Math 2100 / 2350 – Homework 4

Fall 2020

due Wednesday, October 28, on D2L, by the beginning of class

Sections 2.1, 2.2, 2.3, 2.4

This homework assignment was written in LATEX. You can find the source code on the course website.

Instructions: This assignment is due on D2L at the *beginning* of class. It must be typed in Latex (other formats such as Word are not acceptable). **You must submit the .pdf file, but you do not have to submit the .tex file unless I ask for it** Any pictures can be drawn by hand and added to the Latex file with the "\includegraphics" command (see how I do it in this document). Please write the questions in the correct order. Explain all reasoning.

Note: You can write a proof in Latex with the commands

\begin{proof}
 proof goes here
\end{proof}

1. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *A*, *B*, and *C* are integers and if *A* divides *B* and *B* divides *C*, then *A* divides *C*.

2. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If A, B, and C are integers and if A divides B and A divides C, then $A \cdot B$ divides C.

Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *n* is a positive even integer, then $3^n + 1$ is divisible by 5.

4. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *n* is a positive even integer, then $n^3 + 2n$ is divisible by 4.

5. Decide if the following statement is true or false. If it's true, prove it. If it's false, provide a counterexample.

If *m* is a positive odd integer, then $m^2 - 1$ is divisible by 8.

6. Prove that if 3 divides $4^{n-1} - 1$ then 3 divides $4^n - 1$.

7. Prove that for all positive integers *n*,

$$\sum_{k=0}^{n} (k \cdot k!) = (n+1)! - 1.$$

- 8. Prove that for all positive integers $n \ge 2$, the number $2^{3n} 1$ is not prime.
- 9. Prove that for all positive integers $n \ge 4$,

$$n! > 2^n$$
.