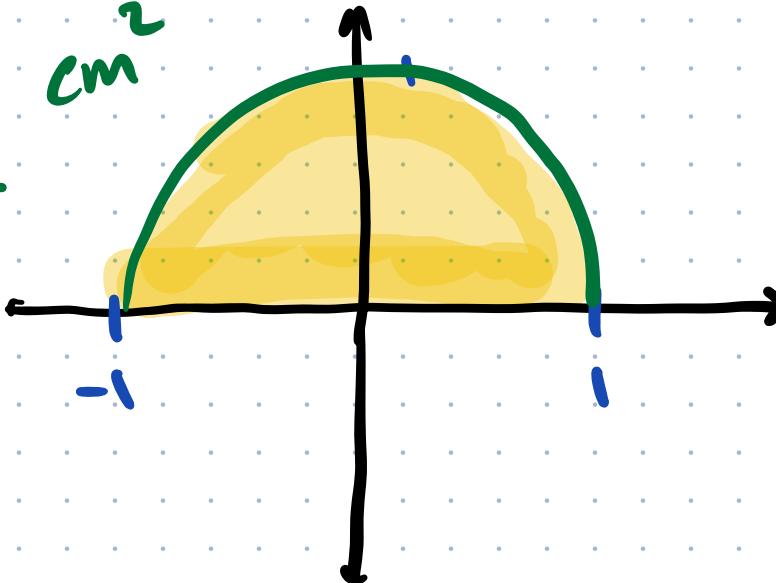
$$y = \sqrt{1-x^2}.$$

What is $\int_{-1}^1 \sqrt{1-x^2} \cdot dx$?

area of a ^{full} circle with radius 1 is

$$\pi \cdot (1)^2 = \pi \text{ cm}^2.$$

$$\int_{-1}^1 \sqrt{1-x^2} dx = \frac{\pi}{2} \text{ cm}^2$$

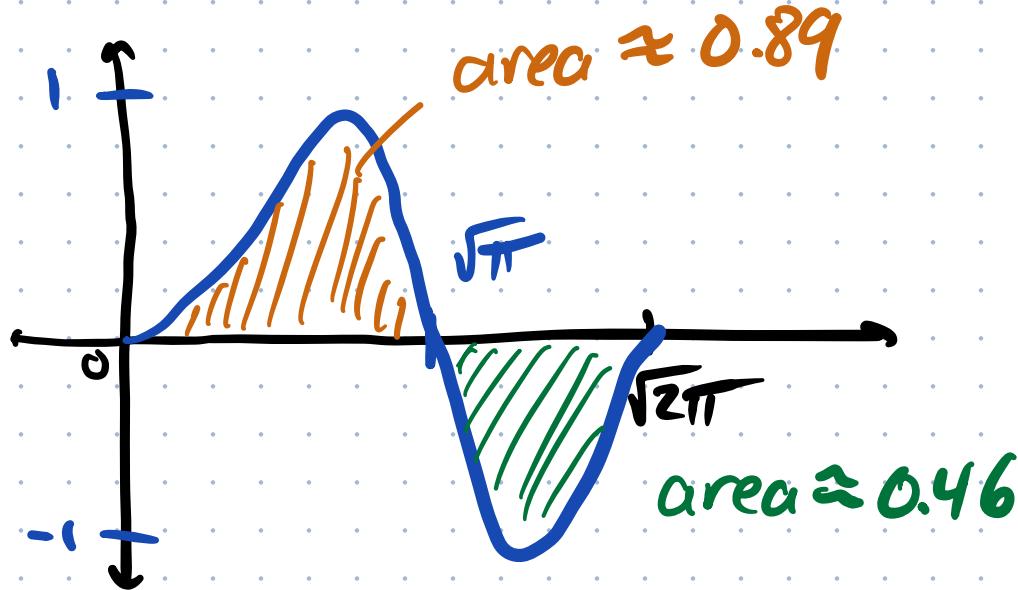


Ex: (area below the axis counts as negative)

$$\int_0^{\sqrt{2}\pi} \sin(\theta^2) d\theta$$

$$\approx 0.89 + (-0.46)$$

$$\approx 0.43$$



Section 5.3 – The Fundamental Theorem and Interpretations

$\int_a^b v(t) dt =$ area under the curve $v(t)$
between $t=a$ and $t=b$

= change in position between
 $t=a$ and $t=b$

Define
 $s(t)$ = position at time t

$$\rightarrow = s(b) - s(a)$$

$$\int_a^b v(t) dt = s(b) - s(a)$$

$v(t)$ is the
derivative of
 $s(t)$

This Says :

To calculate $\int_a^b v(t) dt$:

- (1) Find a function $s(t)$ whose derivative is $v(t)$
- (2) Do $s(b) - s(a)$