Math 1450 - Calculus 1

Fri, Sept. 12

Announcements:

* Hw 3 due [Tuesday] 11:59pm Covers 1.7-1.9

* Exam 1 - Wednesday, Sept. 17, Spm-6pm) this room * study guide on course website!

* covers 1.1-1.9

* calculaters allowed (nothing with wifi/bluetooth)

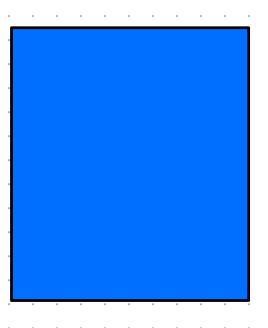
Today:

>1.8: Extending the Idea of a Limit ->1.9: Further Limit Calculations Using Algebra Office Hours
Mondays, 12-1
Wednesdays, 2-3
+ Help Desk!

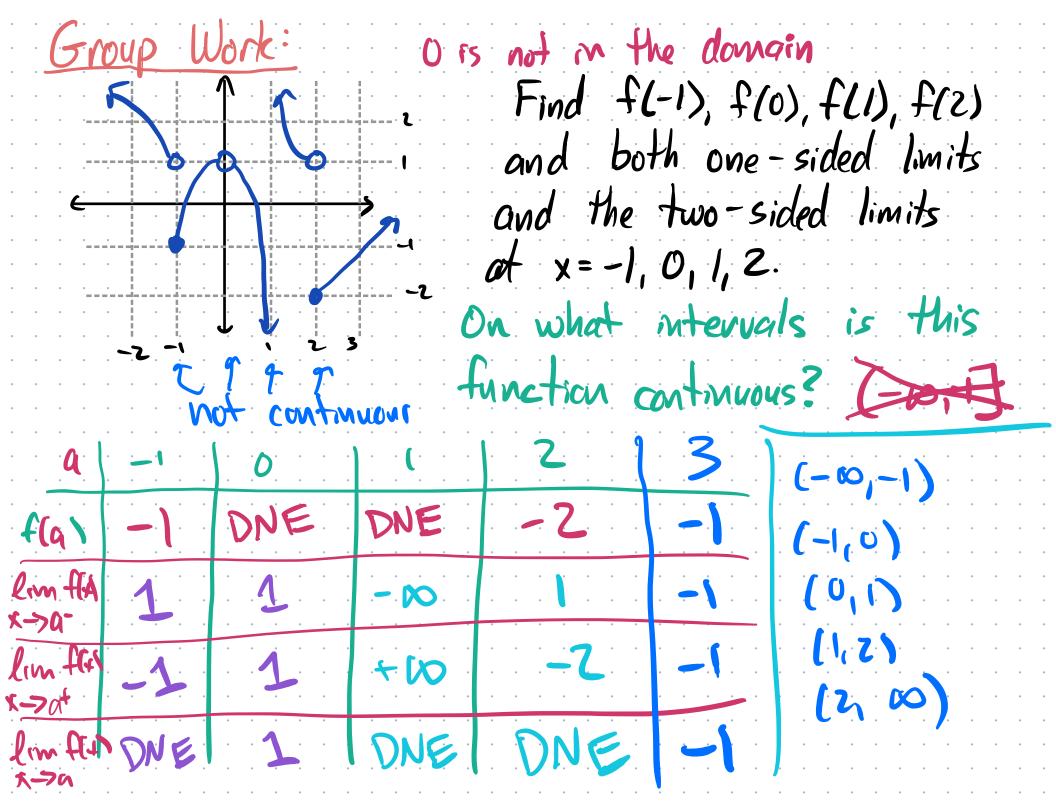
Ex:



1-33 lim 9(x)= DNE x->3



Limits can help us describe horizontal and vertical asymptotes too.



Properties of Limits

Assume lim f(x) and lim g(x) (exist) and are (finite.)

x>c (x>c) (1) lim (b.f(x))=b.lim f(x) [for any constant b] (2) lin (f(x)+g(x)) = lin f(x) + lin g(x) x->c x->c x->c lim (3.f(4)) = 3. lim f(x) (3) lon (f(x)g(x))=(lonf(x))(lon g(x))
x > c (4) $\lim_{x\to c} \left(\frac{f(x)}{g(x)}\right) = \lim_{x\to c} \frac{f(x)}{g(x)}$ as long as the denom. \ $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f(x)}{g(x)}$ isn't zero "the limit." "the limit of the sum is (5) $\lim_{x\to c} p(x) = p(c)$ for any polynomial p(x)(Why?) the sum of the limits" Polynomials are continuous

lim
$$\begin{array}{ccc}
& \text{Lim} & \text{Cos(4)} \\
& \times > 2
\end{array}$$

$$= \lim_{x \to 2} ((x+5) \cdot \cos(4)) \\
& \text{Lim} & \text{Continuous of } x = 2 \\
& \text{Continuous of } x = 2
\end{array}$$

$$\begin{array}{cccc}
& \text{Continuous of } x = 2 \\
& \text{Lim} & \text{Cos(4)}
\end{array}$$

$$\begin{array}{ccccc}
& \text{Rule } 3
\end{array}$$

$$\begin{array}{cccccc}
& \text{Cos(2)} & \text{Cos(2)} & \text{Cos(2)}
\end{array}$$

Properties of Continuity If f(x) and g(x) are continuous on an interval and b is a constant, then the following are continuous on the same interval: * b. f(x) f(x)+ g(x) * f(x) · g(x) $\frac{f(t)}{g(t)}$, as long as $g(t) \neq 0$ anywhere g(t)

More continuity

- If f(x) and g(x) are continuous everywhere in their domain, then

f(g(x)) and g(f(x)) are also continuous in their domains.

- If f(x) is continuous and if it has an inverse function $f^{-1}(x)$, then $f^{-1}(x)$ is continuous.

Suggested HW: 1,2,3,6,7,8,9,10,11,15,17,19,21,
23,27,28,37,44,45,47,65,67

Section 19 - Further Limit Calculations Using Algebra We'll focus in this section on limits of functions of the form f(x) at $y=\pm \infty$ and g(x) at points where g(x)=0. at points where g(x)=0. acymptotes potentially vertical asymptotes (1) $lm \frac{g(x)}{g(x)}$ and $\lim_{x\to-\infty}\frac{f(x)}{g(x)}$

$lim = \frac{f(x)}{g(x)}$	If g(x)	y "grows fast	ter' than - ∞, then
	The limits		
Examples	Which grow	is faster a	5 x-> w?
	X6		3
	-X6		x3 (ignore) + and - signs)
	x3+2x+1	v5 [+x2	+x4
	$\sqrt{2} = \sqrt{x}$	US	

. . . .

. .

. . . .

. .

As
$$x \to \infty$$
 $exp. growth$
 $(1.1)^{x}$
 vs
 $(eventually)$
 $(\frac{1}{2})^{x}$
 vs
 $(\frac{1}{2})^{x}$
 vs
 $(\frac{1}{2})^{x}$
 vs
 $(\frac{1}{2})^{x}$
 vs
 vs