Math 1450 - Calculus 1

Announcements:

Hoppy Halloween!

- * HW 10 due on Thursday, Nov. 6 covers 4.1 and 4.2
- * Quiz 8 on Thursday, covers all 4.1+4.2 sugg. HW
- * Exam 3 on Wednesday, Nov. 12 covers 3.5, 3.6, 3.7, 3.9, 3.10 41, 4.7, 4.3, 4.6

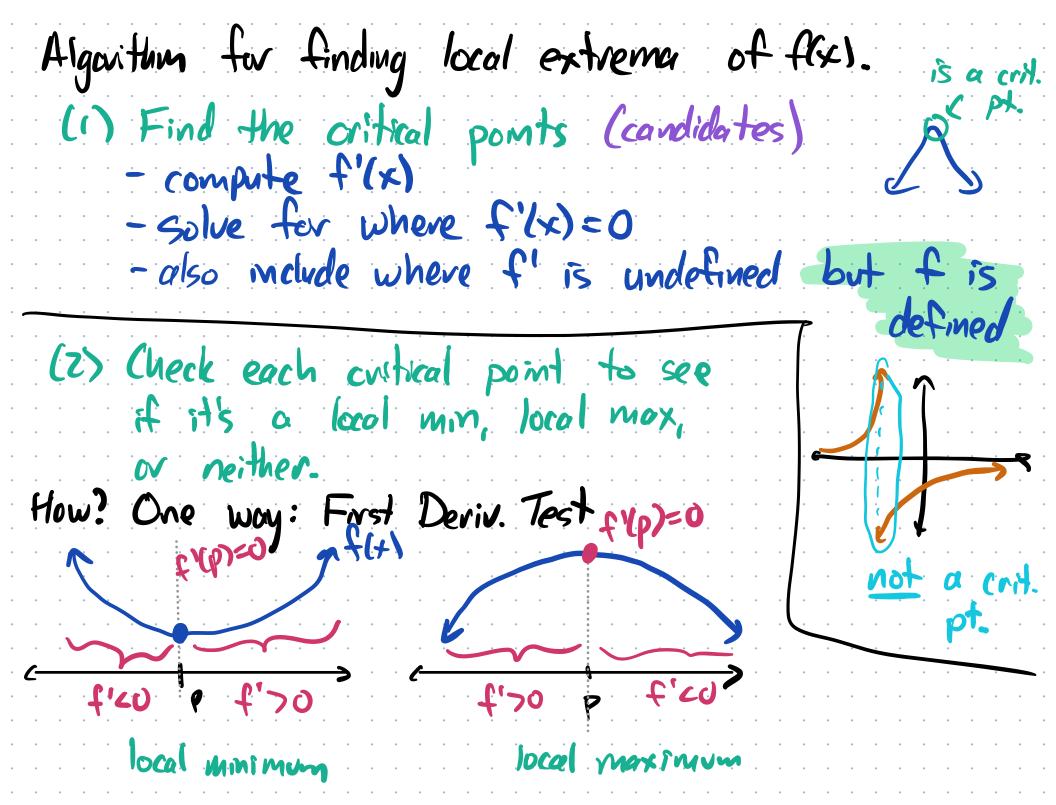
Today:

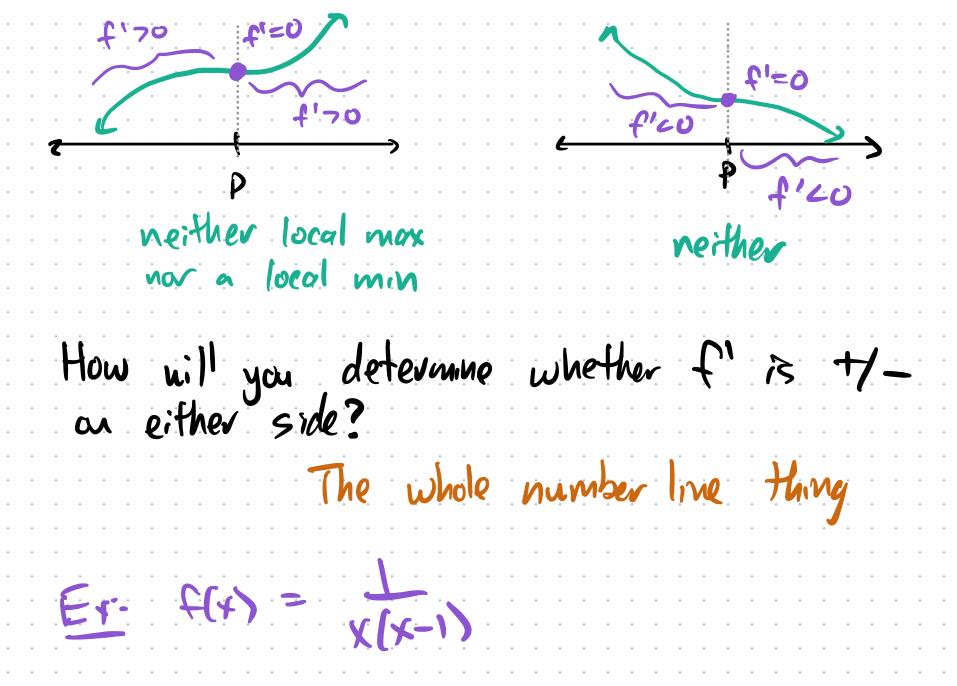
- > 4.1: Using First and Second Derivatives
 > 4.1: Optimization

