## Math 1450 - Calculus 1 Mon, Sept. 8 Announcements: \* HW 2 due Thurs, Sept 11, 11:59pm Covers 1.7 and part of 1.8 \*Q2 on Thurs, Sept. 11 in discussion covers sugg-homework from last Fri, today, and Wed. Exam 1 - Wednesday, Sept. 17, Spm-6pm Today: >1.7: Introduction to Limits + Continuity

> 1.8: Extending the Idea of a Limit

Office Hours
Mondays, 12-1
Wednesdays, 2-3
+ Help Desk!
(hours changed!)

## Section 1.7 - Introduction to Limits and Continuity

All of Calculus is built on top of the concept of a limit.

How does a function behave as you get closer and closer to some point?"

Continuity A function is <u>continuous</u> at a point if:

(1) it exists at that point Bad: (2) there are no jumps or breaks 1 x=2 at that point. Not continuous at of x=2, but it has a jump f(i) does not exist,
so it's not continuous at x=1

Continuity
A function is continuous in a whole interval
if:

it is continuous at every point in the interval



exists everywhere

jumps at x=-2,-1,1not continuous at those x-values

continuous on the intervals  $(-\infty,-2)$  and (-2,-1) and (-1,1) and  $(1,\infty)$ 



$$f(s) = 3$$

continuous in the intervals (-3,-1)

Continuity
Another way to say "f(x) is continuous at x=c" is: The y-values of flx), when x is very close to c, are very close to flc)." "As x approaches c, flex) approaches flex."

Ex: not continuous at x=c As x > c, does f(x) > f(c)? f(c)

| Which  | functions        |
|--------|------------------|
| Expo   | mentials         |
| - Poly | nomials<br>+ Cos |
|        |                  |
| of a   | ll points        |
| at a   | ll points        |

```
- Logarithms Their

- Tangent Comain

- Rational Functions
```

are continuous?

These don't exist at some points — definitely not continuous there.

But any points where they do exist, they are continuous.

## Limits

- "limf(+)"
  x->c
- = "the limit of f(x) as x approaches
- = "what does it look like f(x) should be if we:
  - (1) look at f(x) at x-values close to x=c
  - (2) completely ignore f(c) itself

Ex: Let 
$$f(x) = \frac{\sin(x)}{x}$$



(f(o) does not exist!)

But that looks like we should have from =1 if
But if it did, we ignore from 1
what would it be? itself.

So, 
$$\lim_{x\to 0} \frac{\sin(x)}{x} = 1$$

$$Ex: Let f(x) = \begin{cases} 10 & 10 \\ 5 & 10 \end{cases}$$

But the limit does not care what actually happens at x=1.



## Group Work: Find each limit, if it exists. lim flx lm flx) lim f(x) DUE/D