МАТН 2100 / 2350 – НОМЕЖОРК 4

Fall 2019

due Wednesday, October 30, at the beginning of class

Sections 2.2, 2.3, 2.4, half of 2.5

This homework assignment was written in LATEX. You can find the source code on the course website.

Instructions: This assignment is due at the *beginning* of class. **Staple your work** together (do not just fold over the corner). Please write the questions in the correct order. If I cannot read your handwriting, you won't receive credit. Explain all reasoning.

1. Decide if the following statement is true. If it is, prove it. If it's not, provide a counterexample.

For integers *x*, *y*, and *z*, if *x* divides *y* and *x* divides *z*, then x^2 divides *yz*.

2. Decide if the following statement is true. If it is, prove it. If it's not, provide a counterexample.

For integers *x*, *y*, and *z*, if *x* divides *z* and *y* divides *z*, then *xy* divides z^2 .

3. Prove that for all positive integers *n*,

$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2.$$

4. Prove that for all positive integers *n*,

$$\sum_{k=0}^{n} (k \cdot k!) = (n+1)! - 1.$$

- 5. Prove that for all positive integers $n \ge 2$, the number $2^{3n} 1$ is not prime.
- 6. Prove that for all positive integers $n \ge 4$,

$$n! > 2^n$$
.

- 7. Prove that at a completely full Milwaukee Bucks game at the Fiserv Forum, there *must* be at least two people that have both the same birthday *and* the same first initial. (Note: you will have to look up the capacity of the arena!)
- 8. Use the pigeonhole principle to prove that given any five integers, there will be two that have a sum or difference divisible by 7.