Office Hours Mondays, 12-1 Wednesdays, 2-3 + Help Desk! 12-1

Local Maxima and Minima (local vs. global) * A local minimum is a point of a function whose value is smaller than all of the points near it. (a valley) * A local maximum is a point of a function whose value is larger than all of the points near it. (a peakl "maxima" is the plural loca marima same for minima

Fording local minima and maxima: Idea: When there's a local max or min, the derivative must be 0 or undefined. Definition. A <u>critical point</u> is an x-value x=P in the domain of f(x) Theorem: All local extremo; occur at critical points. where either: * 4'(p) = 0+f'(p) is undefined Warning: not all critical points are local extrema!!





Ex:
$$f(x) = \frac{1}{x(x-1)}$$

$$f'(x) = -\frac{\partial x - 1}{(x^2 - x)^2} = 0$$

$$(x^2 - x)^2 = 0$$

because 0 and 1
are not in the
domain of f

(f is undefined)

Only critical point: }

>(x=0 or x=1)

Ex:
$$f(x) = \frac{1}{x(x-1)}$$
 $f'(x) = -\frac{\partial x - 1}{(x^2 - x)^2} = -\frac{2x - 1}{(x(x-1))^2}$
 $f'(\frac{1}{4}) = -\frac{(2 \cdot \frac{1}{4} - 1)}{(\frac{1}{4})(\frac{1}{4} - 1)^2}$
 $f'(\frac{3}{4}) = -\frac{[2 \cdot \frac{3}{4} - 1)}{f} = -\frac{f}{4}$

First Derivative Test

 $f(\frac{1}{4}) = -\frac{1}{4} = -\frac{4}{4}$

Second Derivative Test	CAlternative to the
	F.D.T.
Still find the crit. p	ts. the same way
Then check f"(p)	at the critical pt.
for any critical point A +1	
(1) If f'(p) >0 then a local minimum.	Piss
2) If f"(p) Zv then	p is a loral
(3) If f"(p)=0, then v	ne can draw
1	

$$f(x) = x^3 - 9x^2 - 48x + 52$$

$$f'(x) = 3x^2 - 18x - 48$$

$$f''(-2) = 6(-2) - 18 = -12 - 18 = [-30]$$

f is
$$CCU$$
 at $x=-2$ \cap , -2 is a local max

$$f''(8) = 6-8-18=130$$

 f is $cc \uparrow ot x=8$

f is
$$cc \uparrow at x=8$$

Definition: In oddition	to local extrema
(f' changes from + to	
can also find "inflec	
f" changes from + to -	· · · · · · · · · · · · · · · · · · ·
	and where $f'' = 0$ on the change to the right.
	John pt. because f'
x=0 α+ t, 20	t"70 cloes not change signs

$$f''(1) = 6$$

$$f''(1) = 6$$

$$f''(1) = 6$$

$$f''(1) = 6$$

$$f'''(1) = 6$$

$$f'''(1) = 6$$

$$f'''(1) = 6$$

$$f'''(1) = 6$$

Ex: Find all local extrema and all inflection points of g(x) = x.e., then graph as much of it as you can. $g'(x) = e^{-x} - xe^{-x} = e^{-x} \cdot (1-x)$ q"(x) = (x-2)·e-x $g''(x)=0 \Rightarrow x=x \text{ infl. pt.}$ $g''(1)=(1-2)\cdot e^{-1}=-\cdot +=(-1)$ $g''(3)=(3-2)\cdot e^{-3}=+\cdot +=(+1)$