MATH 2100 – HOMEWORK 4

Fall 2022

due Wednesday, November 2, at the start of class

Sections 2.3, 2.4, 2.5, some 3.1

This homework assignment was written in LATEX. You can find the source code on the course website.

Instructions: This assignment is due at the *beginning* of class. Please write the questions in the correct order. Explain all reasoning.

- 1. Use induction to prove that for all integers $n \ge 0$, the quantity $2^{2n+1} + 5^{2n+1}$ is divisible by 7.
- 2. Prove that $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$.
- 3. Prove that there exists a positive integer *n* such that $\frac{1}{n \ln(n)} < 0.0001$.
- 4. Prove that any real number r that makes the equation $r \frac{1}{r} = 5$ true must be irrational.
- 5. Prove that at a completely full Milwaukee Bucks game at the Fiserv Forum, there *must* be at least two people that have both the same birthday *and* the same first initial. (Note: you will have to look up the capacity of the arena!)
- 6. Prove that if $a + b + c \ge 35$, then either $a \ge 10$, $b \ge 12$, or $c \ge 13$.
- 7. Use the pigeonhole principle to prove that given any five integers, there will be two that have a sum or difference divisible by 7.
- 8. Prove that if any five points other than (0,0) are placed on the coordinate plane, then there are two points, call them *A* and *B*, such that the angle formed by the rays from (0,0) to *A* and from (0,0) to *B* is acute.
- 9. Write each of the following sets in set-builder notation.
 - (a) The set S of integers that are multiples of 3 and a prefect square.
 - (b) The set T of positive integers that are bigger than 10 and whose ones digit is a 5.
 - (c) The set *R* of real numbers whose square is a rational number.
- 10. List five elements in each of the following sets, unless there are fewer than 5 elements in the set (in which case, justify how you know you've listed all of the elements).
 - (a) $A = \{x \in \mathbb{R} : x^2 \in \mathbb{N}\}$
 - (b) $B = \{S \subseteq \{1, 2, 3, 4\}$: the sum of the elements of *S* is even $\}$
 - (c) $C = \{q \in \mathbb{N} : q = 2k \text{ for some } k \in \mathbb{N} \text{ and } q = 2\ell + 1 \text{ for some } \ell \in \mathbb{N} \}$