Friday, Nov. 18 - Fall 22 Lecture #34

Announcements / Reminders

* Wiley Plus #12 due THESDAY night (4.3)
* Wiley Plus #13 due the following Wednesday (46)

* Monday: Lecture 2 Help Desk * Tuesday: Discussion 3 + Office Hours Wiley Plus due!

* Wed-Fri: Thanksgiving Break

* ODS Email * Drop Deadline today!

Section 4.3-Optimization and Modeling

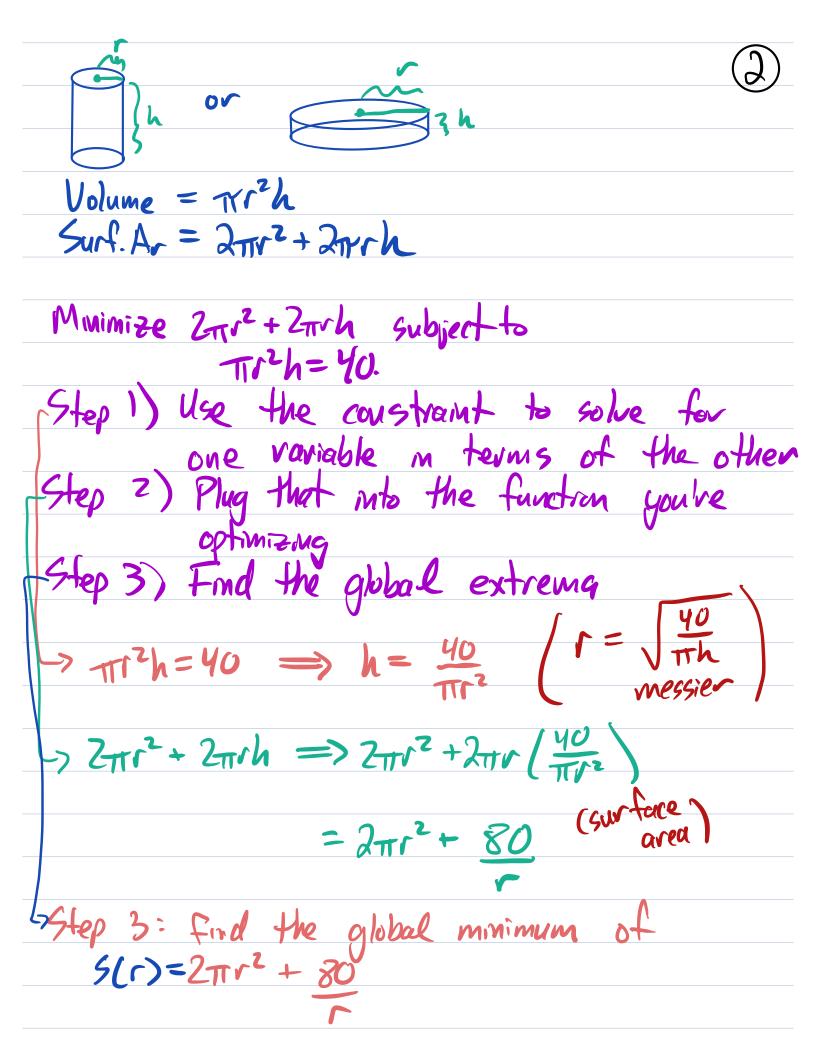
Example (from the book)

What are the dimensions of an aluminum

alinder can that holds 40 in 3 of juice that uses the least material.

Constraint: Volume = 40

Goal: minimize surface area



Find critical points and endpoints. (3) rewrite 5: S(r) = 2122 + 80 r-1 \Rightarrow $S'(r) = 4\pi r + 80(-1)r^{-2}$ $= 4\pi r - \frac{80}{r^2}$. \Rightarrow $4\pi r - \frac{80}{r^2} = 0$ => 4mr = 80 rz => 4Tr3 = 80 only critical point $\Rightarrow r^3 = \frac{20}{\pi} \Rightarrow r = \left(\frac{20}{\pi}\right)^{1/3}$ ≈ 1.85

S'(r) undefined?

S'(r) is undefined at r=0, but so is S(r), so it doesn't count as a critical point.

Endpoints? What is the interval of possible

r values and does it hove ownorints? endpoints?

