MATH 2100 / 2350 – HOMEWORK 5

Fall 2019

due Wednesday, November 13, at the beginning of class

Sections 2.5, 3.3, 4.1

This homework assignment was written in LATEX. You can find the source code on the course website.

Instructions: This assignment is due at the *beginning* of class. **Staple your work** together (do not just fold over the corner). Please write the questions in the correct order. If I cannot read your handwriting, you won't receive credit. Explain all reasoning.

- 1. Prove that if any five points other than (0,0) are placed on the coordinate plane, then there are two points, call them *A* and *B*, such that the angle formed by the rays from (0,0) to *A* and from (0,0) to *B* is acute.
- 2. Use a proof by contradiction to prove that an even perfect square cannot have the form 4k + 2.
- 3. Prove that if $a + b + c \ge 35$, then either $a \ge 10$, $b \ge 12$, or $c \ge 13$.
- 4. Prove or disprove: For any two sets *A* and *B*: $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
- 5. Prove or disprove: For any three sets *A*, *B*, and *C*: $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
- 6. Prove the following set inequality:

$$(\{n^2 - 1 : n \in \mathbb{Z}\} \cap \{2k : k \in \mathbb{N}\}) \subseteq \{4m : m \in \mathbb{Z}\}.$$

7. Prove the following set inequality:

$$(\{6k+1:k\in\mathbb{Z}\}\cup\{6m-1:m\in\mathbb{Z}\})\subseteq\{2n+1:n\in\mathbb{Z}\}.$$

8. Draw the one-sided and two-sided arrow diagrams for the function $f : \mathcal{P}(\{4,5,6\}) \to \mathcal{P}(\{1,2,3\})$ defined by

$$f(S) = \{x - 3 : x \in S\} \setminus \{2\}.$$