MATH 2100 / 2350 — EXAM 2

Wednesday, November 13

Name: @
J

Instructions: Please write your work neatly and clearly. You must explain all reasoning. It is not sufficient to just
write the correct answer. You have 75 minutes to complete this exam. You may not use calculators, notes, or any
other external resources.
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The Marquette University honor code obliges students:

¢ To fully observe the rules governing exams and assignments regarding resource material, electronic aids,
copying, collaborating with others, or engaging in any other behavior that subverts the purpose of the exam or
assignment and the directions of the instructor.

e To turn in work done specifically for the paper or assignment, and not to borrow work either from other
students, or from assignments for other courses.

* To complete individual assignments individually, and neither to accept nor give unauthorized help.

* To report any observed breaches of this honor code and academic honesty.

If you understand and agree to abide by this honor code, sign here:




1. Prove that if n is an odd integer, then n3 — 1 is divisible by 4.
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Sol n= Akl o some ke Z.
Then 0= (Ak+() = (Ak+0) (et
= (3 +0)(4k® +4E+1)
= 8L+ 12k%s Gk +I.
So, W* -w = (BKE+ 1T +hba ) — (2ke 1)
= Sk +124 Y
< 4 (26 + 34+ k).
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2. Prove that if any 5 points are chosen from a circle of radius 2, then there exists a pair of points within distance
/8 of each other.
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3. Use induction to prove that for any positive integer 1, 8" — 3" is a multiple of 5.
(Hint: Tt may be helpful at some point to turn 8¢ — 3 into

(8" —3.81) 4 (3.8 1 3k

by both adding and subtracting the same quantity, 3 - 8¢~1.)

troof-
Defne PS<“8"-3" 15 o muhp of S
Bose Cose’ P(0)-8-3 & o mulipk of 5, wbick
is +rue.
Tnduckan Shept Fix k22,
Assume  PLE~D), Lobich Says
“8“-3".‘ K a mu’k‘oé of 5."
We vart & proce PLU), wolek says
"8t-3k & 4 mibick o S."
By the bk, gh-t-(Bk-3.84 ). (2847 - 3H)
- 841 (g-3)+ 3 (8 -3")
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Thus, 8 3t- 87 (g-3)+ 3 (8" -3"")
= 584 354
=5(&""'+ 32).
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4. Consider the function g : P({2,3,5}) — N defined by

q(S) = [the product of the elements of S]

and (@) = 1. For example q({2,5}) =2-5 = 10.
(a) What is the domain of 4?

(P(£2358)= 5 @45, £33, 53, 233, §2:5%, 8355, 1as51)

(b) What is the codomain of g?

N

(c) What is the range of 4?

71,22.56.005,30%

(d) Draw the two-sided arrow diagram of 4. (You don’t need to draw the whole co-domain, but make sure
at least the whole range is included.)
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5. (a) Suppose that A and B are any two sets with the property that AU B = B. Prove that this implies A C B.
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(b) Prove that for any threesets R, S,and T,if RUS = Sand SUT =T, then RUT = T. (You may use the
fact you just proved in part (a).)
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6. Define functions f : Z — Rand g : N — Z by

f(n) = \/m and g(m) =5—m?.

(@) Does f o g make sense? If so, compute it and state its domain and codomain. If not, explain why not.

‘/39/ boave He  codomam of J (Z), walches
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(b) Does g o f make sense? If so, compute it and state its domain and codomain. If not, explain why not.
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7. If you multiply an even integer and an odd integer, is the result even or odd? Prove your answer.
The vosull is  even.

Tooot:
Lt M be oven aud N be edd.
Then M=k and N=+( for some k2e Z.

Now, MoN= ()20 = Ykl+ 3k
= Q(Qkﬁ-t—k)
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8. Use a proof by contradiction to show that there is no largest perfect square.
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9. Prove using any technique that 2" > 3n for all n > 4.

Rwﬁ b\j Ml{u ehvvs'-

—

Delue On)=" 2" >34
Boe cam: PU) soys “Io>12", wlick 15 dme

wuc"'iw\ 5“@@1 Le"' lng
Rssume  PLL-1), wohicke s © 27 >3-
We want o poe UL, ik says "2t 53!
MO"Q %L Qk: D-Qk-\
> 2+ 3(k-1) (L_\, He  mel. L‘Uf')

= 6k-6
> 2k,

Veriﬁn.vj H@‘r Q">;)(, The Awskffmhm Hiat
CL-6 >3 & H, 4

(6k-6)-3L = 3k-620, swe kzS.

QA



10. Use a set containment proof to verify that

{10k+9:keZ} C({2n+1:neZ}nN{Sm+4:mec Z}).
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