LO, &)

no endpoints to check The critical point $\left(\frac{20}{\pi}\right)^{1/3}$ is the only randidate to be the global minimum. Let's do the S.D.T. to confirm it's a S((r) = 4Tr - 80r-2 $5''(r) = 4\pi + 160$ 5" ((20)"3) >0 yes, it's a mminay

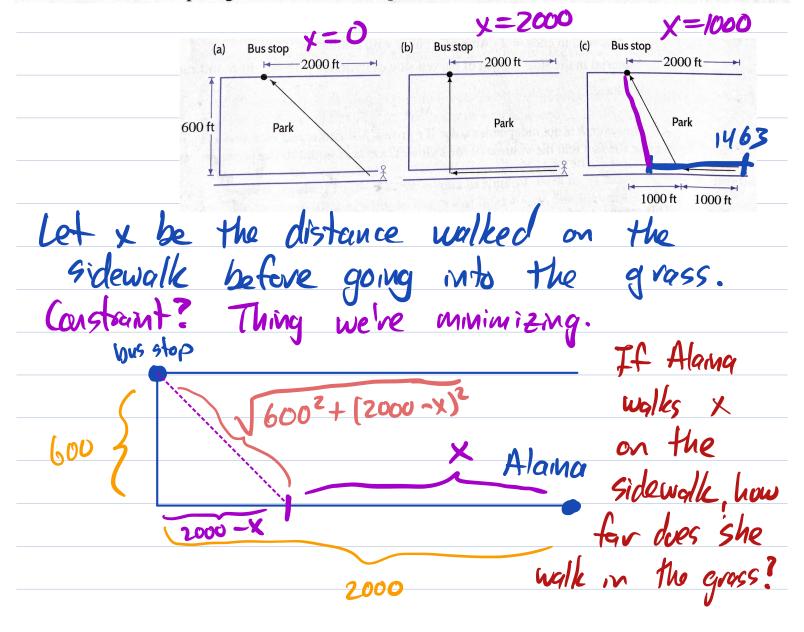
Now we know $r = \left(\frac{20}{17}\right)^{1/3}$ is the radius that makes the can with minimal surface area.

h =
$$\frac{40}{\pi r^2}$$
 height?

 $h = \frac{40}{\pi r^2}$ height?

 $h = \frac{40}{\pi r^2}$ $\frac{40}{\pi r^2}$ $\frac{40$

Alaina wants to get to the bus stop as quickly as possible. The bus stop is across a grassy park, 2000 feet west and 600 feet north of her starting position. Alaina can walk west along the edge of the park on the sidewalk at a speed of 6 ft/sec. She can also travel through the grass in the park, but only at a rate of 4 ft/sec. What path gets her to the bus stop the fastest?



If Alama walks x feet on the 6
sidewalk, then she must walk
$\sqrt{600^2 + (2000 - x)^2}$
feet in the grass.
Sidewalk: 6 ft/sec
Sidewalk: 6 ft/sec Grass: 4 ft/sec
If Alaina walks x feet on the sidewalk
If Alama walks x feet on the sidewalk HUW LONG does the whole journey take?
$\times \sqrt{600^2 + (2000 - x)^2}$
6 4
Sidewalk time grass time
11. 111. 1.11.5 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1

x = 2000 - 24055= 1463 feet

The answer you get:

Eximum volume of a closed box with a square base and surface area 24 in²?

Volume: xh Surface Area: 2x2+4xh

Constraint: 2x2+4xh=24 Goal: Maximize x2h

Step 1: Solve constraint for one variable.

(h = 24 - 2x²)

Step 2: Plug this in to the expression we're maximizing

No nome = $\chi_2 h = \chi_3 \left(\frac{A \chi}{5A - 5 \chi_5} \right)$

 $= \chi \left(\frac{24 - 2x^2}{4} \right)$

$$V(x) = 6x - \frac{x^3}{2}$$

Step 3:

$$V'(x) = 6 - \frac{3}{2}x^2 = 0$$

$$V''(x) = -3x$$

$$V''(z) = -6 \angle O$$

$$5.D.T. \Rightarrow x=2 \text{ is a max}$$

$$h = \frac{24 - 2x^2}{4x} = \frac{24 - 8}{8} = \frac{16}{8} = 2$$