Friday, September 2 - Fall '22 Lecture #3

Announcements / Reminders * Turn in calculus pretest * No class on Monday (Labor Day) (still discussion * WP HW O due next Wed On Tuesday) * Q1 next Thurs covering 1.17 68/125 have already * WP HW I due next Fri 52 we will finish 1.1 * Join Wiley Plus ASAP! today No deadline extensions, even for technical issues. (106/125 joined) * Help Desk starts on Tuesday (hours on course vebsite) * If you just joined the class, see me after.

Section 1.1-Functions and Change (2)Linear Functions (straight lines) Every line has a <u>slope</u> - how fast it goes up or down and a <u>y-intercept</u> - where it crosses the y-axis (5_{13}) (Book definition: A linear function has the form y = f(x) = b + mxmx+b m is the slope b is vertical intercept (value of y when x=0)

For every topic in the course the book has more examples and more details, so it's good to read it if you need more information. Topics in 1.1 we're skipping: - increasing US decreasing functions - proportionality

Section 12 - Exponential Functions

Year	Pop in millions	Change in pop. (in millions)
2007	14.235 -	0.425
2008	14-660 <	
2009	15.095	0.435
2010	15.540	> 0.445
ZOIL	15.995	0.455
2012	16460	0.465
2012	16.100	> 0.474

(4 2008 pop ~ 1.03 2009 × 1.03 2007 pop 2011 2).029 2010 ~ 1.029 2009 $\frac{\text{If } 2008}{2007} = 1 \implies \text{the pop didn't change}$ "1.03" means the population grew 3%. Growing at # 3% per year. Linear Growth (lines) - changes by a constant amount (additive factor) Ex: 2,6, 10, 14, 18, 22, +4 Exponential Growth-changes by a constant percentage (multiplicative factor) Ex: 2, 8, 32, 128, 512, ... x4

Bock to Burking Faso How can we devise a function that models this data?

Call P(t) the population t years after 2007, in millions. P(0) = 14.235 $P(1) = 14.660 \approx 14.235 \cdot 1.03$ $P(2) = 15.095 \approx 14.660 \cdot 1.03$ ≈ 14.235 · 1.032 P(3) = 15.540 = 14.235 · 1.033 P(t) ~ 14.235 · 1.03t What dues this predict about 2022? P(2022)

 $P(15) \approx 14.235 \cdot 1.03^{15} \approx 12.178 \text{m}$

Actual = 22.130m

P(L)= 14.235. (1.03)t

(13/(13)) × *	
(12 20.00)	
-20	
0 10 20	
-10	

For exponential growth we need Po>O and a>1. Exponential Decay P(t)=Po-at When O<a<1 we get exponential deray. (o, Po) approv hits asymptot