MATH 2100 / 2350 – HOMEWORK 6 (LAST ONE!)

Fall 2020

due Monday, November 23, on D2L, by the beginning of class

 \approx Sections 3.3, 4.1, 4.2, 4.3

This homework assignment was written in LaTEX. You can find the source code on the course website.

Instructions: This assignment is due on D2L at the *beginning* of class. It must be typed in Latex (other formats such as Word are not acceptable). **You must submit the .pdf file, but you do not have to submit the .tex file unless I ask for it** Any pictures can be drawn by hand and added to the Latex file with the "\includegraphics" command (see how I do it in this document). Please write the questions in the correct order. Explain all reasoning.

Note: You no longer need to include your scratch work with each proof.

- 1. Prove or disprove: For any two sets *A* and *B*: $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
- 2. Prove the following set inequality:

 $(\{6k+1: k \in \mathbb{Z}\} \cup \{6m-1: m \in \mathbb{Z}\}) \subseteq \{2n+1: n \in \mathbb{Z}\}.$

3. Draw the two-sided arrow diagram for the function $f : \mathcal{P}(\{4, 5, 6\}) \to \mathcal{P}(\{1, 2, 3\})$ defined by

$$f(S) = \{x - 3 : x \in S\} \smallsetminus \{2\}.$$

- 4. Prove that the function $h : \mathbb{N} \to \mathbb{N}$ defined by h(n) = [the sum of the digits in n (in base 10)] is surjective. Prove that it's not injective.
- 5. Let $c : \mathcal{P}(\{x, y, z\}) \to \mathcal{P}(\{x, y, z\})$ be the function with the rule $c(A) = \{x, y, z\} \setminus A$, and let $n : \mathcal{P}(\{x, y, z\}) \to \{0, 1, 2, 3\}$ be the function such that n(A) is the number of elements in the set A. Which composition makes sense, $c \circ n$ or $n \circ c$? For the one that is defined, give the domain, codomain, range, and draw the two-sided arrow diagram.
- 6. Let $A = \{0, 1, 2, 3\}$ and let $B = \{000, 001, 010, 011, 100, 101, 110, 111\}$ be the set of binary strings with three digits. Define $g : B \to A$ by g(s) = [the number of 1s in *s*]. Draw the arrow diagram for the function. Determine whether or not it's injective, surjective, and bijective. Make sure to justify your answers (either with the arrow diagram, or a formal proof).